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EVIDENTIAL REASONING APPLIED TO SINGLE-OBJECT
LOSS-OF-CUSTODY SCENARIOS FOR TELESCOPE TASKING

Andris D. Jaunzemis∗, Marcus J. Holzinger†

Evidential reasoning and modern data fusion models are applied to the single-
object loss-of-custody scenario in ground-based tracking. Upon a missed observa-
tion, the cause of non-detection must be quickly understood to improve follow-up
decision-making. Space domain awareness (SDA) sensors, including a brightness
sensor and an All-Sky camera with an optical-flow-based cloud detection algo-
rithm, are conditioned as Dempster-Shafer experts and used to assess the cause
of a non-detection. Telescope re-tasking is also approached using Dempster-
Shafer theory by planning the next observation to minimize an estimated lack-
of-information. Results from real-world operational sensors show the algorithm’s
ability to adjust to changing observation conditions and re-task the primary electro-
optical sensor accordingly.

INTRODUCTION

Space situational awareness (SSA) is concerned with accurately representing the state knowl-
edge of objects in the space environment to provide better prediction capabilities for threats such
as potential conjunction events. More recently, the discourse on SSA has turned toward space do-
main awareness (SDA), reflecting the ever-growing reality of world-wide space capabilities and the
impact that decisions in the space environment can have on a global relational scale. The space com-
munity as a whole suffers from a problem of producing high quantities data (in the form of tracks)
but being unable to produce significant data on any specific object or event to increase understanding
of that event. Currently, there are over 20,000 trackable objects in the space object catalog.1 Due
to observational constraints imposed by orbital mechanics, the limited number of space-observing
sensors are unable to observe each object. This hinders the ability to reliably provide information
on maneuvers or other events in space. Therefore, more emphasis is being placed on algorithms and
processes that have an ability to ingest disparate data from many sources and fuse an understanding
of the greater situation of the space domain.

In typical Bayesian reasoning, deterministic probabilities are placed on event hypotheses under
the assumption that the only possible realizations of this hypothesis are true or false. However, in
complex decision-making contexts, information is not always best-represented in this strictly binary
manner, since some evidence for a particular hypothesis might also involve ambiguity. An expert
might be able to confirm or refute a given set of hypotheses, but it cannot attribute belief to any
hypotheses for which it is not an expert. For this reason, evidential reasoning methods, such as
Dempster-Shafer theory, quantify this ambiguity in situation knowledge, leading to more realistic
modeling of human analyst processes.2
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Autonomous decision making processes are typically complex and multi-faceted, requiring rig-
orous definition of information flow between different analyses to provide a higher-quality repre-
sentation of the true state. A particularly common defense-related model, the Joint Directors of
Laboratories (JDL) data fusion model, provides a high-level mapping of the different process-level
components that are involved in autonomous decision-making.3, 4 Instead of prescribing a hierar-
chical data flow, JDL encourages an organization that permits data-sharing between different com-
ponents. The revised version of JDL, called the Data Fusion Information Group (DFIG) model, also
allows user input to be considered.

The loss-of-custody scenario is a candidate SDA application for both data fusion and evidence
theory. When tracking a space object using a ground-based telescope, if the track disappears from
the field of view, a logical hypothesis is that the spacecraft has maneuvered since the last attempted
observation. If this is the case, timely follow-up detection is critical in detecting and reconstructing
the maneuver, requiring re-tasking of sensors. However, it is also possible that the observation con-
ditions have temporarily degraded, perhaps due to local weather conditions or proximity to bright
objects such as the moon. In this case, alerting and re-tasking sensors to look for the missing ob-
ject causes a loss of information from other targets This places a premium on correctly identifying
whether a maneuver is the cause of the loss-of-custody. A better understanding of the whole ob-
servation environment, fusing information from multiple SDA processes, can provide insight on
likelihood of each scenario and allow for better modeling of the decision process.

This work begins by introducing concepts of evidential reasoning and data fusion to describe how
they can be used to better model a realistic decision-making process. Then, contributions to SDA are
provided through 1) the application of the JDL/DFIG paradigm to autonomous telescope tasking for
the loss-of-custody scenario, 2) the application of rigorous Dempster-Shafer evidential reasoning
to loss-of-custody processes, 3) the conditioning of available SDA sensors into Demspter-Shafer
experts, 4) a proposed methodology for telescope re-tasking based on reducing the gap between
belief and plausibility, and 5) testing of this loss-of-custody scenario framework using operational
data from hardware at the Georgia Tech observatory.

BACKGROUND

This section lays the groundwork for the novel theory developed in the following sections, be-
ginning by introducing Dempster-Shafer theory, a well-known formulation of evidential reasoning.
This is followed by discussion of data fusion techniques, focusing on JDL/DFIG.

Dempster-Shafer Basics

In typical probabilistic approaches, a precise probability is assigned to an event, regardless of the
quality of the data.5 This approach is sensible when considering the truth value of a hypothesis: the
hypothesized event either occurred (is true), or did not occur (is false). Bayesian theory commonly
represents these probabilities using the pair (p, q) respectively, with p+ q = 1. In contrast, theories
of evidence and other so-called possibilistic approaches add an extra dimension to the expression of
uncertainty, using a probability triple (p, q, r) to model the categories “known to be true,” “known
to be false,” and “don’t know” for each proposition.2 These imprecise probabilities introduce in-
determinism to decision-making analyses, but this loss of precision can be viewed as a strength in
that it can more faithfully represent the reality of the decision environment.5 While it remains true
that each statement is either true or false, the analyst can only form a decision based on available
evidence supporting or refuting articulated hypotheses. The analyst can leverage available evidence
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to produce levels of certainty for (p) and against (q) each proposition, leaving r = 1−p−q to quan-
tify residual ambiguity.2 Evidence theory improves decision-making in high-consequence systems
through its ability to better characterize subjective belief.6

Dempster-Shafer theory, also known as the mathematical theory of belief functions, is a well-
known evidential theory framework with demonstrated usefulness in engineering applications for
the representation of epistemic uncertainty and risk analyses.6 Dempster-Shafer theory formalizes
the use of available evidence to attribute belief to sets of hypotheses for decision making. The
following terms and mathematical notation are common in Dempster-Shafer formulations, using
typical evidential reasoning notation from Dempster.2

The frame of discernment, Θ, is a mutually exclusive, collectively exhaustive set of discrete
hypotheses θ ∈ Θ. Mutually exclusive refers to the fact that only one hypotheses, θi, may occur at
a time: P[θi]∩P[θj ] = 0 ∀ i, j ∈ Θ, i 6= j. Collectively exhaustive means that together the frame of
discernment encompasses the full spectrum of possibilities so that one of the hypotheses, θi, must
be true.

Θ = {θ1, θ2, . . .} (1)

The power-set of the frame of discernment, 2Θ, forms all possible disjunctive combinations of the
elements in set Θ. Note that, if Θ consists of n elements, the power-set consists of 2n−1 elements; in
classical Dempster-Shafer theory, belief mass cannot be assigned to the empty-set (since the frame
of discernment is assumed to be exhaustive). Also note that Θ ⊂ 2Θ. The set Θ is also referred
to as the truth-set since it represents the disjunctive combination of every element in the mutually
exclusive and collectively exhaustive frame of discernment, meaning one of the propositions in this
set must have occurred.

A basic belief assignment (BBA) represents an expert’s belief in each hypothesis based on the
evidence available to that expert. The BBA for the ith expert is given by a belief mass function
mi : 2Θ → [0, 1].

For ease of discussion and use, a number of useful BBAs are typically defined. In a vacuous BBA,
all the belief mass is assigned to the truth-set, Θ, such that mi(Θ) = 1,mi(A) = 0∀A ⊆ 2Θ \ Θ.
A simple BBA is one in which the focal set, or the set of hypotheses with non-zero belief mass,
consists of only two elements: the truth-set and one other hypothesis, as in mi(A) = p,mi(Θ) =
1− p,mi(B) = 0 ∀ B ∈ 2Θ \ {A,Θ}.

The notions of belief and plausibility form lower and upper bounds on the probability that a given
proposition is provable from the available evidence. Belief and plausibility can be computed from
BBA mi using Eqs. (2) and (3) respectively.

beli(A) =
∑
B⊆A

mi(B) (2)

pli(A) =
∑

B∩A 6=∅

mi(B) = 1− beli(¬A) (3)

where ¬A is the negation or complement of hypothesis A. In other words, expert i’s belief in, or
support for, hypothesisA is composed of the sum of the belief masses attributed toA and its subsets,
whereas its plausibility of hypothesisA is composed of the sum of the belief masses attributed to any
hypothesis whose intersection with hypothesis A is non-empty. Notice that the alternate equation
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of plausibility in Eq. (3) gives a relationship to the belief of the complement of a hypothesis. It is
work noting that, since the truth-set Θ represents the disjunctive combination of an exhaustive set
of hypotheses, the belief and plausibility of the truth-set must both be equal to 1, a useful fact for
checking implementation issues.

Numerous methods exist for combining BBAs from multiple experts to form a fused mass func-
tion.7, 8 Each method exhibits slightly different properties, so implementation should take into con-
sideration use-cases of this fused belief and characteristics of the evidence sources. A common
BBA combination technique is Dempster’s conjuctive rule, which is commutative, associative, and
admits the vacuous BBA. Dempster’s conjuctive rule of combination, shown in Eq. (4), is often
represented using the ⊕ operator.

mi⊕j(A) = (mi ⊕mj)(A) =

∑
B∩C=Ami(B)mj(C)

1−
∑

B∩C=∅mi(B)mj(C)
∀A ⊆ Θ (4)

The term in the denominator handles conflict between the bodies of evidence. Some uses of Demp-
ster’s rule lead to counter-intuitive results in the presence of extreme conflict, an observation typi-
cally referred to as Zadeh’s paradox.9 However, the scenario in Zadeh’s paradox can be resolved by
more carefully adhering to Cromwell’s Rule, i.e. not assigning a probability of exactly 0 or 1 to any
particular prior.10 This caveat, with the inclusion of the open-world assumption, i.e. admitting that
the actual true event might lie outside the theorized set of possible events, led to the development of
the Transferable Belief Model as a derivative of Dempster-Shafer theory.11 The constraints of this
application allow the classical Dempster-Shafer implementation to be appropriate.

Another important note about Dempster’s rule is that it does not possess the property of idempo-
tence. Subsequent evidence is assumed to be statistically independent of previous evidence. There-
fore, when using Dempster’s rule the evidence must be assumed to be distinct; otherwise, repeated
evidence will be heavily weighted. Alternate combination rules have been developed that do enforce
idempotence, which can be employed in the case of non-distinct bodies evidence.12

For a more complete discussion on important developments in Dempster-Shafer theory, Yager
and Liu compiled a book of classic works, reviewed by Dempster and Shafer, on the theory of belief
functions.13 With Dempster-Shafer theory in mind, a data fusion framework should be selected to
construct an algorithm that utilizes Dempster-Shafer experts.

Data Fusion using JDL/DFIG

Figure 1. JDL/DFIG process level descriptions4

The Joint Directors of Laboratories (JDL)
data fusion model is a framework for plan-
ning and visualizing information flow within
a complicated system. Its more-recent re-
vision, the Data Fusion Information Group
(DFIG) model, involves six levels of process-
ing, ranging from sub-object level signal pro-
cessing through course-of-action impact assess-
ment and process refinement for re-tasking as-
sets based on the proposed course of action.3

These levels are detailed in Fig. 1. A system
that implements data association and estimation
events of all levels will permit better understanding of entities in complex systems.4 The ordering
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of the levels in the JDL/DFIG model was never intended to imply a hierarchy of processes.4 Rather,
the model is typically represented with each level sharing a common data bus, as indicated in Fig.
1. For instance, object and sub-object processing and estimation events can benefit from knowledge
from other low-level sensors as well as the overall situation assessment to improve performance.

In SDA, many different phenomena are exploited for detection or estimation processes on various
pieces of hardware, occupying every level in the JDL/DFIG framework. For instance, taking a noisy
image and performing dark-frame subtraction and sub-pixel object identification techniques could
be classified as L0, while the classification of these objects as stars or SOs requires L1 capability
and associating these objects together for correlation is an L2 task. SDA applications also highlight
the non-hierarchical nature of the different process levels. Re-tasking a telescope to look in an area,
an L3/L4 task, can prime an L0/L1 object identification algorithm with the commanded pointing
to aid SO or star identification. Similarly, Dempster-Shafer experts exemplify the non-hierarchical
framework through the combination of evidence from a variety of sources to form a fused situa-
tional assessment. In this work, L0/L1/L2 algorithms for SO detection, cloud cover estimation, and
sky brightness evaluation are fused with L3/L4 estimates of re-tasking decisions to utilize sensor
resources more effectively.

THEORY

In this section, novel theory regarding the contributions is developed. First, decision-making im-
plications of quantified residual ambiguity are discussed to provide intuition for its usefulness in
autonomous algorithms. Then the loss-of-custody scenario and algorithm is described. An eviden-
tial reasoning hypothesis testing approach to non-detection assessment is developed, after which the
re-tasking approach is discussed.

Belief-Plausibility Gap

The belief-plausibility gap, the difference between belief and plausibility, represents a lack of
knowledge of the truth given by the available evidence. Since belief mass is only assigned to hy-
potheses based on direct evidence, the remainder of the belief mass is attributed not to the negation
of that hypothesis (as in a Bayesian scheme) but instead to the truth-set. This avoids falsely at-
tributing evidence that the expert really does not have, better representing realistic decision-making
processes. This lack of knowledge is what Dempster calls residual ambiguity,2 but is also more
colloquially referred to as a degree of ignorance. The ignorance associated with knowledge of
hypothesis A for expert i is given in Eq. (5).

igi(A) = pli(A)− beli(A) (5)

Belief and plausibility form the lower- and upper-bounds of a probability interval, bounding the
precise probability of a hypothesis. As ignorance in a particular hypothesis approaches zero, the
system approaches a state of sufficient evidence to reduce to Bayesian probability calculations for
that hypothesis. Indeed, a Bayesian BBA is one in which the focal set elements are all singleton
hypotheses.

In order to improve decision-making capabilities, one can focus on taking actions that maxi-
mally reduce ignorance in any or all hypotheses. In doing so, the bounds on the precise probabili-
ties will shrink and the true state can be determined with less ambiguity. Reduced ambiguity aids
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decision-making by providing a clearer picture of the truth of the situation, ensuring appropriate ac-
tions are taken. Therefore, the autonomous algorithm developed in this paper focuses on gathering
information-rich, low-ignorance data, aiming to reduce the gap between belief and plausibility.

Loss-of-Custody Algorithm

The scenario of interest, termed the loss-of-custody scenario, involves the use of a ground-based
telescope and primary electro-optical sensor to detect a space object. A number of other sensors
contribute observation environment information, such as sky cover and background sky brightness.

For this scenario, the telescope is tracking a space object from the space object catalog. On its next
attempted observation, the target is no longer found in the telescope’s field of view. The tracking
algorithm must now determine the cause and re-task the telescope as necessary. One hypothesis for
the loss-of-custody is a maneuver executed by the spacecraft since the previous observation. In order
to accurately characterize and understand the maneuver, as well as update the space object catalog,
a follow-up observation is desired in a timely manner. Depending on the priority of the target,
this could require re-tasking of the telescope as soon as possible or even alerting other resources.
However, another possibility states that the spacecraft has not actually maneuvered, but the imaging
sensor was unable to obtain enough signal to identify it in the image. This could be due to a number
of causes, including local weather conditions or proximity to the moon, that cause poor observation
conditions. In this case, sending alerts and re-tasking assets to search for a maneuver constitute a
waste of resources and could lead to loss of data. A preferred response might be to temporarily
re-task the telescope to another object until observation conditions improve.

For this inaugural research effort, the authors impose a “single-object world” restriction. This
means that for the purposes of this study only one space object exists, the target space object, which
significantly restricts the decision space by avoiding correlation questions.

Figure 2. Loss-of-Custody Algorithm Block Diagram and JDL/DFIG Relationships

The algorithm flowchart for this task is described in Fig. 2, beginning with a command to slew the
telescope to the expected target location for imaging. The image is processed to identify stars and
space objects in the image. Note that, for the present study, there is only ever assumed to be at most
one space object (a single-object world assumption), to avoid the problem of association for now.
Given the single-object world assumption, there are a limited number of possible outcomes from the
space object identification process: a) the space object is found in the expected location, b) the space
object is found, but not in the expected location, or c) the space object is not found within the image.
The first outcome indicates a successful tracking observation, and the new observation can be used
to update the state estimates in the catalog. The second outcome directly indicates that an anomaly
(e.g. a maneuver) has occurred since the last track update since the object is found in an area not
predicted by quiescent propagation. This potential situation will be avoided for this particular study
but is an interesting area for future extension, perhaps using a control cost or Mahalanobis distance
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metric for maneuver detection.14, 15 The third outcome is of particular interest to this paper. The
space object is not found anywhere in the image, so without direct evidence of an anomaly (as
in case 2), a hypothesis test must be performed to determine whether it is likely that an anomaly
caused the non-detection. This hypothesis test is approached using a Dempster-Shafer formulation
of evidential reasoning, resulting in a plausibility that the non-detection is due to an anomaly.

If the anomaly plausibility is high, the telescope could attempt to re-acquire it by searching the
reachable area of the spacecraft. Re-acquisition would provide direct evidence of a maneuver,
reducing the belief-plausibility gap. Alternately, if the anomaly plausibility is low, the telescope
could continue unchanged to its next planned observation attempt, seeking to verify that a maneuver
has not occurred to also reduce the belief-plausibility gap. The re-tasking approach will be discussed
at length in a later section.

Figure 3. JDL for proposed tracking algorithm

Each process in the flowchart in Fig. 2 is
denoted with a number corresponding to the
appropriate level in the JDL/DFIG formula-
tion. The algorithm endeavors to fuse low-
level pixel-by-pixel processing with high-level
decision-making functions to aid each other.
Figure 3 includes high-level details of the pro-
cesses involved in this algorithm and how they
line up with the JDL process level specifica-
tions from Fig. 1. Since this is an exploratory
study on the applications of JDL/DFIG and ev-
idential reasoning to the telescope tracking problem, the added complexity of a user interface (L5)
is not yet considered.

Non-Detection Hypothesis Testing

To assess whether the target object should have been visible, a hypothesis test must be performed
to determine plausible causes of non-detection. Of particular interest is determining whether a
spacecraft maneuver is a cause for the non-detection, which may warrant sensor re-tasking to search
for the object. Here, Dempster-Shafer evidential reasoning is employed to fuse different sources of
evidence and assess the plausibility of an anomaly such as a maneuver.

The first step in implementing Dempster-Shafer reasoning is to define a mutually exclusive and
collectively exhaustive set of hypotheses, a frame of discernment, that covers the meaningful causes
of non-detection. There are a number of potential causes for a missed detection apart from a space-
craft maneuver: 1) target object obstructed by local weather conditions, 2) foreground sky brighter
than target object, 3) target object too near to other bright celestial object, particularly the moon,
4) poor geometry between target object, the Sun, and the observer, diminishing the target’s optical
signature (e.g. spacecraft in eclipse or poor phase angles for illumination), or 5) target object co-
incident with another space object, a planet, or a star. Each of these causes can be thought of as
a separate piece of evidence against the hypothesis that an anomaly is the cause of non-detection.
Since these all contribute evidence to a common event (i.e. non-anomaly causes of non-detection),
they are not represented by separate hypotheses but instead by a straightforward binary hypothesis
scheme: non-anomalous causes (N ) and anomalous causes (A). Therefore, the frame of discern-
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ment can be represented by the following set:

Θ = {N,A} (6)

The fully enumerated power-set is then represented by the following set:

2Θ = {{N} , {A} , {N,A}} = {{N} , {A} ,Θ} (7)

These hypotheses represent the non-anomalous cause, the anomalous cause, and the either-non-
anomalous-OR-anomalous cause, respectively. Recall that belief assigned to the third element (the
truth-set) represents lack of direct evidence for any particular hypothesis; colloquially, ignorance in
an expert’s knowledge of the truth.

Conditioning of Sensors as Dempster-Shafer Experts

Now that the set of possible hypotheses has been enumerated, BBAs must be developed for each
expert. Each expert is treated as a simple BBA, contributing evidence to the hypothesis N for non-
anomalous causes of non-detection and contributing the complementary belief mass to the truth-set
Θ. Therefore, in general, the BBA for sensor i can be represented as follows: mi(N) = p and
mi(Θ) = 1− p

An important aspect of Dempster’s conjunctive rule of combination is that the pieces of evidence
(the BBAs) should come from independent sources. Since this rule in particular is not idempotent,
dependent sources will lead to accounting for the same piece of evidence more than once, leading
to skewed belief masses. In this application, most of the sources of evidence can be considered
independent without much difficulty; for instance, the proximity of the moon to the space object
does not affect background sky brightness or cloud cover. However, some of the particular sensors
do share dependencies, which must be handled before creating BBAs.

The approach adopted here is to use a weighted sum to combine the evidence of dependent
sources into one expert. In particular, the weather forecast and cloud detection software both pro-
vide evidence for sky-cover as a non-detection cause. However, due to the temporal resolution of
the All-Sky cloud detection software, it is given more weight in the computation of the BBA. Given
an All-Sky sky cover estimate of cA, a weather forecast sky cover estimate of cF , and a weighting
coefficient of w, the sky cover expert BBA is constructed as:

mC(N) = wcA + (1− w)cF (8)

mC(Θ) = 1−mC(N) (9)

Re-Tasking Approach

Once the plausibility of an anomaly has been computed, the algorithm must autonomously deter-
mine the next course of action. At this point, a decision must be made as to what criterion defines
the best course of action. The evidential reasoning approach to anomaly detection yields a new way
of viewing follow-on observation tasking in light of the current evidence. Since the gap between
belief and plausibility represents a lack of evidence, or ignorance to the truth, a meaningful course
of action is to attempt to reduce the belief-plausibility gap as much as possible.

Attempting to find the optimal course of action also requires defining the time-span under con-
sideration. One potential approach is to employ a fixed-horizon scheme, attempting to minimize the
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belief-plausibility gap as much as possible over the course of a finite number of steps ahead. One
method applicable to this approach is a mixed-integer linear programming approach. However, in
this study, we opt for a simpler greedy optimization approach, so-called because it only considers
its very next step when determining its next course of action.

In general, the possible courses of action for re-tasking the sensor are: i) search for the maneu-
vered space object, ii) search for the quiescent (non-maneuvered) space object, iii) continue with the
next planned observation, or iv) do nothing. The first option overrides the otherwise next-planned
observation searches the space object’s reachable volume to confirm the anomalous non-detection
hypothesis. The second option also overrides the next-planned observation and opts to search for
the next observation in the area predicted by quiescent propagation to confirm the non-anomalous
non-detection hypothesis. The third option does not deviate from the next planned observation. The
last option opts not to make any observation at the next observation interval.

Since the work in this paper makes the simplifying assumption of a one-object world, the third
option listed above is subsumed by option two. Therefore, for this paper, we will formulate the
following decision space:

D = {M,Q, ∅} (10)

representing the first, second (and third), and fourth options, respectively, as described above.

The chosen formulation of the hypothesis space as a binary hypothesis pair and their disjunctive
combination, as in Eq. (7), simplifies the selection of a re-tasking action. In this situation, maxi-
mally reducing ignorance is equivalent to maximally reducing the amount of belief mass attributed
to the truth-set, Θ. Reducing the belief-plausibility gap can be formulated as the optimization prob-
lem in Eq. (11):

min
d∈D

J = ig(N) = ig(A) (11)

= mF⊕d(Θ) = (mF ⊕md)(Θ)

where mF is the fused mass function from the current evidence representing the current knowledge
of the system, and md is the mass function resulting from the decision d ∈ D. Since the hypothesis
space for this particular application is restricted to 2 elements and their disjoint union, Dempster’s
rule can be applied to simplify the cost expression to Eq. (12):

J =

∑
B∩C=ΘmF (B)md(C)

1−
∑

B∩C=∅mF (B)md(C)

=
mF (Θ)md(Θ)

1−mF (N)md(A)−mF (A)md(N)

∝ md(Θ)

1−mF (N)md(A)−mF (A)md(N)
(12)

The final simplification notes that the mass function mF does not change based on the selection of
d, so the mF term in the denominator is simply a scaling factor and can be removed. Also recall
that the denominator only measures the level of conflict between the two BBAs. In many cases,
this conflict is small and the denominator evaluates to 1. Otherwise, it simply scales the belief mass
function as well. This leads to a rather intuitive result: to reduce ignorance in the fused BBA, one
should take the action that gathers the least ignorance, minimizing md(θ); in other words, take the
action more likely to gather actionable information to confirm a particular hypothesis.

9



Naturally, since the action d has not yet been executed, md is actually an estimate of the mass
function that would result from decision d. In particular, for this application, all the experts are
represented as simple BBAs: so if md(N) = p, md(Θ) = 1 − p, and md(A) = 0. Therefore,
the algorithm will select the action that has the best estimated chance of confirming any particular
hypothesis, since the rest of the belief mass will be assigned to the truth-set as ignorance. This
requires methods for estimating the BBAs for each re-tasking action.

Re-Tasking Action BBA Estimation

Determining the optimal re-tasking approach requires estimation of the belief mass associated
with each possible re-tasking event to ensure minimization of ignorance. In other words, the tele-
scope should re-task to search for a maneuvered spacecraft if it is more likely to confirm the ma-
neuvered hypothesis than it is to confirm the non-maneuvered hypothesis from a second attempt at
observing the area predicted through quiescent dynamics.

When planning a search pattern to establish belief in the anomalous hypothesis, a reachability
analysis provides an upper bound on the deviated state, based on known or assumed maximum
control authority. In this study, the reachability approach follows a method outlined by Holzinger
and Scheeres, particularly Theorem 2, the Reachability Position Maximum theorem.16 Given an
ellipsoidal initial set describing position and velocity state uncertainty bounds and the spacecraft’s
maximum control authority um, the algorithm uses Newton descent to compute the maximal devia-
tion, df,mx, at time tf from the state estimate. In the process, it also solves for the initial position and
velocity, d0 and v0, associated with this maximum deviation, and the Lagrange multiplier λ0 corre-
sponding to this boundary condition. Therefore, by the Reachability Position Maximum theorem,16

given the vector ζT =
[
dT

0 , vT
0 , dT

f,mx, λ0

]
of decision variables in the descent algorithm, the

following system of equations is solved:df,mx

df,mx

0

 =

I 0 0 0
0 0 I 0
0 0 0 I

φz (tf ;

[
d0

v0

]
,−2λ0E

[
d0

v0

]
, t0

)
(13)

0 =

[
d0

v0

]T

E

[
d0

v0

]
− 1 (14)

E =

[
1
r2p
I 0

0 1
r2v
I

]
(15)

where φz in Eqn. (13) is the flow function representing the propagation of the state x and co-state
p trajectory. Equation (14) defines an ellipsoid in R6 with shape matrix E as defined in Eqn. (15),
where rp and rv are the position and velocity state uncertainties at the initial condition. In this study,
1-σ uncertainty bounds are used in Eqn. (15), though 3-σ or any n-σ bounds could also be used.
This system of equations can be solved as 10 equality constraint equations using Newton’s method
to find the ζ ∈ R10×1 that simultaneously satisfies these constraints. Holzinger and Scheeres fully
derive this solution procedure, including the required gradients for Newton descent.16 In this work,
the 4D (planar) nonlinear relative dynamics implemented in the reference paper are extended in
this application to a full 6D case using similar nonlinear relative dynamics, allowing capture of
out-of-plane motion.17

The reachability computation procedure is illustrated in Fig. 4. Once the maximum position
df,mx has been calculated, the reachable volume can be determined using Corollary 3 to construct a
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maximum bound as a sphere of radius ‖df,mx‖ centered at the expected value of the propagated state
estimate.16 This volume represents the reachable space of the spacecraft at time tf given the control
authority um, meaning the spacecraft must reside somewhere within this volume. Without and prior
information about the maneuver type or size, each position state within this volume is equally likely,
so the principle of indifference can be applied to form a uniform probability density function (PDF)
for the spacecraft location. An approximate detection probability is computed by integrating the
sensor field-of-view (FOV) over this PDF as depicted in Fig. 4, yielding the probability that the
spacecraft is contained within the intersection of the sensor FOV with the position PDF as in Eqn.
(16). This is only an approximation because the true reachability set is a subset of this volume.

PD =

∫ ∫
Lm

fR(α, δ)dαdδ∫ ∫
R\{Lk}m−1

k=1
fR(α, δ)dαdδ

(16)

(a) Projection onto image plane (b) 3D visualization

Figure 4. Illustration of reachable space bounded by the maximum reachable dis-
tance, df,mx, projected onto image plane and in 3D, including intersection of sensor
FOV with reachable volume

If the telescope is commanded to re-task for detection in this reachable volume, the optimal sensor
tasking maximizes this detection probability, which yields the next sensor pointing command. It is
important to note that already-observed areas of the reachability volume should be neglected from
the total PDF since the spacecraft was not found. Therefore at the mth observation attempt, the
portion of the reachable volume associated with all previous unsuccessful attempts {Lk}m−1

k=1 should
be neglected when computing the PDF. In contrast, the non-maneuver decision belief mass is simply
computed in the same way as the original observation. The state estimate is propagated from t0 to
tf to yield the next pointing vector.

However, the estimated decision event belief mass is not based solely on the reachability detection
probability, but also on the predicted probability of detection or non-detection based on the other
factors already discussed (e.g. cloud cover). The anomalous and non-anomalous search hypotheses
both provide a next pointing vector, so these can be used to determine estimated BBAs for sky
brightness, cloud cover, moon proximity, and any other non-detection phenomena. These belief
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functions are all fused, as discussed previously for expert belief mass fusion, to form the final BBA
for each course of action.

IMPLEMENTATION

This section contains details about the software and hardware implementation of the loss-of-
custody algorithm. For this study, the set of experts available was reduced to match the available
sensors and software at the Georgia Tech observatory. An All-Sky camera and weather forecast
parser are used for cloud detection, and a sky brightness sensor measures background sky brightness.

All-Sky Cloud Detection

The SBIG All-Sky 340 camera, shown in Fig. 5, is a relatively low-resolution monochrome CCD
with a fisheye lens that allows it to achieve a horizon-to-horizon field of view. Relevant parameters
for the All-Sky camera are listed in Table 1.

Table 1. SBIG All-Sky 340 parameters

Parameter Value Units

Field of View 185 degrees
Resolution (H x V) 640 x 480 pixels

Focal Length 1.4 millimeters
Focal Ratio f/1.4 -

Figure 5. SBIG All-Sky 340

Optical sensors are notoriously bad at detecting clouds using pixel-to-pixel derivative-based
methods because clouds often exhibit wide brightness variations due to internal structure. Addi-
tionally, while bright areas in the clouds might be detected, the whispy cloud portions, which still
very-much affect seeing, are often missed in traditional pixel-wise derivative-based blob detection
algorithms. Other methods proposed to handle cloud detection utilize the difference between the
color channels to detect clouds against the blue sky.18 However, since the All-Sky camera available
is monochrome and the relevant imaging time is night, this method cannot be applied here.

Therefore, this paper implements an optical-flow-based object detection algorithm to utilize pixel-
to-pixel and frame-to-frame derivatives for computing motion between frames. The optical flow al-
gorithm assumes brightness-constancy of objects and computes a magnitude of motion from frame-
to-frame, performing best when the displacement from frame-to-frame is relatively low. These char-
acteristics are well-suited to cloud detection.19 For the observatory roof-mounted All-Sky camera,
the only objects moving in the frame are clouds, the lighting conditions do not change considerably,
and the 30-seconds between subsequent frames does not allow clouds to drift too far. Additionally,
the computation of frame-to-frame motion allows the ability to predict sky cover in other areas of
the sky that are of interest for the next observation.

Before attempting optical flow, though, the barrel distortion of the fisheye lens must be corrected
back to a rectilinear (pinhole projection) mapping. The lens in the SBIG All-Sky 340 exhibits f-
theta distortion, which is a function of the focal length of the lens and the object’s distance from
the boresight of the camera.20 Therefore, each image from the SBIG camera is undistorted as
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shown in Fig. 6, which results in linear motion being correctly represented from frame-to-frame,
a useful result for predicting sky cover from pixel velocity estimates. The conversion does cut
off the edges of the distorted image, but this does not hurt performance, particularly in an urban
environment like Atlanta. The sky near the skyline is much brighter, not ideal for observation,
and the mounting limitations of the telescope do not allow observation that close to the horizon.
The outlined conversion area, shown in Fig. 6, was chosen to be just above the tallest building
in the Atlanta skyline, which still captures the majority of the sky, particularly the usable area for
observations. Although the images in Fig. 6 appear similar sized in print, the undistorted images
are actually 2.5 times larger in each dimension.

(a) Distorted, converted area outlined (b) Undistorted (c) Cloud cover overlay

Figure 6. All-Sky cloud detection

The Horn-Schunck optical flow algorithm formulates the energy function in Eq. (17) subject to
a candidate flow field (u, v), seeking to minimize energy by modifying the flow field through a
gradient descent.21 Pixel-wise gradients (Ix and Iy) are computed using central differencing and
frame-to-frame derivatives (It) are computed using backward differencing. The time difference
between the frames is known based on the timestamp in the image metadata (nominally 30 seconds
between frames). After a user-defined convergence criterion is met, the magnitudes of the flow field
(u, v) can be evaluated to determine which pixels contain cloud and which contain empty sky.

E(x, y, t) =

∫ ∫
([Ix(x, y, t)u(x, y, t) + Iy(x, y, t)v(x, y, t) + It(x, y, t)]

2

+ ‖∇u(x, y, t)‖2 + ‖∇v(x, y, t)‖2)dxdy (17)

The optical flow algorithm excels at detecting the fainter, whispy portions of the clouds, but does
not detect the flat, bright areas of heavy cloud with either pixel-wise or frame-wise derivatives.
Therefore, the optical flow algorithm is augmented with a component that checks for bright pixels
above a threshold. If a particular pixel exceeds either the brightness or flow velocity magnitude
thresholds, it is deemed a cloud. Figure 6 shows the result for sample images. In this study, the
thresholds for brightness and flow velocity magnitude are 75

255 and 1.5e − 4 respectively, and the
optical flow PDF is evolved at an artificial timestep of 1ms.
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Further improvement could be made on this algorithm by incorporating a probabilistic threshold.
However, for this application, a simpler approach of using a 3 × 3 Gaussian kernel to smear the
edges of the cloud map was implemented to include a probabilistic component.

Weather Forecasts

Figure 7. Sample weather forecast output

Weather forecasts are used to augment infor-
mation from the All-Sky cloud detection algo-
rithm. A python script parses information from
the National Oceanic and Atmospheric Admin-
istration website∗, retrieving weather forecasts
for data such as sky cover, humidity, and pre-
cipitation potential. The NOAA website uses
the NWS National Digital Forecast Database
(NDFD), a model which compiles information
on numerous statistics, including sky cover,
temperature, and humidity. In future studies,
the authors wish to use more weather statistics
to predict other atmospheric properties than just
low cloud cover. In particular, forecasts on high clouds that are difficult to detect even with optical
flow could further inform seeing conditions. A sample weather forecast is shown in Fig. 7.

Sky Brightness

Figure 8. Unihedron Sky Quality Monitor

Assessing the effect of background sky
brightness on the detection of a space object re-
quires knowledge of numerous properties of the
sensors, the spacecraft, and the environment.
The goal is to develop a probability of detec-
tion based on the observed sky brightness from
the Unihedron Sky Quality Meter, which mea-
sures sky brightness in units of visual apparent
magnitudes per square-arcsecond. The devel-
opment of a detection probability based on re-
quired algorithm SNR, sky brightness, space object brightness, and other optical properties is pre-
sented by Coder and Holzinger.22 Random variables associated with the number of incident photons
are represented through Poisson distributions, and the central limit theorem is applied to approxi-
mate the number of photons as a Gaussian distribution. Statistics are then developed based on optical
and environmental properties to allow computation of the probability that the signal is greater than
the noise using a Gaussian cumulative distribution function (CDF). The particular equation used for
probability of detection, from Coder and Holzinger,22 is shown in Eq. (18).

P [ΓSO > SNRalgσn] =
1

2

[
1− erf

(
SNRalgσn − µSO√

2σSO

)]
(18)

∗NOAA National Weather Service Forecast Office, Hourly Weather Forecast, Atlanta, GA: http:
//forecast.weather.gov/MapClick.php?lat=33.7629&lon=-84.4226&unit=0&lg=english&
FcstType=graphical
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Telescope and optical system parameters are taken from the Georgia Tech Space Object Research
Telescope (GT-SORT), a Raven-class telescope installed at the Georgia Institute of Technology on-
campus observatory.22, 23 Selected environmental properties for observation from midtown Atlanta
are also listed in Table 2. Coder and Holzinger provide a thorough discussion of each of these
parameters and their origin.22 Many of these parameters are constants, fixed by the chosen hardware.
Others, such as the atmospheric transmittance, are estimates based on the observation environment.
More accurate estimates of atmospheric transmittance could be obtained by comparing the expected
brightness of stars in the FOV to their actual observed values.

Parameter Value Units

Field of View (H x V) 14.2 x 11.4 arc-minutes
Resolution (H x V) 2736 x 2192 pixels

Focal Ratio f/6 -
Aperture Diameter 0.5 m

Quantum Efficiency 0.74 -
Atmospheric Transmittance 0.50 -

Optical Transmittance 0.90 -
Secondary Transmittance 0.84 -

Zero-Magnitude Irradiance 5.6e10 photons/s/m2

Required Algorithm SNR 4 -

Table 2. GT-SORT telescope, environment, and algorithm parameters

This detection scheme is conditioned on an expected brightness magnitude for the space object,
listed in tables in each test case 2. Photometric modeling of spacecraft is an active area of research
and can be difficult to perform accurately due to attitude maneuvering of spacecraft or unknown
physical parameters. For simplicity in this study, the value chosen is selected such that, for the
nominal sky brightness in each simulated case, the detection probability is not exactly 0 or 1.

EXPERIMENTAL RESULTS

Data from each of the listed sensors was collected over a number of nights to perform an analysis
of the non-detection hypothesis testing and re-tasking decision making algorithms. The target object
selected for this study is Echostar 11 (COSPAR designation: 2008-035A), a geostationary Earth
orbiting (GEO) satellite positioned at 110 degrees West longitude. It has a radar large cross section
and is positioned over the United States which makes it ideal for observation from the Georgia Tech
observatory. Figure 9 shows a recent 10-second unfiltered exposure of Echostar 11 taken using GT-
SORT. The result shown has been dark-frame subtracted and the colors inverted for print. The faint
dot near the center of the GT-SORT image is the tracked satellite, while a number of stars can also
be seen streaking through the background. Similar recoloring is performed for the accompanying
All-Sky camera, only a few light clouds can be seen in this image. The cyan dot indicates the
position of Echostar 11.

The test cases elaborated below utilize real data taken from the evening of January 10, 2016.
This night included times of moderate cloud cover as well as times of clear skies. In these test
cases, the cloud cover and sky brightness data are processed under an assumed observation attempt
of the geostationary satellite, Echostar 11, with assumed parameters listed in Table 3. In each
case, the spacecraft is assumed not to be detected, requiring the use of the non-detection hypothesis
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(a) GT-SORT Imagery (b) All-Sky Imagery

Figure 9. Echostar 11 images taken using GT-SORT and the All-Sky camera on
January 14, 2016 at 3:35 (UTC)

testing algorithm to determine whether detection was prevented by anomalous or non-anomalous
causes. The reachability algorithm is then applied in re-tasking the satellite to minimize ignorance
in the next observation. Due to the satellite’s GEO orbit, determining predicted cloud cover or sky
brightness at its next location is simplified since it appears stationary with respect to the observer.

Parameter Value

Target Longitude -110 deg
Previous Observation Date (UTC) Jan 10, 2016
Previous Observation Time (UTC) 4:30

Control Authoritya 1× 10−7 m
s2

Visual Magnitude 8.974
Projected FOV Width @ GEO 209 km
Projected FOV Height @ GEO 168 km

Cloud Expert Weight (w) 0.8

Table 3. Assumed target (Echostar 11) operational and previous estimate parameters
aSpecific information on the control authority was not available. The value chosen sizes the reachability volume such

that it exceeds the projected field of view.

Test Case 1: Clear, Dark Skies

The first test case involves non-detection when there are no obvious non-anomalous contributing
factors. Observation conditions for the first test case are enumerated in Table 4. In this test case, the
weather forecast predicts low cloud coverage at this particular hour. The All-Sky cloud detection
algorithm determines that there is no cloud cover in the observation location. Additionally, at the
time of this observation, the background sky brightness is not significantly higher than normal,
meaning the spacecraft should be mostly detectable.

The observed values are converted to BBAs as shown in Table 5. Recall that the cloud cover
expert BBA, mC , is created through a weighted combination of the weather forecast and All-Sky
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Table 4. Observation conditions for Test Case 1

Parameter Value

M
ea

su
re

d
Observation Date (UTC) 1/11/16
Observation Time (UTC) 4:21:27

Integration Time (s) 2.7913
Forecast Cloud Cover 10 %
All-Sky Cloud Cover 0 %

Sky Irradiance
(

mv
arcsec2

)
17.41

Pr
ed

ic
te

d

Forecast Cloud Cover 10 %
All-Sky Cloud Cover 0 %

Sky Irradiance
(

mv
arcsec2

)
17.41

Max Reachable Distance 243 km
Detection Probability (M ) 23 %

Table 5. BBAs for Test Case 1

BBA {N} {A} Θ

mC 0.020 − 0.980
mB 0.022 − 0.978
mC⊕B 0.042 0 0.958

mCQ
0.020 − 0.980

mBQ
0.022 − 0.978

mCQ⊕BQ
0.042 0 0.958

mC⊕B⊕CQ⊕BQ
0.081 0.096 0.919

mCM
0.020 − 0.980

mBM
0.022 − 0.978

mDM
− 0.230 0.770

mCM⊕BM⊕DM
0.032 0.223 0.745

mC⊕B⊕CM⊕BM⊕DM
0.064 0.215 0.721

cloud cover. In this case, most of the belief mass for both expert BBAs is attributed to Θ, the truth-
set, representing the fact that neither expert could conclusively say anything about the non-detection
aside from the fact that their area-of-expertise is highly unlikely to be the cause. Therefore, the fused
BBA mC⊕B is shown to also have most of its belief mass attributed to Θ.

Next, the BBAs associated with the decision to check the quiescent hypothesis and maneuver
hypothesis are shown, denoted withQ andM subscripts respectively. Since the observation cadence
is low and the line-of-sight to the space object hasn’t changed, the local brightness conditions are
not expected to change considerably. Additionally, the propagated cloud cover estimate still shows
clear skies at the observation location during the next observation attempt. Finally, note that the
target spacecraft in these simulations is in GEO, so the cloud cover and sky brightness estimates for
both decisions are identical. This is not a requirement; in general, the maneuvered and quiescent
decisions can refer to different areas of the sky and therefore obtain different belief masses from
individual experts.

The maneuver-detection decision BBA contains one extra term, associated with the reachability
results. This refers to the estimated belief that an anomaly search will be successful in detecting
the space object given the field of view and the size of the reachability space. The added term
also finally provides belief mass to the anomaly hypothesis, since a successful detection during the
anomaly search is the only expert in this scheme that directly provides evidence of an anomaly.

Decision BBA bel(N) pl(N) bel(A) pl(A)

Observation (d = ∅) mC⊕B 0.042 1.0 0.0 0.958
Quiescent (d = Q) mC⊕B⊕CQ⊕BQ

0.081 1.0 0.0 0.919

Maneuvered (d =M) mC⊕B⊕CM⊕BM
0.064 0.785 0.215 0.936

Table 6. Belief and Plausibility for Test Case 1

In this first test case, all experts are indicating that the spacecraft should have been easily ob-
servable, leading a high anomaly plausibility after the initial observation attempt. The re-tasking
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algorithm determines it is advantageous to search for the missing space object since the detection
probability is high, as evidenced by the decreased level of ignorance in the fused BBA.

In cases similar to test case 1, the algorithm will tend to opt to begin searching for a maneuver
since the observation conditions are considered otherwise pristine. However, if the observation con-
ditions in the maneuver search area are worse in comparison to the quiescent observation area con-
ditions (e.g. more clouds or brighter skies locally), the fused belief mass associated with anomaly
will be less and the algorithm could choose to avoid searching in a poor observation area.

Test Case 2: Localized Cloud Cover

The second test case involves non-detection in the presence of local cloud cover. Observation
conditions for the second test case are enumerated in Table 7. In this test case, the weather forecast
predicts low cloud coverage at this particular hour. However, the All-Sky cloud detection algorithm
computes a high probability of cloud cover at the observation location during the original attempt,
followed by clearer skies at the next observation attempt Similar to the previous test case, the back-
ground sky brightness is not significantly higher than normal, so sky brightness does not contribute
significant belief for non-anomaly.

Table 7. Observation conditions for Test Case 2

Parameter Value

M
ea

su
re

d

Observation Date (UTC) 1/11/16
Observation Time (UTC) 4:30:01

Integration Time (s) 2.7913
Forecast Cloud Cover 10 %
All-Sky Cloud Cover 71.4 %

Sky Irradiance
(

mv
arcsec2

)
17.41

Pr
ed

ic
te

d

Forecast Cloud Cover 10 %
All-Sky Cloud Cover 8.2 %

Sky Irradiance
(

mv
arcsec2

)
17.41

Max Reachable Distance 243 km
Detection Probability (M ) 23 %

Table 8. Basic belief assignments for Test Case 2

BBA {N} {A} Θ

mC 0.592 − 0.408
mB 0.022 − 0.978
mC⊕B 0.601 0 0.399

mCQ
0.088 − 0.912

mBQ
0.022 − 0.978

mCQ⊕BQ
0.108 0 0.892

mC⊕B⊕CQ⊕BQ
0.644 0 0.356

mCM
0.088 − 0.912

mBM
0.022 − 0.978

mDM
− 0.230 0.770

mCM⊕BM⊕DM
0.085 0.210 0.704

mC⊕B⊕CM⊕BM⊕DM
0.582 0.096 0.321

The observed values above are converted to BBAs as shown in Table 8. Since the local cloud
cover is moderately high, belief mass for the cloud cover expert in this case is more evenly split
between N and Θ. Therefore, the fused BBA mC⊕B also splits its belief mass between the non-
anomalous hypothesis and the truth-set Θ. The BBAs associated with the decision to check the
quiescent hypothesis and maneuver hypothesis are also shown in Table 8. In this case, the local
cloud cover from the initial observation has passed in time for the second attempt, meaning predicted
belief in the non-anomalous hypothesis is much lower. Since the time since the previous estimate is
still roughly 24 hours, the reachability space size has not changed substantially, so the probability
of maneuver detection has not changed either.

In the second test case, the algorithm once again determines that searching for a maneuver is more
advantageous than simply searching again along the quiescent trajectory, but the margin is slimmer
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Decision BBA bel(N) pl(N) bel(A) pl(A)

Observation (d = ∅) mC⊕B 0.601 1.0 0.0 0.399
Quiescent (d = Q) mC⊕B⊕CQ⊕BQ

0.644 1.0 0.0 0.356

Maneuvered (d =M) mC⊕B⊕CM⊕BM
0.582 0.904 0.096 0.418

Table 9. Belief and Plausibility for Test Case 2

than in the first test case. This can be seen in the smaller post-decision truth-set belief masses in case
two. The estimated ignorance after each decision is similar, slightly favoring a search for maneuver
due to its predicted ability to provide direct evidence for maneuver.

It is worth noting that, since the quiescent and maneuvered decision scenarios share all but one
contributing expert in this scenario, the quiescent hypothesis cannot contribute any less ignorance
than the maneuver search hypothesis: its ignorance will only be equal to or greater than the ma-
neuvered hypothesis. This is not true in general, but this effect is accentuated in these test cases
because the propagated uncertainty and reachability volumes are coincident to the resolution of the
non-telescope sensors.

CONCLUSIONS

This study applied modern data fusion and autonomous decision-making processes to an SDA
scenario. The JDL/DFIG framework allowed a systematic loss-of-custody algorithm to be devel-
oped and implemented. The Dempster-Shafer evidential reasoning approach allowed for better
decision analyst modeling, providing a robust framework for the fusion of many sensors or ex-
perts in different hypotheses. Methods for conditioning these sensors as Dempster-Shafer experts
were developed and tested using real-world data from the Georgia Tech Observatory. Additionally,
a re-tasking algorithm based on reducing the gap between belief and plausability was developed.
The test cases shown illustrate the algorithm’s ability to deduce the cause of missed-detection even
with few experts, re-tasked itself to look for a maneuvered spacecraft based on the lack of a clear
cause for missed-detection. Preliminary results are promising, but further testing on a wider vari-
ety of SSA experts and spacecraft scenarios will lend greater insight into the applicability of this
evidential-reasoning-based algorithm to autonomous SDA decision-making.

FUTURE WORK

There are a number of areas for improvement in this algorithm, as well as assumptions that should
be relaxed in future study. For instance, the sky brightness estimation can be greatly improved by
the addition of the Garstang model, which estimates sky brightness at a given zenith angle based
on nearby light-pollution sources and atmospheric conditions such as aerosol density.24 While this
paper provides a framework for application of Dempster-Shafer experts, more non-anomaly experts
must be added in the future to better cover possible non-anomalous causes. A combined moon
brightness and ephemeris model can be applied to predict obstructions by the moon. Perhaps the
most important area of future work, though is to relax the one-object world assumption, which
increases the complexity of the decision space. Test cases that do not involve solely GEO satellites
will be investigated as well to better exercise the re-tasking decision.
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