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DIRECT IMAGE-TO-LIKELIHOOD FOR TRACK-BEFORE-DETECT
MULTI-BERNOULLI FILTER

Timothy S. Murphy ; Marcus J. Holzinger | Brien Flewelling;}

This paper aims to apply the random finite set-based multi-Bernoilli filter to frame-
to-frame tracking of space objects observed in electro optical imagery for space
domain awareness applications. First, this paper will review random finite set fil-
ters applied to frame to frame tracking and their applications to space. A new like-
lihood function for space based imagery will be presented, based on the matched
filter. A more educated birth model will be proposed which better models po-
tential SO using observer characteristics and object dynamics. Simulation results
will explore the range of objects that can be tracked. The final algorithm is able to
perform completely uncued detection down to a total object SNR of 5.6 and a per
pixel SNR of 1.5. Promising but inconclusive results are shown for total object
SNR of 3.35 and per pixel SNR of 0.7.

INTRODUCTION

Part of space domain awareness (SDA) is the task of maintaining sufficient knowledge of the
space domain to inform decisions as they relate to space assets, national security, and commercial
ventures. Space situational awareness (SAA) is the task of providing all relevant knowledge to a
particular mission at a particular time. Both directives necessitate orbit determination efforts for
small space objects which often produce only low magnitude electro-optical signatures. In particu-
lar, methods must allow for uncued identification of objects, or identification cued with only partial
orbital knowledge. Rate tracking is impossible for object discovery, and blindly searching image
series for an unknown signal is inefficient. This will necessitate a method which incorporates, but
does not require, prior knowledge in a general way, while rigorously incorporating all information
from measurement sources for completely uncued detection. Furthermore, the required method
should search a state space in a smart way to find low SNR signals.

Due to the non-linear nature of space, general methods derived from Bayesian filtering [13]] have
become popular for space object tracking and orbit determination [3],[2]. When considering the
high dimensionality of space, such particle based filters can become difficult to implement [1]]. This
paper will instead looking at the more simple case of frame-to-frame tracking in images obtained
from EO sensors. This allows a reduced dimensionality in the state space by tracking only position
and velocity in the image plane. Such a method should be as general as possible, allowing for all
relevant objects to be tracked. Much work has been done on finite set statistics (FISST) based filters
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in the past for a variety of applications [8]. In particular, recent pushes in FISST filter theory in the
field of computer vision has looked multi-target tracking in images [6l], [S]], [4]. In particular, this
work operates directly on pixel data and requires no detection algorithm. Very recently, the SDA
community has begun to look at FISST filters [7] and detectionless frame-to-frame tracking [4].

The first problem this paper will analyze is the likelihood function. The current state of the
art likelihood function was proposed by Vo et. al. [[14]. This likelihood function is intended for
randomly moving point sources. For space object, movement happens in a predictable way. Fur-
thermore, object signal has structure based on object movement. Instead, this paper will use the
matched filter predicted by a particular particle to evaluate measurement likelihood [[15] [10]. This
likelihood function should effectively search for low SNR signals, because the matched filter is the
SNR optimal linear image filter.

Another area this paper will improve upon is the particle birth model. Typical Bernoulli filters
generate new particles with a random uniform distribution. However, the intention of the birth model
is that it should be catered to a particular problem. This paper will therefore develop a method for
bounding the types of signals that can occur based on sensor and algorithm requirements and orbital
mechanics.

This paper will be presented as follows. Section will review the basics of Bernoulli and multi-
Bernoulli filtering. Section , subsection will discuss the likelihood function based on a matched
filter. Section , subsection will discuss a variety of ways to constrain a birth model for frame-to-
frame tracking. First some preliminary observations on birth models will be explained. This paper
will briefly explain how to use partial prior orbital knowledge as a birth model. Then uncued detec-
tion birth models will be discussed. Simulations will implement the likelihood function and some
of the birth models for a particular problem. Computational tractability analysis will be discussed,
primarily as a future work analysis.

BACKGROUND ON RANDOM FINITE SET FILTERING FOR FRAME TO FRAME TRACK-
ING
Dynamics

Consider the standard filtering problem with discrete dynamics and measurement models

Xp11 = f(xx) + wy (H
zi, = h(xy) + wa 2)

where x € R",z € R™, w; € R" ~ f,,, and wo € R™ ~ f,,,. x can be thought of as the state
to be estimated, while z can be thought of as the measurements. For frame-to-frame image tracking,
the measurement zy, is a series of m pixels, {z;}/";. The state, x, will be modeled as position and
velocity, in the frame, measured in pixels.

x =z, y, &, " A3)



Multi-Bernoulli Filter

This paper will use the multi-Bernoulli filter used in [14]. A brief review of the theory and
application will be presented for the readers convenience. The Bernoulli filter starts from Bayesian
Filtering equations

f(xk|zK-1) = / J(xelxp—1) f(Xp—1|2Z1-1) (Prediction) 4)
f(xk|zr) = f(zkﬁl;i‘fz(kxkjkl) (Update) 5)

where zj, is the time series of measurements up until time step k. Equation {4]is the prediction
step while Equation [5]is the update step.

For a Bernoulli filter, the state is modeled as a Bernoulli random finite set (BRFS). The BRFS is
a set Si containing a RFS which contains 1 object with probability r; and empty with probability
1 — 7. The RFS position is described by the PDF, p(xy). In other words, the object is described by
a PDF and probability of existence.

S = {p(xx),mx} (6)

The Bernoulli filter estimates the PDF with equations (@) and (5)) and updates the probability of
existence with update equations that can be found in [14].

Now, the update equations for a multi-target tracking scheme are

Tlk—1(Xk|Z1:6-1) = /fkk1(Xka)7Tk1(X\Z1:k1)3?( (Prediction) (7

9(Zke| X ) T g —1 (X |Z1.5—1)
T (Xk|Z1:1) = (Update) (8)
(i) I 9(20| X ) Tpoppo—1 (X |21:-1)OX
where g(-|) is the likelihood function. The distribution 7 is now a multi-object belief function. In
essence, 7 is similar to a PDF in that higher density means higher probability of an object existing
in that area. However, 7, does not need to integrate to 1; instead, the total mass of an area is the
expected number of objects in that area.

For the multi-object filter, X}, is a random finite set used to represent the multi-object tracking
problem where the number of objects is unknown. The multi-Bernoulli filter represents the multi
object state as the union of a series of BRFSs

%:U& )

This allows the implementation of a Multi-Bernoulli filter to reduce to a series of Bernoulli filters.
There are particle implementations of Bernoulli filters [12], and the union of these filters is relatively
straight forward to compute. This paper will focus on applying the Multi-Bernoulli filter which
operates on image frame-to-frame tracking to EO sensors tracking. The primary change will be
defining a likelihood function g(-|-) which marries the space imagery and Multi-Bernoulli filter. A
more in depth, general analysis of FISST can be seen in [8].



THEORETICAL RESULTS
Likelihood Function

The current established likelihood function for tracking point sources in images is from [[14]]. This
has already been used in SO tracking [4]].

This method first defines a series of pixels, 7'(x), which are predicted to have signal from an
object x. Pixels are predicted to have mean contribution h;(x) from a state . This gives

%) = 1/)1(2’1) iGT(X)
Pl >‘{ o1(=1) z‘¢T<x>} (10

One common assumed distribution for v and ¢ [[14] is

P(zi) = N(2;0,07) (11)
B(zi,x) = N (25 hi(x), 0%) (12)

where N (+; i1, 02) is a Gaussian with mean p and variance 2. The likelihood function then becomes

gz X) =TI 11 %z % I ¢i=) (13)

x€X i€T(x) i¢UT (x)

The probability of existence update is formulated as a particle-wise relative likelihood.

o0 =[] dm (14)

€T (x)

This likelihood function is general enough to work for the case of arbitrary point tracking. This
paper will propose a new likelihood function based on a hypothesis test on the matched filter. Such
a likelihood function has been used on a particle filter by the authors already [11]].

The matched filter is a SNR optimal linear image filter when the form of the signal is known.
Similar to the already shown likelihood function, the measured signal is assumed to be zero mean
noise and predicted signal h;(x) in a series of pixels 7'(x). The matched filter is the the weighted
sum of the measured pixels, z;, weighted by the predicted values, h;(x).

aur = Y hi(x)z (15)

€T (x)

Note that the SNR of the matched filter is scale invariant with respect to the predicted values
h;(x). This is because an increase in scale equally elevates both the signal and noise. For the
matched filter, h;(x) need only describe the relative values predicted for an image. This is an impor-
tant innovation, because for SO object discovery, actual object brightness is completely unknown.
Under the prevision distribution assumptions, 2y is distributed as follows



ZMF Z h Xtrue)

1€T(x)
2
Varfaar] =B || ) ha = 0w Z h?
1€T(x) 1€T(x
zur ~ N(E[zumr)], aol) (16)

where wj is the noise in pixel ¢, and « is a scaling factor dependent on the actual weights, h;. Note
that because h; is scale invariant, the values of h; can be chosen such that « = 1. Note that if
the pixel in 7'(x) are all noise only, then the expected value of h;(x¢e) over T'(x) will be zero.
Otherwise, the expected value for the MF will be greater than zero. A hypothesis test is desired for
determining if there is signal present which is effecting zp; . This equivalent to asking if z;;r has
a mean of zero or a mean greater than zero. The matched filter will be assumed to exist in one of
two distributions

P(zmr) = N(2mr; 0,05 1) (17

d(zmr) = N(zmp; B, 03p), B> 0 (18)

where [ will be set equal to the value calculated from a particular matched filter. This allows the
definition of the following null and test hypotheses for a binary hypothesis test

Ho : zap ~ ¥(2mr)

Hi:zpp ~ ¢(z2mr) (19)

In essence, this test assumes the matched filter was performed on pure zero mean noise, and
asks whether the calculation gives significant evidence of underlying signal. For binary hypothesis
testing, a probability of false alarm is set, pr 4, which in term defines an integration threshold, z7,
based on the null hypothesis PDF.

PFA = /@(Z)dz (20)

ZTH

The test hypothesis PDF is then integrated over, giving a probability of detection.

DDetect = / ¢(z)dz Q1)

2TH

For more on this subject, see [9]. This hypothesis test can be used to determine if there is signif-
icant evidence that the predicted signal exists in the predicted location. Because the matched filter



gives a SNR gain, this test should maximize ppetect, though an explicit proof of this claim has not
yet been shown.

The Probability of existence update can also be formulated in terms of the matched filter. The
relative likelihood can be calculated from the two distribution in Equation (I8). This leads to the
particle-wise relative likelihood

(zmF)

(22)
(zmF)

g:(x) =

ASSIRSW

Birth Model

As the Multi-Bernoulli filter runs, multiple single Bernoulli filters run in parallel. New Bernoulli
filters are constantly added into the system to promote exploration of the design space. These new
filters are initially sampled from a birth model, which attempts to predict the kind of states a new
track could have. Birth models have been proposed and used in the past. This paper will develop
a particular birth model for searching for a SO. Specifically, it will define a series of constraints
which will allow stars and improbable orbits to be ignored. This birth model should also incorporate
previous partial orbit knowledge.

Theoretically, the birth model should enforce a series of constraints in the form of subsets of RS,
that is, the space of possible orbits represented as a position and velocity vector, r, 1. If a series of
c constraint sets are defined, {S; }¢_,, the birth model would then just be an uninformed prior over
the intersection of those sets.

s=)s. (23)
=1

4 ifx e S
r={ 75 "x€ 24)
0 ifx'¢S

where T is the birth model to sample from, and x’ € RS is an orbit.

The first assumption on our birth model will be of an earth orbiting object. This will be done
with a maximum on orbital specific energy, £ < 0, and a minimum on radius of periapse constraint
Tp > TEarth- The second assumption is that the object exists in the field of view of the sensor. This
is effectively a subset of R? defining possible positions an object could exist at. This birth model
does not yet restrict the problem very much. An Earth orbiting object could, as defined above, have
a huge range of possible velocities. This means that the above model will sample too large a space
to be useful. Another problem that is immediately obvious, is that sampling a subset of R is a very
difficult task. Instead, it is more efficient to take constraints and map them into R* Equations ([23)
and still apply, but the series of constraints, {S;}{_;, are defined as subsets of R*.

Partial Prior Knowledge In some cases, the orbit of an object or objects, while not completely
known, may have some prior knowledge. This includes a previous observation and associated ad-
missible region, a known event (such as a break up event), or on object that actively maneuvered
from a previous orbit. In all these cases, if the prior information is restrictive enough, the prior can
be sampled and used as a birth model.



For example, consider a satellite break-up event. If a known object break up can be traced back to
a specific time, it can be assumed that all objects from the break up had a known position at a known
time. Furthermore, a restrictive set of velocities can be calculated (excluding ballistic trajectories
and estimating possible post break up velocities). Through such a method, a good birth model for
searching for a specific class of objects can be synthesized.

This paper will focus on when prior knowledge is not available, so this topic will not be explored
further in this paper. Similar topics are explored in [10]. Future work by the authors will look into
this case more closely.

No Prior Knowledge When no prior model is available, there is still one major innovation avail-
able for a birth model. In order for a Bernoulli filter to reliably track an object, the object must exist
in the frame of the image for a minimum number of frames. If an object is in the top left corner of
an image with a velocity headed out of the frame, the filter will never be able to track it. Instead,
a minimum number of observations should be enforced within the birth model This defines a birth
model within the image as a uniform distribution over position and a uniform distribution over con-
strained range of velocities. The equations in x and y are independent and so the birth model will
be derived in one dimension.

The object position must exist within some range dependent on the size of an image.

RS [xmin; xmax] (25)

Assume that the filter requires a minimum number of observations, n¢, and observations are taken
at equal intervals of At. Then velocities for a particular position must be within the range
Tmin — L  LTmax — T

[ 2
re noAt ’ noAt ( 6)

Note that the size of this interval is

’I’L()At no At a noAt

Tmaxr — L Tmin — T Tmazxr — Tmin
(27)

This is important because it is independent of location. This implies that all possible values of
x will have equal probability mass and can therefore be sampled independently. This birth model
can be implemented by independently sampling [z, y| from (23), then sampling [#, ] from an
appropriately formed (26).

A further constraint will be used in this paper. Assume the observer is located on earth. This
allows the question, what is the smallest possible relative angular velocity that an object will move
at with respect to the observer? This should be an object that is as far away as possible moving at
the lowest velocity possible. This will correspond to a geostationary transfer orbit (GTO).

Such an orbit, in the most extreme case, has a periapsis and apoapsis radius of 7, = 6471 km and
rq = 42164 km. This gives an apoapsis velocity of

2 k
va = — 1.586-2 (28)
Ta S




Table 1. Orbital Elements for Simulated Objects

a e Om i om f

Obj. 1 | 42165 | 0.0044 0 0.0017 | 3.1163 | 1.5699
Obj. 2 | 42165 | 0.0087 | 4.6862 | 0.5237 | 1.5734 | 4.7063
Obj. 3 | 42165 | 0.0087 | 1.5206 | 0.1747 | 4.7417 | 4.7063

where ;1 = 398600km? /s? specific gravitation parameter of Earth. By varying the observer’s loca-
tion on earth, the instantaneous orthogonal component of the velocity changes are under 2%. The
distance between the object and observer changes more significantly. The worst case scenario is a
distance of 42642 km and orthogonal velocity component of 1.568 km/s. The instantaneous relative
angular rate will then be

- <1.568 km/s

— 0.002107° 2
42642km> 0.002107"/s 29)

The sensor used in the simulations in this paper has a field of view of 2 degrees and a resolution
of 512 pixels in both directions. This gives a minimum angular velocity of 0.539 pixels/s.

Under the right circumstances, the minimum velocity constraint on the birth model can remove
a large amount of the velocity space that needs to be sampled. In the simulations that will be
done in this paper, this constraint will remove approximately 1/3 of the possible velocities. Just as
importantly, this constraint intelligently does not contain stars in the space of hypothesized signals.
Through re-sampling, velocities may drift In cases with a different field of view and resolution, this
constraint may be less effective.

SIMULATION RESULTS
Problem Set Up

The multi-Bernoulli filter is shown in this section tracking objects in simulated data. In the simu-
lation, a sensor is modeled as a simple pinhole camera with a 2 degrees field of view and 512 pixel
resolution in both x and y. Three objects are simulated with various orbital characteristics shown
in Table[I] Note that small amounts of eccentricity and inclination are added to all orbits to give a
range of in plane headings and disambiguate orbital elements. An observer is simulated at Georgia
Tech at time UT'C' = [2015, 11, 12, 20, 00, 00] performing a fixed stare at r = [0; —42164; 0]. This
is effectively a sidereal stare tasking.

The three objects are simulated with a constant total flux per exposure. The fluxes for each object
are 7 = 1000, F» = 750, and F3 = 500. The unit and scale of these numbers is ultimately
insignificant; the SNR is the ultimate deciding factor for detection, which is unitless, and measured
as a relative scale. The images include per pixel normally distributed noise with variance of 02, =
100, w ~ N(0,100). The total object SNR (for when an object’s signal is spread over multiple



Figure 1. Simulated Image

pixels) can be calculated via

N E[>"y;(T)]

SNR (3 u;(T)) = VY E[(y;(T) = Ely; ()2
1 F

Vnou

where n is the total number of pixels being considered, and F’ is the total signal from the SO. All
objects spread over approximately 80 pixels in the simulations, giving SNR; = 11.18, SNRy =
8.39, and SNR3 = 5.59. Note that by the above calculation, the SNR in a single pixel is much
lower than the above values. The actual value depends of the spreading of the signal over the pixels.
Per pixel, the SNR for each object is around 2.7, 2.2, and 1.5 respectively. Exposures are 10 seconds
long and taken every 20 seconds. This flux is blurred over multiple pixels by the movement of the
object over the exposure and then by a 5 by 5 normal distribution kernel. The system is simulated
for 25 frames (500 s). Object 1 begins in the image and leaves at frame 17 (340 s). Object 2 enters
in the frame 12 (240 s) and leaves in frame 23 (460 s). Object 3 enters at frame 9 (180 s) and does
not leave. There is no significance to the enter and exit times beyond testing a variety of conditions

(30)

Multi-Bernoulli Filter Implementation Notes

This section will outline specific heuristics and design choices used for the Bernoulli filter in
order to help it converge. The major heuristic edit was added to avoid multiple filters converging
on a single object. The assumption was made that the probability of multiple objects existing in
the same place at the same time is zero. This assumption is not a novel innovation of this paper



[14]. Based on this assumption, the likelihood function for each Bernoulli filter is set to zero in the
area around every other Bernoulli filter’s maximum a posteriori estimate from the previous iteration.
Once one Bernoulli filter is tracking one object with good accuracy, this assumption will make it
impossible for other filters to track the same object. However, this assumption can lead to some
instability when multiple filters are trying to track one object, but none are tracking accurately
enough to zero out the correct pixels in the likelihood calculation. This can also lead to problems
when multiple tracks overlap, as this is the exact case that breaks the given assumption.

The Multi-Bernoulli filter is started with only 1 filter running. Every three iterations, a new
Bernoulli filter is added (sampled entirely from the birth model) and all Bernoulli filters below a
probability of existence of 0.05 are deactivated. The first assumption in this section, when combined
with too many filters, leads to filter competition which hurts convergence. The gradual addition of
Bernoulli filters allows each new filter to have time to search for a new object without competition.
The relatively small number of simultaneous filters keep computation time manageable.

Multi-Bernoulli Filter on GEO level Objects

Figures [2(a)} 2(b)l and [2(e)| show the error and Figures [2(c)} 2(d), and 2(f)| show the probability
of existence of all Bernoulli filters which track a particular object. Most objects initially have

multiple filters which track them at least somewhat accurately. Eventually, one filter tracks an
object accurately enough, and all other Bernoulli filters diverge. Figures[2(a)]and show object
one which has the highest SNR and is in the field of view from time O to 340. This object is tracked
with relative ease. Figures and 2(f)] show object three which has the lowest SNR and is in the
field of view from time 180 to the end. It takes some time for a filter to accurately converge on this
object but once it does, the probability of existence quickly rises to almost 1. Figure shows the
truth tracks of each object in black with the most successful filters overlaid in gray. Specifically, the
maximum a posteriori estimate of the PDF, or the point of highest probability density after updating,
is plotted. Iterations of the filters before and after they successfully track an object are not included,
as these steps consist of the maximum a posteriori estimate wandering through the image.

10



Error

Probability of Existence

0.8}

0.6}

0.4}

0.2}

100 200 300 400
Time (s)

(a) Object 1 Error (pixels)

100 200 300 400
Time (s)

(c) Object 1 Probability of Existence

500

500

Error

o

100 200 300 400 500
Time (s)

(b) Object 2 Error (pixels)

Probability of Existence

0 100 200 300 400 500
Time (s)

(d) Object 2 Probability of Existence

11



Error

Probability of Existence

10

-

100 200 300 400 500
Time (s)

(e) Object 3 Error (pixels)

100 200 300 400 500
Time (s)

(f) Object 3 Probability of Existence

Figure 2. Results

12



-50 F .., Object2

Ky
Ky
-100 F K
/R X

-150 X

-200

Y Pixel

-250 Object 1

-300
-350 Object 3

O
B s S
G

WIRVAR Vb 1
”_)é_.‘;\—'f(' r"é 9(
or s
Y

-450 |

-500 1 1 1 1 1

0 100 200 300 400 500
X Pixel
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Limiting SNR of Multi-Bernoulli Filter

The ultimate goal of this research is to detect as low SNR objects as possible. A similar test case
is used with three objects over 500 s. All objects spend the entire duration in the field of view, have
the same velocity, and vary only in starting position. Objects one, two, and three have total object
SNR of 4.47, 3.35, and 2.24, and max per pixel SNR of 1.0, 0.7, and 0.56, respectively. Figures@
[A®)L[A(c)l and[4(d)l show the error and probability of existence of all Bernoulli filters which track a
particular object. Both object 1 and object 2 have multiple filters begin to track the object but none
of the filters manage to fully converge on the object. In general, the objects are accurately tracked
by the algorithm in terms of the PDF. The probability of existence update is too weak to provide
sufficient evidence to the filter in all test cases. While the spacial PDF converges, the probability
of existence diverges causing the filter to fail. No filter succeeds at tracking object 3. These results
are promising though, as they imply the spacial likelihood is effective at tracking objects down to
a total object SNR of 3.35 and per pixel SNR of 0.7. The probability of existence update with be
explored further in future work.

CONCLUSION

There are two primary goals of this research arc. The first is to implement a multi-Bernoulli filter
for tracking SOs which focuses on the uncued detection of as dim as possible space objects. This
paper introduces the majority of the innovations the authors will use. The only problem with respect
to the first goal is one of too big a search space and too few particles. Therefore future work will
look at smarter implementation of a more restrictive birth model. Future work will also look into
any assumptions that can be worked into the likelihood function to help with convergence.

The second goal is to use every possible method to make the multi-Bernoulli filter as efficient as
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possible. The first method that will be investigated is marginalization of the Bernoulli filters. Other
methods to be considered will be a variable number of particles, and combined Kalman filter and
Bernoulli filter multi-target tracking.
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