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ANALYTICAL ASSESSMENT OF DRAG-MODULATION
TRAJECTORY CONTROL FOR PLANETARY ENTRY

Zachary R. Putnam∗ and Robert D. Braun†

Discrete-event drag-modulation trajectory control is assessed for planetary entry
using the analytical Allen-Eggers approximate solution to the equations of mo-
tion. A control authority metric for drag-modulation trajectory control systems is
derived. Closed-form relationships are developed to assess range divert capability,
identify jettison condition constraints for limiting peak acceleration and peak heat
rate. Discrete-event drag-modulation systems with single stages and an arbitrary
number of stages are assessed.

INTRODUCTION

Exerting a measure of control over a planetary entry trajectory during flight is important for
many missions, whether used to limit peak acceleration, perform precision landing, or accomplish
another objective. Mission designers typically choose initial conditions for a particular trajectory
to ensure favorable flight performance. However, even the most perfectly selected initial conditions
do not eliminate the need to steer out error during entry caused by uncertainty in vehicle properties,
onboard state estimation, and the planetary environment, as well as delivery error. Typically only
two vehicle parameters are available to control the vehicle trajectory during atmospheric flight:
lift-to-drag ratio and ballistic coefficient.

Deployable hypersonic decelerators currently being developed by NASA enable new options
for trajectory control for planetary entry. One such option is drag-modulation trajectory control.
Consider the ballistic coefficient, defined as∗:

β = m/ (CDSref ) (1)

The ballistic coefficient may be thought of as the ratio of inertial to drag forces. Decreasing the bal-
listic coefficient increases the influence of drag forces relative to inertial forces, increasing the rate
of energy depletion during atmospheric flight. Increasing the ballistic coefficient has the opposite
effect. Therefore, an entry vehicle that can vary its ballistic coefficient is capable of controlling its
energy or range in a manner similar to that of a lift-modulation vehicle. Operationally, changing
vehicle mass by a significant amount is difficult and undesirable. For an entry vehicle of constant
mass m, drag-modulation trajectory control is accomplished by changing the drag area (CDSref )
to change ballistic coefficient and adjust the magnitude of the drag force.

∗Research Engineer, School of Aerospace Engineering, Georgia Institute of Technology, 270 Ferst Dr., Atlanta, GA,
30332.
†Professor, School of Aerospace Engineering, Georgia Institute of Technology, 270 Ferst Dr., Atlanta, GA, 30332

∗A section on mathematical notation is provided in the sequel.

1



Cruise stage 
separation 

Entry 
Interface 

Drag skirt 
jettison 

High-β 
deceleration 

Parachute 
descent 

Hypersonic phase: 
peak heating, peak deceleration 

Low-β 
deceleration 

Parachute 
deploy 

Figure 1. Example drag-modulation system for entry, descent, and landing.

Drag-modulation trajectory control is a prime candidate for use with large, deployable drag ar-
eas, such as those envisioned by NASA’s Hypersonic Inflatable Aerodynamic Decelerator program.
Effector requirements for large, likely flexible, vehicles may make lift modulation infeasible or un-
desirable. For these types of vehicles, or for missions in which a simpler system is enabling in
terms of cost and risk, drag-modulation trajectory control presents a solution that does not require
complex effectors or asymmetric flight conditions. The ability to fly at zero angle of attack reduces
the criticality of uncertainty in vehicle aerodynamic properties at asymmetric flight conditions; the
absence of a reaction control system eliminates concerns about effector latency and jet interaction
with a flexible structure and complex wake flow field; the absence of propellant tanks, propellant,
and ejectable ballast masses (for c.g. control) greatly simplifies packaging, system integration, and
operational complexity. These benefits come at the expense of drag-modulation systems’ inability
to provide out-of-plane control authority.

Drag-modulation trajectory control is enabled by two technologies: precise approach navigation
and deployable hypersonic decelerators. Current deep-space navigation precision results in minimal
delivery and knowledge errors at the top of the atmosphere, making out-of-plane control optional
in the absence of plane-change or crossrange requirements. Deployable hypersonic decelerators
provide a mass-efficient solution to lower the ballistic coefficient and achieve the required ballistic
coefficient ratio and control authority.

Discrete-Event Drag-Modulation Trajectory Control

This study examines discrete-event, drag-modulation trajectory control of range during planetary
entry, achieved through a series of drag-area jettisons. The jettison events instantly raise ballistic
coefficient by reducing the drag area, and may be thought of as adjusting the ratio of inertial to aero-
dynamic forces such that the desired range is flown. An example of a single-stage drag-modulation
entry, descent, and landing system is shown in Fig. 1.

A limited number of studies on drag modulation are available in the literature. Drag modulation
has been applied to limiting the rate of increase of acceleration during entry,1 to orbit phasing and
entry targeting,2 and to track reference trajectories for ballistic missiles.3 These studies all assumed
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drag could be controlled continuously within a given interval. Discrete-event drag modulation has
been studied for planetary aerocapture missions at the conceptual level4–6 and realtime guided per-
formance has been assessed.7–10 More recently, the feasibility of a single-stage drag modulation
system was assessed for precision landing at Mars using a realtime numerical predictor-corrector
guidance algorithm.11 This investigation seeks to identify trends in drag-modulation trajectories
through piecewise application of the Allen-Eggers approximate solution for ballistic entry.

Analytical Solutions with Variable Drag

Phillips and Cohen investigated both single-stage and continuously-variable drag-modulation sys-
tems as a means to reduce peak acceleration during entry.12 They were able to develop analytical
expressions for minimum peak acceleration for both types systems. These results are rederived and
extended below. In 1960, Robinson presented an analysis of continuously-variable systems iden-
tical to that of Phillips and Cohen.13 Randall also studied discrete, single-stage drag-modulation
systems, but from the standpoint of modeling break-up during reentry.14 His work was primarily
focused on determining the effect of the initial trajectory on the trajectory of an ejected portion of
a body. Warden studied entry trajectories with variable ballistic coefficients.15 Warden utilized the
Allen-Eggers solution, but allowed β to vary with altitude such that:

β = β0
[
1− C

(
1− h̄

)]n (2)

This formulation enables one to model either monotonically increasing or decreasing ballistic coef-
ficient as a function of the normalized altitude, h̄, dependent on the value of n. Warden was able
to derive expressions for velocity and acceleration as functions of altitude, as well as a truncated
series approximation for peak acceleration and a transcendental expression for the altitude at peak
acceleration. The presence of special functions, such as the complete and incomplete Γ functions,
make Warden’s solution relatively complicated.

Modeling a variable ballistic coefficient has also been studied as a method for improving the
accuracy of analytical trajectory solutions. In 1965, M. Cohen developed expressions for velocity
and flight-path angle as functions of altitude by utilizing a specific drag program,16 where the drag
coefficient was modeled as:

CD = Cρ sin γ (3)

More recently, Barbera modeled the variation in drag coefficient as a piecewise function of:

CD = CiV
ni (4)

This model was based on empirical aerodynamics data. Barbera used the model to better capture
the hypersonic and supersonic variations in drag coefficient for blunted cones.17 While Barbera’s
results indicated good accuracy, the study was limited to small cone half angles (less than 8 deg)
and large ballistic coefficients (near 10,000 kg/m2). These properties are typical of strategic reentry
systems. In comparison, the sphere-cone capsules flown at Mars have half angles of 70 deg.

The Allen-Eggers Solution

The solution of Allen and Eggers may be arrived at by neglecting gravity and lift and assuming
a constant flight-path angle in the two-degree-of-freedom equations of motion for planetary entry.
This results in a relatively simple relationship between atmospheric density and velocity:18

V2 = V1 exp

[
H (ρ2 − ρ1)

2β sin γ∗

]
(5)
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where γ∗ is the assumed constant flight-path angle. Using this relationship, closed-form expressions
for sensed acceleration and stagnation-point heat rate may be derived, as well as expressions for
trajectory states at peak values of these quantities.

The expression for sensed acceleration, in terms of the density, is:

a2 =
ρ2

2βg
V 2
1 exp

[
H (ρ2 − ρ1)
β sin γ∗

]
(6)

The conditions at peak sensed acceleration are then, with respect to the initial velocity:

Vamax =
V0√
e

(7)

amax = −sin γ∗

2egH
V 2
0 (8)

The expression for the stagnation-point convective heat rate is:

Q̇2 = k

√
ρ

r
V 3
0 exp

[
3H (ρ2 − ρ1)

2β sin γ∗

]
(9)

And the peak heat rate is given by:

Q̇max = k

√
−β sin γ∗

3eHr
V 3
0 (10)

Eq. (5) through (10) make no assumptions about the density profile of the atmosphere.

The range is given by:

s2 = R cot γ∗
(

ln

{
H ln

[
ρ1
ρref

+
β sin γ∗

Hρref
ln

(
V 2
2

V 2
1

)]
−R

}
− ln

{
H ln

[
ρ1
ρref

]
−R

})
(11)

The constant flight-path angle may be computed using relationships developed by Citron and
Meir19 applied at peak acceleration,20 so that γ∗ may be determined as a function of the initial
conditions:

sin γ∗ = sin γ0 (2F ∗ − 1) (12)

where

F ∗ =

[
1 +

H

R tan2 γ0

{
CF

V 2
C

V 2
0

+

(
V 2
C

V 2
0

− 1

)
ln

(
1− β sin γ0

Hρ0

)}]1/2
(13)

and
CF = Ei(1)− γ̄ ≈ 1.3179 (14)

ANALYTICAL STUDY OF DISCRETE-EVENT SYSTEMS

The enhanced Allen-Eggers solution may be used to assess drag-modulation trajectory-control
systems for planetary entry.20 Consider an entry vehicle capable of discrete-event drag-modulation
trajectory control that modulates its drag by reducing drag area through a single jettison event at a
particular point during entry. The drag-area jettison is assumed to be instantaneous; vehicle proper-
ties are constant on either side of the jettison. These properties may be described by the pre-jettison
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Figure 2. Example application of the Allen-Eggers solution.

ballistic coefficient, β0, and post-jettison ballistic coefficient, β1. Furthermore, we will assume that
β1 > β0.

An example application is shown in Fig. 2. For this trajectory (parameters given in Table 1),
agreement between numerical integration of the equations of motion and the Allen-Eggers solution
is excellent. The trajectory is constructed using two separate, constant ballistic coefficient segments
that join at the jettison point. The first segment starts from the initial condition in Table 1 with
β = β0. The second segment has β = β1; the jettison point serves as the initial condition for the
second trajectory segment, where V0,1 = V1, h0,1 = f(V1), and γ0,2 = γ∗0 .

The altitude-velocity plot (Fig. 2(a)) shows the corridor-bounding trajectories for this initial state.
These trajectories correspond to the cases where no jettison occurs (entry with constant β = β0) and
where jettison occurs at the initial state (entry with constant β = β1). Figure 2(c) shows the discrete
change in acceleration at jettison; Figure 2(d) shows the discrete change in the rate of change of the
heat rate.
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Table 1. Nominal Parameters for Example Trajectory

Parameter Value

Planet Earth
V0 7500 m/s
γ0 -20 deg
h0 90 km
β0 50 kg/m2

β1 300 kg/m2

V1 5000 m/s

Range Control Authority

The Allen-Eggers solution may be used to show analytically how changes in ballistic coefficient
may be used to control range during entry. By varying the jettison velocity, a drag-modulation entry
vehicle may control its range (see Fig. 3). The maximum possible range occurs when jettison occurs
immediately, resulting in constant-β flight at maximum β, β1. The minimum possible range occurs
when no jettison occurs, resulting in constant-β flight at the minimum β, β0.

The control authority metric for drag-modulation trajectory control systems is ratio of the maxi-
mum to minimum ballistic coefficients, or β1/β0. This may be shown analytically, starting with the
Allen-Eggers equation for range-to-go over a flat planet:

stogo = cot γ∗ (hf − h) (15)

The divert capability at jettison for a discrete-event drag-modulation system is:

∆s =

max. range︷ ︸︸ ︷
cot γ∗1 (hf − hJ)−

min. range︷ ︸︸ ︷
cot γ∗0 (hf − hJ) (16)

Altitude may be written as a function of velocity and ballistic coefficient through the Allen-Eggers
altitude-velocity profile:

h = href −H ln

[
β sin γ∗

ρrefH
ln

(
V 2

V 2
1

)
+

ρ1
ρref

]
(17)

If we choose our reference point (denoted by subscript 1 above) to be the jettison velocity, we find:

∆s = cot γ∗1

(
H ln

[
β1 sin γ∗1
ρrefH

ln

(
V 2
f

V 2
1

)
+

ρ1
ρref

]
−H ln

[
ρ1
ρref

])

− cot γ∗0

(
H ln

[
β0 sin γ∗0
ρrefH

ln

(
V 2
f

V 2
1

)
+

ρ1
ρref

]
−H ln

[
ρ1
ρref

])
(18)

Assuming that γ∗0 ≈ γ∗1 for the same γ0, this equation simplifies to:

∆s = H cot γ∗ ln


β1 sin γ∗

ρrefH
ln

(
V 2
f

V 2
1

)
+

ρ1
ρref

β0 sin γ∗

ρrefH
ln

(
V 2
f

V 2
1

)
+

ρ1
ρref

 (19)
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Figure 3. Range profiles for several jettison velocities.

Further, recognizing that ρ1 is given by:

ρ1 =
β0 sin γ∗0

H
ln

(
V 2
1

V 2
0

)
+ ρ0 (20)

and neglecting ρ0 relative to ρref , we find:

∆s = H cot γ∗ ln

(β1/β0) ln
(
V 2
f /V

2
1

)
+ ln

(
V 2
1 /V

2
0

)
ln
(
V 2
f /V

2
0

)
 (21)

This shows the divert capability is a function of the initial and final velocities, the jettison velocity,
the ballistic coefficient ratio, and the flight-path angle. The dependence on trajectory parameters is
intuitive, but the sole dependence on ballistic coefficient ratio (as opposed to the magnitude of the
ballistic coefficients) is not.

The maximum divert capability occurs at the top of the atmosphere. For maximum range, jettison
occurs at a high altitude relative to href , making the ρ1/ρref term small enough to be neglected in
Eq. (19). This results in:

∆smax = −H cot γ∗ ln

(
β1
β0

)
(22)

This equation shows the relationship between ∆smax and β ratio. Increasing the ratio results in a
larger maximum divert capability and increased range control authority. The maximum divert range
is a weaker function of the magnitude of the ballistic coefficients, which influences the value of γ∗.

Figure 4 shows the maximum divert capability, i.e. ∆s at V0, across a range of values for (β0, β1).
Numerical integration of the equations of motion is shown in Fig. 4(a); computation using Allen-
Eggers is shown in Fig. 4(b). Lines of constant ballistic coefficient ratio are shown in white. The
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Figure 4. Divert capability over a range of ballistic coefficients.
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Figure 5. Acceleration profiles for several jettison velocities.

results nearly identical, showing that the Allen-Eggers solution is accurate. Also, it is clear that
divert capability is primarily a function of ballistic coefficient ratio: divert capability increases with
increasing β ratio. In this manner, the ballistic coefficient ratio is analogous to the lift-to-drag ratio
(L/D) for lift-modulation systems.

Minimizing Peak Sensed Acceleration

Figure 5 shows the effect of different jettison velocities on the peak acceleration. If the jettison
occurs after the β0 peak acceleration, then the β1 acceleration pulse is much smaller and does
not affect the peak value (black curves). If the jettison occurs early in the trajectory, the opposite
occurs: the acceleration pulse for the β1 trajectory segment is relatively large and dictates the peak
acceleration (red curve). From the figure, one can see that an intermediate velocity will occur when
the acceleration at jettison is equal to the peak acceleration in the β1 trajectory segment. The Allen-
Eggers solution may be used to derive an analytical solution for this jettison point.
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The acceleration at jettison is:

a1,J =
ρ1

2βg
V 2
1 =

V 2
1

2β0g

(
β0 sin γ∗0

H
ln

(
V 2
1

V 2
0

)
+ ρ0

)
(23)

The peak acceleration for the β1 trajectory segment is given by:

a2,max = −sin γ∗1
2egH

V 2
1 exp

(
− Hρ1
β1 sin γ∗1

)
(24)

Setting Eq. (23) and (24) equal and eliminating common factors, we find:

− sin γ∗1
eH

exp

(
− Hρ1
β1 sin γ∗1

)
=
ρ1
β0

(25)

The density at jettison is given by Eq. (20). If we assume ρ0 is small relative to the other term in
Eq. (20) and substitute for ρ1 in Eq. (25), we find:

− sin γ∗1
e

exp

(
−
β0 sin γ∗0 ln

(
V 2
1 /V

2
0

)
β1 sin γ∗1

)
= sin γ∗0 ln

(
V 2
1

V 2
0

)
(26)

Taking the natural logarithm of both sides and rearranging yields:

− β0
β1

sin γ∗0
sin γ∗1

ln

(
V 2
1

V 2
0

)
= ln

[
sin γ∗0
sin γ∗1

ln

(
V 2
1

V 2
0

)]
+ 1 (27)

If we further assume that sin γ∗0/ sin γ∗1 ≈ 1 and rearrange in terms of the ballistic coefficient ratio,
we find:

β1
β0

=
ln
(
V 2
0 /V

2
1

)
ln
[
ln
(
V 2
0 /V

2
1

)]
+ 1

(28)

This relationship gives the jettison velocity for minimum peak acceleration for a particular β ratio.
Beyond the Allen-Eggers assumptions, this relationship only assumes that the initial density at the
top of the atmosphere is negligible and that the corrected constant flight path angles are of similar
magnitudes. While this relationship is unfortunately transcendental in V1, it does show that the
jettison velocity for minimum amax (as a fraction of V0) is only a function of the ballistic coefficient
ratio, not the magnitude of the ballistic coefficients, planetary parameters, or the initial flight-path
angle.

To test the validity of this equation, it may be compared to two other solution methods: 1. nu-
merical minimization coupled with numerical integration of the equations of motion and 2. direct
solution of Eq. (25) via numerical root-finding. Figure 6 shows the jettison velocity associated with
minimum amax over a range of different ballistic-coefficient pairs evaluated using the two different
methods. Lines of constant ballistic-coefficient ratio are shown in white. The lower right half of the
figure represents β ratios less than one, or β0 > β1. This case is not considered, since it violates
the assumed acceleration profile. Also, the jettison velocity is not defined for a β ratio of one, since
β0 = β1. The figure shows that jettison velocity for minimum amax appears to be a function of
ballistic coefficient only. The velocity decreases with decreasing β ratio, but is relatively constant
for a large range of β ratios (those above about 5). Agreement between the a) numerical solution
and b) Allen-Eggers solution appears to be good in both trend and overall magnitude.
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Figure 6. Jettison velocity for minimum amax as a function of (β0, β1).
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Figure 7. Minimum amax as a function of (β0, β1).

Figure 7 shows the minimum amax associated with the jettison velocities in Figure 6. Again,
agreement is good between the two methods and a similar trend is seen where amax is only a
function of ballistic-coefficient ratio. The peak acceleration increases with decreasing ballistic co-
efficient ratio, but is relatively flat for ballistic coefficient ratios above about 5. The maximum peak
acceleration shown is 48 g, which corresponds to the case where β0 = β1. This is the acceleration
for this particular trajectory for a vehicle with a constant ballistic coefficient. The lower values of
amax shown in the figure show the ability of a drag-modulation system to reduce peak acceleration.

To compare the two methods shown in Figures 6 and 7, as well as the relationship proposed in
Eq. (28), the data points for these figures are plotted as a function of ballistic coefficient ratio in
Figure 8 and Figure 9. Figure 8 shows that there is excellent agreement between the numerical
solution and the Allen-Eggers solution. It also shows that Eq. (28) effectively predicts the trend in
jettison velocity. The agreement in Figure 9 is also good: the Allen-Eggers prediction of the peak
acceleration is within 3% of the numerical solution.

The reduction in peak acceleration can be quantified as the drag-modulation amax over the amax
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associated with a constant-β0 trajectory. It turns out to be (again, neglecting ρ0 relative to ρ1):

aDM

amax
= e

V 2
1

V 2
0

ln

(
V 2
0

V 2
1

)
(29)

This expression shows that the reduction in peak acceleration is only a function of jettison velocity
as a fraction of the initial velocity, which in turn is only a function of ballistic-coefficient ratio (see
Eq. (28)).

Minimizing Peak Stagnation-Point Heat Rate

Larger ballistic coefficients imply flight at lower altitude (and correspondingly higher density)
and smaller effective nose radii, increasing in heat rate. With this in mind, it becomes apparent
that the best way to minimize peak heat rate during entry is to maintain a low ballistic coefficient
through peak heating. After the initial heat pulse, changing to a higher ballistic coefficient may still
cause the heat rate to rise above the previous peak if the jettison velocity is too close to the velocity
at the first peak (see Fig. 10). An expression may be derived for a limit on the jettison velocity such
that the peak of the initial heat-rate pulse is not exceeded.

To determine the jettison velocities that minimize peak heat rate, we start by enforcing the con-
dition:

Q̇max,1 > Q̇max,2 (30)

We can use the Allen-Eggers solution to write expressions for these peak heat rates in terms of
known trajectory parameters:

k

√
−β0 sin γ∗0

3eHrn,1
V 3
0 exp

(
− 3Hρ0

2β0 sin γ∗0

)
> k

√
−β1 sin γ∗1

3eHrn,2
V 3
1 exp

(
− 3Hρ1

2β1 sin γ∗1

)
(31)
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Substituting Eq. (20) for ρ1 and neglecting ρ0 because it is small relative to other densities, we find:

k

√
−β0 sin γ∗0

3eHrn,1
V 3
0 > k

√
−β1 sin γ∗1

3eHrn,2
V 3
1 exp

(
− 3H

2β1 sin γ∗1

β0 sin γ∗0
H

ln
V 2
1

V 2
0

)
(32)

Simplifying leads to: √
β0
β1

sin γ∗0
sin γ∗1

rn,2
rn,1

V 3
0 > V 3

1 exp

(
−3

2

β0 sin γ∗0
β1 sin γ∗1

ln
V 2
1

V 2
0

)
(33)

Taking the natural logarithm to map the multiplication above to addition yields:

1

2
ln

(
β0
β1

sin γ∗0
sin γ∗1

rn,2
rn,1

)
+ 3 lnV0 > 3 lnV1 − 3

β0
β1

sin γ∗0
sin γ∗1

(lnV1 − lnV0) (34)

Grouping like terms and solving for V1 leads to a condition on V1 for minimizing the peak heat rate:

V1 < V0 exp

 ln

(
β0
β1

sin γ∗0
sin γ∗1

rn,2
rn,1

)
6

(
1− β0

β1

sin γ∗0
sin γ∗1

)
 (35)

If one assumes that sin γ∗0 ≈ sin γ∗1 and that the effective nose radius does not change across the
jettison event, this inequality reduces to:

V1 < V0 exp

[
(β1/β0) ln (β1/β0)

6 (1− β1/β0)

]
(36)

Figure 10 shows the effect of varying jettison time on the heat rate (trajectory parameters are given
in Table 1), the proposed jettison velocity limit in Eq. (36), and the peak heat rate as a function of
jettison velocity for the example trajectory (see Table 1). The proposed limit on the jettison velocity
to limit the peak heat rate appears to be correct–at this jettison velocity, the two peaks of the heat
pulse are nearly equal. The trajectory data in this figure were generated using numerical integration,
but it agrees well with the proposed analytical condition on jettison velocity.

Multi-Stage Systems

Eq. (20) may be used to relate the density and velocity at the nth jettison point in an N -stage
system:

ρn+1 = ρ0 +

n∑
i=0

βi sin γ∗i
H

ln

(
V 2
i+1

V 2
i

)
(37a)

Vn+1 = V0

{
n∏

i=0

exp

[
H(ρi+1 − ρi)

2βi sin γ∗i

]}
(37b)

where
sin γ∗n+1 = sin γ∗n (2F ∗n − 1) (38)

and

F ∗n =

[
1 +

H

R tan2 γ∗n

{
C
V 2
C

V 2
n

+

(
V 2
C

V 2
n

− 1

)
ln

(
1− βn sin γ∗n

Hρn

)}]1/2
(38a)
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Figure 11. Example of a discrete drag-modulation system with 5 stages and 4 jettison events.

Minimizing peak acceleration. Using a method similar to the above, a trajectory that minimizes
peak acceleration for an N-stage system may be computed analytically. First, one must solve this
transcendental equation for the density at the final jettison point, ρN−1:

ρN−1 =
−βN−2 sin γ∗N−1

H
exp

(
−HρN−1

βN−1 sin γ∗N−1
− 1

)
(39)

This result may be used to solve for ρn for the remaining stages:

ρn+1

ρn
=

βn
βn−1

exp

[
Hρn(1− ρn+1/ρn)

βn sin γ∗n

]
(40)

Jettison velocities may then be computed using Eq. (37b).

From Eq. (40), one can see that the ratio of the densities at jettison is always less than that of the
ballistic coefficients, i.e.:

ρn+1/ρn < βn/βn−1 (41)

This relationship establishes a bound on where the jettison should occur. From a practical stand-
point, solving Eq. (39) and (40) may be numerically difficult because, in general, γ∗n is a function of
γ∗n−1, ρn−1, and Vn−1.

Limiting peak heat rate. To minimize peak heat rate, we require that the peak heat rate of any
particular segment in a multi-stage trajectory be less than the previous stage:

Q̇max,n+1 < Q̇max,n (42)

Applying the Allen-Eggers solution and simplifying yields::

ln

[(
rn
rn+1

)(
βn+1 sin γ∗n+1

βn sin γ∗n

)]
+ 6 ln

(
Vn+1

Vn

)
+ 3H

(
ρn

βn sin γ∗n
− ρn+1

βn+1 sin γ∗n+1

)
< 0 (43)

Eliminating the velocities using Eq. (20) results in:

ln

[(
rn
rn+1

)(
βn+1 sin γ∗n+1

βn sin γ∗n

)]
+ 3Hρn+1

(
1

βn sin γ∗n
− 1

βn+1 sin γ∗n+1

)
< 0 (44)
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If one neglects the differences between the flight-path angles and nose radii, one finds that:

ρn+1 <
βn sin γ∗ ln (βn/βn+1)

3H (1− βn/βn+1)
(45)

where γ∗ is an average value over n and n + 1. This relationship provides a bound on the density
(and therefore altitude) of the next jettison event to maintain the minimum peak heat rate throughout
the entry trajectory.

CONCLUSION

The enhanced Allen-Eggers solution for ballistic entry was applied to discrete-event drag- mod-
ulation systems and was shown to accurately reproduce trajectories relative to numerical solutions
to the planar equations of motion. Closed-form analytical relationships were developed that show
ballistic coefficient ratio is the control authority metric for drag-modulation systems: ballistic coef-
ficient ratio governs range control authority, peak acceleration reduction capability, and the jettison
velocity associated with minimum peak heat rate. The closed-form relationships are appropriate
for applications in which execution speed and simplicity are paramount, such as onboard real-time
guidance and targeting.
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NOTATION

a sensed acceleration magnitude, Earth g
C constant
CD hypersonic drag coefficient
e base of the natural logarithm
g acceleration due to gravity, m/s2

h altitude, m
H atmospheric scale height, m
i integer index
k stagnation-point heating constant kg1/2/m
m mass, kg
n integer
N integer
Q̇ stagnation-point heat rate, W/cm2

r effective nose radius, m
R planetary radius, m
s range, km
Sref aerodynamic reference area, m2

V velocity magnitude, m/s
Vi velocity magnitude at jettison, m/s
β ballistic coefficient, kg/m2

γ flight-path angle, rad
γ̄ Euler-Mascheroni constant
ρ atmospheric density, kg/m3

ρi atmospheric density at jettison, kg/m3
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