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SUMMARY

Conformal ablators, first introduced in the early 2000s, are a type of rigid ablative ther-

mal protection system that use flexible, rather than rigid, fibrous substrates. These materials

are impregnated with resin in a mold to yield a part that is close to the final geometry and

requires little post-process machining (a near net shape part). The lack of fiber connectiv-

ity through the thickness enables the TPS to tolerate larger strains than comparable rigid

substrate ablators facilitating larger tiles and installation on most aeroshells without strain

isolation. Reduced part count and simplified integration drive reductions in labor, cost and

complexity.

Conformal ablators are currently fabricated using an open liquid impregnation process

adapted from a technique developed for Lightweight Ceramic Ablators, such as Phenolic

Impregnated Carbon Ablator, which leads to design and manufacturing inefficiencies. This

work advances a new manufacturing technique for conformal ablators, vacuum infusion

processing, that reduces resin consumption and streamlines clean up. The closed process

also eliminates the need for an expensive atmosphere-controlled oven or vacuum chamber.

A design methodology, centered around a simulation of the mold filling process, is

developed to tailor a conformal ablative heatshield to vacuum infusion processing. A con-

stitutive model, combining properties of individual components, is formulated to estimate

the properties of the composite TPS material. The methodology leverages this model, in-

tegrated with material selection, tile layout, and the mold filling simulation, to automate

a conceptual conformal heatshield design. The approach allows rapid iteration on TPS

composition and manufacturing constraints.

xxviii



CHAPTER 1

BACKGROUND AND MOTIVATION

1.1 Background

1.1.1 What is a TPS?

A thermal protection system (TPS), or heat shield, forms the outermost layer of an en-

try system, protecting the structure and payload within from intense aerodynamic heating

generated during flight through an atmosphere. It is a critical system without which a

spacecraft would not withstand entry, descent, and landing (EDL).

1.1.2 Why do you need a TPS?

An entry vehicle at Earth orbital speeds contains specific kinetic energy around∼28 MJ/kg.

A relatively small 10 kg capsule entering from low Earth orbit possesses a substantial

amount of kinetic energy (280 MJ). The high velocity entry of the 46 kg Stardust Sample

Return Capsule, 12.6 km/s relative to Earth, possessed kinetic energy an order of magnitude

greater (3600 MJ). For some perspective, the kinetic energy of all the cars in the Indianapo-

lis 500 driving at race speeds is approximately 92 MJ1 — less than 3% of Stardust.

This energy must be entirely dissipated during a few short minutes of atmospheric de-

celeration. Energy dissipation is largely achieved through vehicle geometry. A blunt body

creates a strong, detached bow shock that allows hot gas to convect around the capsule into

the wake. Figure 1.1 shows an example of a blunt body in supersonic flight, from right to

left, with a detached bow shock clearly visible in front of the vehicle. Thus, only a small

fraction of the total flow energy is actually incident on the exterior of the capsule itself.

Blunt body design, proposed by Harvey Allen in the early 1950s [2], reduced a previously

1Thirty-three IndyCars weighing 1545 lbs and traveling at 200 mph.
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Figure 1.1: An early blunt capsule design in supersonic flight testing (Credit: Vincenti, et
al. [1]).

intractable heating problem to merely a challenging one. At the vehicle stagnation point,

heat fluxes still range from 101 to 104 W/cm2 with integrated heat loads from 103 to 105

J/cm2 [3]2. A TPS must safely accommodate this heating while maintaining the internal

structure and payload at an acceptable temperature.

1.1.3 Types of TPS Materials

TPS materials can be categorized into those that decompose during entry (ablative) and

those that do not (reusable). Reusable TPS are appropriate for low heat flux, shallow and/or

gliding entries such as that of the Space Shuttle. These materials withstand entry heating

with little to no degradation allowing multiple uses. By comparison, ablative TPS are

single-use systems that accommodate heating through reradiation, phase change, mass loss

and passive transpiration cooling [3]. The combination of mechanisms, depicted in Figure

1.2, allows ablators to withstand severe entry heating.
2For comparison, the Sun’s radiative energy flux at Earth is 1.361× 10−1 W/cm2, or about 100–100,000

times less, with a daily integrated heat load of 1.2 × 104 J/cm2.
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Convective and radiative flux from the hot flow heat the TPS surface. A portion of the

incident energy is reradiated back into the flow while the remaining energy is conducted

into the material. As the virgin material increases in temperature, it decomposes, absorb-

ing energy, and forming pyrolysis gas which convects through the TPS material into the

boundary layer. The gas, which absorbs additional energy from the hot char as it exits the

TPS, alters the boundary layer such that convective heating is reduced (transpiration cool-

ing, also called blowing). Active decomposition occurs in a layer called the pyrolysis zone,

which progresses through the material thickness over time leaving behind a porous, car-

bonaceous char held together by the fiber reinforcement. The charred surface can undergo

chemical reactions causing further mass loss (recession).

Figure 1.2: Ablative TPS surface and in-depth thermal response (Credit: Laub and Venkat-
apathy [3]).

Ablative TPS materials may be differentiated into those containing a polymer (poly-

meric) and those that do not (non-polymeric). Non-polymeric ablators include metals,

inorganic ceramics and ceramic composites. They also include carbon-carbon (C-C) com-

posites, which are frequently used to protect rocket nozzle throats [4], though C-C was also

employed as the forebody heatshield for the Genesis sample return capsule [5] and on the

nose and wing leading edges of the Space Shuttle Orbiter [6].
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Polymeric ablators comprise the largest class of ablative TPS and have been employed

in the vast majority of entry vehicles to date [3, 4]. These materials can be differentiated

based on the form of the fiber reinforcement, fiber filler or fiber substrate. Fiber substrate

ablators may be further grouped into rigid substrate and flexible substrate materials. The

latter encompasses both woven ablative TPS and conformal ablators, which are the focus

of this work. Figure 1.3 depicts these classifications with conformals highlighted.

TPS Materials

Ablative

Polymeric

Fiber Filler Fiber Substrate

Rigid Substrate
Flexible 
Substrate

Conformal 
Ablators

Woven Ablators

Non-Polymeric

Reusable

Figure 1.3: Classification of thermal protection system materials.

Other classifications can and have been made in the literature. Natali, et al. break

down polymeric ablators similarly, though they note the difference between micron-scale

materials (fiber-reinforced, heat shielding, and Lightweight Ceramic Ablators, or LCAs)

and nanoscale materials (nanocomposites) [4]. Carbon/phenolic nanocomposites are fur-

ther outlined by Tate, et al. [7]. Laub and Venkatapathy differentiate ablators into low, mid,

and high density materials and note that peak heat flux and stagnation pressure capability

are correlated with density [3].
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Rasky and Tran make identical distinctions regarding the construction of polymeric ab-

lators, but denote them as traditional ablators and LCAs [8]. This thesis replaces these

terms with fiber filler and fiber substrate, respectively, which reflect the underlying con-

struction. Fiber substrate ablators/LCAs were largely matured at NASA Ames Research

Center in the 1990s [9, 10, 11, 12], providing a major advancement on the fiber filler/traditional

ablators that previously dominated TPS technology. The next sections discuss these two

subcategories of polymeric ablators further, starting with their compositions and then out-

lining different manufacturing techniques. Conformal ablators and their manufacturing are

then presented in more detail.

1.1.4 Composition of a Polymeric Ablative TPS

Polymeric ablators consist of fibrous reinforcement in a polymer matrix — a composite

material that blends the capabilities of its constituents. Decomposition of the polymer ac-

commodates incident heat flux while the fiber network imparts mechanical strength. It was,

in fact, this revelation that led to the invention, and subsequent adoption, of the ablative heat

shield in the 1960s [13]. Reinforcing fibers are refractory materials with low thermal con-

ductivity — silica and carbon are typical — and can be short, disconnected and distributed

throughout the resin or can form a connected, monolithic substrate.

Fiber filler ablators (Figure 1.4, left) blend disconnected fibers in a mixture of poly-

mer resin and fillers and often require additional structural reinforcement [17]. Avcoat

[18], used as the primary TPS on both the Apollo and Orion capsules [19], and Super

Lightweight Ablator (SLA) [20], used for a series of Mars landers beginning with Viking

[21], are examples of this type of ablative material. Figure 1.5 depicts Avcoat 5206 in

honeycomb reinforcement, before and after arcjet testing.

Fiber substrate ablators (Figure 1.4, right) combine a connected fibrous material — the

substrate — with a liquid resin which is then cured to form a rigid composite [9]. These

materials withstand high heat fluxes and surfaces pressures with better mass efficiency

5



Fibers Polymer Resin Other Fillers

Fiber Filler Fiber Substrate

Figure 1.4: Types of ablative TPS (adapted from Rasky and Tran [8])

Figure 1.5: A fiber filler ablator: Avcoat 5206 in fiberglass phenolic honeycomb reinforce-
ment pre- and post-arcjet test (Credit: Kowal [14])

Figure 1.6: Examples of fiber substrates (left to right): FiberForm R©block, woven carbon,
and carbon felt (Credits: FiberMaterials, Inc., Venkatapathy and Ellerby [15], and Gasch,
et al. [16]).
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than most fiber filler ablators [22]. Fibrous substrates may be ordered or disordered on

a microscopic scale and take a variety of macroscopic forms. Figure 1.6 shows several

examples: rigid preformed blocks [11], woven fabric [15, 23, 24], and felt [16]. Part

size is limited by mechanical and thermal properties, requiring segmented, tiled designs

for all but the smallest aeroshells (e.g., Stardust [25]) with gaps, and corresponding gap

filling, between tiles to control tolerance. For example, the Mars Science Laboratory (MSL)

heatshield, shown in Figure 1.7, used 113 tiles requiring extensive gap filling [26]. In

many cases, tiles cannot be bonded directly to an aeroshell but require intermediate strain

isolation to prevent mechanical failure [21].

Figure 1.7: A fiber substrate ablator: PICA installed as tiles on MSL (Credit: NASA/JPL-
Caltech/Lockheed Martin)

Fiber substrate ablators have been widely adopted since their invention in the 1990s

[10]. Phenolic impregnated carbon ablator (PICA), one of the original LCAs, was em-

ployed as the primary heatshield on Stardust [25], MSL [21, 27], and OSIRIS-REx [28] and

was considered for the Orion Crew Exploration Vehicle [29]. A related material, PICA-

X, is flown on the SpaceX Dragon capsule [30]. Another variant, Silicone Impregnated

Reusable Ceramic Ablator (SIRCA), was used on Mars Pathfinder [31], Mars Exploration

Rover [32], and Mars Microprobe [33].

Polymer resins typically decompose endothermically, absorbing and rejecting incident
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flow energy [3]. High emissivity char left behind by the decomposing polymer re-radiates

an additional portion of this energy. High char yield, the proportion of the initial mass that

remains as char, is desirable because it both aids re-radiation and reinforces the ablated

material. Resins may be thermosets, polymers that crosslink and rigidize during curing at

elevated temperature, or thermoplastics, long chain polymers that do not crosslink. Pheno-

lic is undoubtedly the most widely used resin [4] found in a number of ablators including

PICA, Carbon Phenolic (CP), Avcoat [18], and others. Fillers may be added to the matrix

to control material and thermal properties. For example, SLA-561V consists of cork, silica

and phenolic microballoons, and fibers in a silicone binder [20].

1.1.5 Manufacturing a Polymeric Ablative TPS

Manufacturing a polymeric ablative TPS involves combining, in some fashion, matrix and

reinforcement into one material. Historically, this has been accomplished through a variety

of processes described below and summarized in Table 1.1. Processes are differentiated

based on construction.

Fiber Filler Ablators

Chop/Compression Molding Short, disconnected (chopped) fibers are combined with

resin. The compound is loaded into a mold that applies pressure and heat to consolidate

and cure the material. Resulting TPS are generally high density and heavy, suited for the

most severe entries. Chop molded carbon phenolic (CMCP) was employed for the nosecone

of the Galileo probe heat shield [34].

Spraying Polymer, fibers and, possibly, fillers are combined in a liquid mixture. This

mixture is sprayed onto aeroshell surface and cured in place to form a rigid shell. This

process is generally used for protection under less severe aerothermal environments. For

example, a spray-on version of SLA-561V was used on the Space Shuttle external tank
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Table 1.1: Overview of fabrication methods for polymeric ablative TPS materials.

Process Description Example(s)

Fiber Filler Ablators

Chop /
Compression

Molding

Fiber and resin compound com-
pressed and cured inside a mold

CMCP (Galileo nosecone [34])

Spraying Liquid resin/fiber mixture
sprayed and cured in place

SLA-561V (Space Shuttle, Pathfinder
[35]), Prosial (Huygens [36])

Injection /
Packing

Liquid resin/fiber mixture in-
jected or packed into a pre-
bonded reinforcing structure
then cured

Avcoat (Apollo [18], Orion [19]),
SLA-561V (Pathfinder [35])

Fiber Substrate Ablators

Filament /
Tape Winding

Continuous fibers drawn
through resin bath and onto
mandrel

TWCP (rocket motor casings and
payload shrouds [37], Galileo [34])

Liquid
Impregnation

Liquid resin solution infused
into a connected fibrous sub-
strate

PICA (Stardust [25], MSL [21, 27],
OSIRIS-REx [28]), C-PICA [38]
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as well as the Mars Pathfinder backshell [35]. Prosial, which formed the backshell of the

Huygens probe, was also implemented in this fashion [36].

Injection/Packing Polymer, fibers and, possibly, fillers are combined in a liquid mixture.

The mixture is injected, or packed, into a reinforcing structure prebonded to the aeroshell —

an injection tool may be used (Figure 1.8). Then, the material is cured in place. Examples

Figure 1.8: Resin injection performed on Apollo (left) and Orion (right) Avcoat heat shields
(Credits: North American Aviation/Steve Jurvetson and Textron Systems/NASA).

of this type of manufacturing process include that of the Apollo [18] and Orion [19] Avcoat

heat shields. A version of SLA-561V is manufactured this way for use in more severe

environments (e.g., on the forebody of Mars Pathfinder [35]).

Fiber Substrate Ablators

Filament/Tape Winding Continuous fibers are drawn through a resin bath and onto a

mandrel. The mandrel geometry forms the inner mold line of the part. The material is cured

and then removed from the mandrel. Filament winding and tape winding use essentially the

same process differing only in the form of the fibers: individual filaments, in the former, and

wider/thicker tapes with multiple filaments, in the latter. This type of process is frequently

employed for the TPS in rocket motor casings and payload shrouds, for example as tape

wound carbon phenolic (TWCP) [37]. TWCP was also used on the frustrum of the Galileo
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probe [34].

Liquid Impregnation Liquid impregnation is an open composite molding process pio-

neered to fabricate LCAs. Techniques are outlined in the patent for those materials [12].

Generally, a fiber substrate is slowly infiltrated by a liquid resin solution while under vac-

uum. Resin, which is typically diluted with solvent(s) to control loading and facilitate

infusion, seeps into the porous substrate over time. Then, the infiltrated material is sub-

jected to curing and drying processes to gel the polymer and remove solvent, respectively.

Temperature and pressure profiles during curing and drying are resin-dependent. Multiple

heat treatment cycles may be required to complete curing and solvent removal. In some

cases, impregnation and curing/drying is carried out multiple times to increase resin load-

ing. Pulci, et al. describes a similar approach applied to rigid graphitic substrates [39].

PICA is manufactured via liquid impregnation (e.g., the forebody heatshields of Stardust

[25], MSL [21], and OSIRIS-REx [28]). Conformal ablators rely on a modified version of

this technique [38].

1.2 Conformal Ablators

Unlike the rigid substrates of PICA and related materials, conformal ablators use flexible

fibrous substrates such as felts or battings which, after processing, yield rigid TPS materi-

als with higher strain to failure (STF) than their rigid substrate counterparts. The flexible

substrates are conformed, infused, and cured in a mold to produce near net shape parts with

consistent fiber orientation, which results in uniform thermal properties through the thick-

ness. By contrast, a curved part machined from a rigid orthogonal block will have variable

fiber orientation, and thus non-optimal through thickness properties (e.g., Mars Science

Laboratory [21, 27]). Rigid substrates can be molded to align fibers but this requires addi-

tional preforming (e.g., Stardust [25] and OSIRIS-REx [28]). Conformal ablators achieve

fiber alignment and resin infusion in a single process.
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Near net shape manufacturing reduces post-process machining. Higher STF allows fab-

rication of larger TPS tiles, reducing part count, and installation directly on most aeroshells

without strain isolation layers. In addition, higher STF may allow designers to eliminate

gaps and gap fillers between tiles for small probe designs. Larger aeroshells may still re-

quire gaps and gap filling; however, increased tile size reduces the total length of these

gaps. One study estimates that a conformal variant of PICA could reduce the number of

tiles on the MSL forebody heat shield from 113 to less than 35 [40]. Reduced part count

and simplified integration drive reductions in labor, cost, and complexity over comparable

rigid substrate ablators [41, 42, 43, 44, 38, 45, 16] – advancements which are enabling for

planetary and human missions [40, 46, 47].

1.2.1 Composition

The construction of conformal ablative TPS is similar to other fiber-reinforced plastics

(FRPs) such as carbon fiber and fiberglass. Unlike these structural composites, however,

conformals possess relatively low density and fiber fraction (around 10%) by design. Fiber

consolidation/compaction, which is typical of FRPs, would increase thermal conductivity

and compromise thermal performance in an ablator. In addition, resins are substantially

diluted by solvents to control resin loading and allow infusion at lower pressures, producing

a lightweight, porous material.

Conformal TPS variants include C-PICA and C-SIRCA (conformal analogs of PICA

and SIRCA, respectively). C-PICA combines a high porosity rayon-based carbon felt insu-

lator with phenolic resin and is suited to high heat fluxes. Designed as a drop in replacement

for PICA, C-PICA has a similar density (∼0.27 g/cc) but is more thermally efficient which

can reduce TPS mass [45]. Recent work has focused on identifying alternative carbon felt

substrates manufacturable in larger thicknesses and higher densities [16]. Scale up to larger

curved parts (∼0.6 m x 0.7 m) was planned for 2017 [48]. C-SIRCA is an RF-transparent

material made from a silica-based felt and silicone resin [48]. Terminal Velocity Aerospace

12



leveraged these materials for the heat shield on its RED-Data2 miniature entry capsule [47,

45]. Elsewhere, AQ60/I is a proprietary material made of a silica felt impregnated with

phenolic and has a density of around 0.3 g/cc [36]. Details of its manufacturing process are

unclear, however, and tile size was limited on the Huygens forebody heatshield to∼0.15 m

x 0.20 m.

Note that woven ablative TPS, while similarly constructed, differ from conformal abla-

tors both in density (∼0.38 g/cc to 1.5 g/cc) and substrate compliance (the higher density

substrates must be preformed to the desired shape prior to mold insertion and infusion)

[23]. Felt-based conformals are of lower density (< 0.3 g/cc) and are formed into shape

and infused in the same process.

1.2.2 Design and Fabrication

The following section describes the steps to design and manufacture a conformal ablative

heatshield, summarized in Figure 1.9. The process proceeds sequentially beginning with

TPS material selection and sizing. The heatshield geometry is then segmented into a tiled

design, based on material constraints, and molds are designed and fabricated for each tile.

Those molds are then used to process the material, and, finally, the resulting tiles are in-

tegrated with the aeroshell. Some aspects of a conformal heatshield design, such as TPS

sizing and tile layout, are not unique to conformals but are included below for complete-

ness. Note also that descriptions of the mold design and processing are reversed for clarity

in the discussion below.

Material 

Selection and 

Sizing

Tile Layout Mold Design Processing Integration

Figure 1.9: Steps in the design and fabrication of a conformal ablative heatshield.
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Material Selection and Sizing

TPS material selection and sizing is dictated by the aerothermal entry environment. Rele-

vant parameters for material selection include heat flux, shear rate and stagnation pressure.

Material capability generally scales with TPS density, that is, higher density TPS can with-

stand harsher environments [3].

While material selection dictates peak instantaneous aerothermal conditions, integrated

heat load sets TPS sizing. Typically, TPS thickness is determined by a bondline temperature

limit, which is a limitation of the adhesive bond between TPS and aeroshell. As heat load

increases so does TPS thickness. Margin is added to the sizing to accommodate uncertainty

in the aerothermal environment and material properties. Traditional methods rely on either

a worst-case stack up of uncertainties or a root sum square (RSS) method that considers

uncertainties in the aerothermal environment and material response separately [49]. More

rigorous, probabilistic uncertainty analysis have been developed more recently [50, 51, 52].

A database of material properties is necessary for evaluating TPS performance under

aerothermodynamic heating. The material model — consisting of both thermochemical

parameters (char yield; virgin and char densities, elemental compositions, and heats of

formation; pyrolysis reaction rates and heats of reaction; and pyrolysis gas enthalpy and

composition) and thermomechanical parameters (specific heats, thermal conductivities, and

optical properties of both virgin and char material) [53] — forms an input to a thermal

response model that predicts material behavior during entry. A subset of these properties

relevant to, and within the scope of, this work are described here. Each factors into the

energy balance describing the ablating material.

Composite (Virgin) Density, ρcomp The density of the TPS material prior to decompo-

sition (i.e., virgin material). This is referred to here as the composite density or virgin

density.
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Resin Mass Fraction, wresin Resin mass fraction is the mass of resin in the virgin ma-

terial as a fraction of total mass. The TPS material is typically modeled as a weighted

combination of its constituents (resin and fiber).

Char Yield, Ycomp The remaining mass, as a percentage of initial mass, after complete

pyrolysis of the polymer / conversion to char. The char yield of the composite TPS material

is dependent on resin char yield, YR, as well as the relative proportions of resin and fibers.

Characterizing TPS properties and their uncertainties is crucial for successful heatshield

design. Typically, an extensive experimental campaign is required in which data is accu-

mulated from many samples across many different processing runs. An example of such a

test campaign, for PICA, is described by Milos and Chen [54]. Property distributions can

then be approximated from sample mean and variance. In some cases, experimental results

may be supplemented with data from related materials as an approximation. For example,

certain PICA properties were adjusted and scaled for C-PICA [38].

Tile Layout

Tile design and layout is strongly coupled to material selection. A combination of material

and manufacturing constraints limit the part sizes and necessitate a tiled design for all but

the smallest aeroshells. Fiber substrates are only available in certain sizes. For example,

one carbon felt substrate used to fabricate C-PICA (Felt 1, described in Chapter 2) is avail-

able in widths of 41”–47” and thicknesses up to 0.88” nominally. In addition, substrate

compliance, or lack thereof, limits how much they can bend and may impact heatshield

design in areas of high curvature, such as the nose of an entry vehicle. Manufacturing

constraints, such as tooling and oven dimensions, may also restrict tile size.

Tiled designs have the added complexity of handling seams between adjacent tiles.

While a small conformal heatshield may be manufacturable without seams, large heat-
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(a) Joint configurations (b) Gap filling

Figure 1.10: Seam designs demonstrated in C-PICA arcjet testing (Credit: Gasch, et al.
[55]).

shields require gaps to manage part tolerances. These gaps must be filled in order to pro-

tect the underlying structure from exposure to the flow. Because gap fillers are exposed to

the flow, joint design is an important driver of heatshield design. Five joint configurations

were tested in C-PICA arcjet testing [55]. Four of these configurations are identified in

Figure 1.10 (a). The fifth type, a perpendicular radial cut joining each quarter panel, was

also found on the test article. RTV 560, a room-temperature-vulcanizing silicone rubber,

spanning half the TPS thickness was applied to fill gaps between tiles (Figure 1.10 (b)).

Processing

Fabrication relies on a modified version of the liquid impregnation technique outlined ear-

lier [16, 38, 56]. In general, there are a series of six steps for manufacturing a conformal

ablator, summarized below and in Figure 1.11. Note that processing and machining are not

shown in the figure due to the proprietary nature of these techniques, but general descrip-

tions are provided. This outline is based on Refs. [38, 57].

1. Substrate preparation: Dry substrate material is cut and formed into the desired ge-
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ometry.

2. Draping: Prepared substrate is placed over one side of the mold while the second

side is clamped over top, securing it inside. Shims, typically of the same material,

are sometimes used to absorb gaps with the tooling.

3. Processing: Substrate is infused with resin. Then, it undergoes heat treatment to cure

the resin and remove solvent.

4. Mold removal: Cured and dried near net shape part(s) removed from the mold.

5. Machining: Excess material is removed and part(s) machined to the final geometry.

6. Installation: Finished TPS tile is ready for installation on an aeroshell.

Figure 1.11: Overview of the fabrication process for a conformal ablator (Credit: Milos, et
al. [38]).

Processing (Step 3) uses the liquid impregnation technique, but the fiber substrate is

constrained in a matched mold to the desired geometry. The mold is placed in a larger
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container and infiltrated by liquid resin while under vacuum. The process is carried out

slowly (up to several hours for large parts) to ensure complete impregnation. The container

with the immersed part is cured at high temperature, which causes the resin to polymerize.

Then, the part is removed from the container and extracted from the now rigid resin yielding

the near net shape part (Step 4). Removing excess resin requires careful cleaning and

proper disposal, a time- and labor-intensive process. Once extracted, the bare part is heated

a second time to remove residual solvent. For certain resin systems, a vacuum oven is

required for both curing and drying to provide inert atmosphere and prevent oxidation.

Mold Design

Liquid impregnation is an open process. The mold is not closed, or sealed, but rather

is partially open to its surroundings to allow resin to infiltrate the substrate while it is

immersed. Molds require a large degree of open space to allow resin to enter the part.

Some resin necessarily remains outside the substrate in this approach but is cured along

with the part and then removed from the mold and discarded post-process. Note the small

and large openings in the top and around the perimeter of the mold depicted in Figure 1.11,

Step 2. The size and placement of these openings is important for ensuring adequate resin

flow during impregnation so that no dry areas, or voids, are formed in the final material.

Increasing open space in the mold can help to limit issues with poor flow but increases

waste.

Integration

After processing, the near net shape tiles are machined to the precise geometry and then

bonded to an aeroshell. While rigid substrate ablators require strain isolation layers be-

tween the tiles and the aeroshell, conformal ablators may be directly bonded to the struc-

ture. The temperature limit of this adhesive bond, the bondline, typically drives TPS sizing.

RTV is frequently employed as a bonding agent, and its operating range limits the maxi-
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mum bondline temperature to 250 ◦C. Gap filling, if required, also occurs during integra-

tion.

1.3 Liquid Composite Molding

Liquid composite molding (LCM) is a closed manufacturing process in which a fibrous

substrate is impregnated with a liquid polymer resin and cured within a mold. LCM has

existed in some form at least since the 1940s. Rudd, et al. identify the Marco method,

designed as an improvement over hand layup for boat hulls, as the first use of LCM. A U.S.

patent was granted for this process in 1950 [58]. In the Marco method, vacuum draws resin

into a fibrous substrate that is sealed between a semi-flexible bag and a rigid mold. LCM

soon expanded into the aerospace industry, for structural components, in the 1950s [59]

and, subsequently, the rail, automobile and marine industries [60].

Today, LCM encompasses a variety of techniques: Resin Transfer Molding (RTM),

Vacuum-assisted Resin Transfer Molding (VaRTM), gravity and vacuum infusion, struc-

tural reaction injection molding (SRIM), liquid resin infusion (LRI), Seemann Composite

Resin Injection Molding Process (SCRIMP), and many other variants. Descriptions in this

section are based on summaries by Rudd, et al. [61], Parnas, et al. [62], and Ermanni, et

al. [63]. While each of these processes is a unique implementation of LCM, all operate

on essentially the same principle: driving liquid resin into a dry, fiber preform through an

applied pressure differential. Accordingly, they share common traits. Rudd, et al. identify

these traits as a resin delivery system, a fiber handling system, a matched mold, and an

approach for controlling resin flow and air removal. Parnas, et al. describe the extent, and

importance, of resin flow as the trait that differentiates LCM from other composite manu-

facturing processes. While resin flow does occur in the other processes, managing this flow

is uniquely critical to material quality and performance in LCM [62].

Tooling may be single- or double-sided. A single-sided mold is combined with a flex-

ible material (e.g., a vacuum bag) to form the secondary surface. A double-sided tool
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consists of two rigid, matched sides. Resin is injected into the dry fiber substrate at one

or more ports, called gates. Residual air is vented at another port or along the periphery

of the part as the flow advances. The resin can be cured after mold filling is complete or

simultaneously with infusion to reduce cycle time.

Figure 1.12 depicts two LCM examples: RTM, on the left, and VaRTM, on the right.

RTM uses a double-sided mold with resin typically injected at the center of the part. A

peripheral joint allows air venting while restricting resin flow out of the cavity. VaRTM

uses a single-side tool paired with a vacuum bag. Like RTM, resin is injected at the center

of the part, but vacuum is applied at the periphery to assist resin flow. Note that the substrate

may be preformed prior to mold insertion. Otherwise, the unformed substrate is draped over

the tool surface immediately prior to injection.

(a) RTM (b) VaRTM

Figure 1.12: Two common LCM approaches (Credit: Ermanni, et al. [63]).

Rudd, et al. note that LCM is ideal for composites manufacturing due to:

1. Cost effectiveness over a range of production volumes

2. Application across a wide range of component types and geometries

3. Pre-placement of fiber substrate / control over fiber orientation
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4. Part reproducibility

5. Ability to incorporate process automation if desired

Parnas, et al. indicate that LCM may not be cost effective for certain, simple part ge-

ometries, which are better suited to pultrusion and tape/filament winding. However, it is

appropriate in most cases, and material performance can be nearly on par with hand layup

/ autoclave processing, which yields the highest strength composites [62].

Finally, and significant to this work, the mold filling process, which is deterministic,

can be simulated using Darcy’s Law, an empirical formula describing flow through a porous

medium. Simulated flow patterns can aid mold design (e.g., locating a gate to avoid dry

spots) and process design (e.g., evaluating resin arrival times). Significantly, this analysis

can be carried out on a computer prior to tool fabrication preventing costly experimental

trial and error. An overview of mold and process designs is presented in the next section

followed by a description of the numerical simulation using Darcy’s Law.

1.3.1 Mold and Process Design

Because resin flow is of primary importance in LCM — poor flow will yield poor part

quality — much of the innovation, and variation, in LCM processes involves the method

of resin delivery according to Parnas, et al. Some processes drive resin into the part with a

pump or pressure pot (RTM, SRIM), others through vacuum (SCRIMP, vacuum infusion),

and some a combination of both (VaRTM). Compression molding distributes resin through

mold closure, pushing resin into the substrate with mechanical pressure.

In a double-sided tool, compression is applied to the mold through peripheral clamping

or a press to consolidate the part and remove entrapped air. A single-sided tool is com-

bined with a flexible material (e.g., vacuum bag) to form the second surface and provide

consolidation pressure. Numerous approaches exist for injection and venting. In RTM and

VaRTM, injection occurs at or near the center of the part with venting along the periphery

of the mold as described above. In vacuum infusion, injection and venting are generally at
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point locations within the mold and the periphery is fully sealed. To aid resin flow, distri-

bution channels may be built into the tool or specialized distribution media may be layered

on top of the primary substrate.

Mold material depends on application. For short production runs, plaster or a polymer

laminate such as glass-fiber reinforced epoxy is appropriate. These materials are low cost

but possess limited tool life. For longer production runs, metal, composite, or ceramic

tooling is required for greater durability. Flexible tooling is generally elastomeric. An

example of rigid tooling, a double-sided aluminum RTM mold, is shown in Figure 1.13.

Note a characteristic “egg crate” structure to provide stiffness. Clamps are built into the

periphery of the mold to compress the two sides.

Figure 1.13: A double-sided, rigid aluminum mold for an RTM process (Credit: JHM
Technologies, Inc.).

Resin curing is accomplished through heating the mold and enclosed part. Perhaps the

simplest approach is to place the entire assembly inside an oven, though this may present

a challenge for particularly large parts. More sophisticated designs eliminate the oven

altogether in favor of heating elements or liquid lines incorporated directly into the mold.
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1.3.2 Numerical Modeling

Darcy’s Law, an empirical relationship first outlined in 1856 [64], approximates flow through

porous media. Numerical implementations of Darcy’s Law to the LCM mold filling pro-

cess have aided design in a range of processes: RTM [65], VaRTM [66], vacuum infusion

[67], and SCRIMP [68] among others. In the literature, numerical simulation is frequently

employed to optimize gate and vent locations as demonstrated by Jiang, et al. [69], Gokce,

et al. [70], and Mathur, et al. [71]. Ruiz, et al. optimized injection flow rate to minimize

microscopic and macroscopic voids [Ruiz2006]. Liu, et al. used a numerical model for

real time process monitoring and control [72]. Application of Darcy’s law to LCM is itself

an extension of established work in soil mechanics and groundwater flows [73] originating

with Darcy himself. Before describing the law and its implementation in LCM, relevant

material properties appearing in the law are outlined first.

Relevant Material Parameters

The following parameters appear below in Darcy’s Law and are required for simulating the

mold filling process. The first two, porosity, φ, and permeability, [K], are properties of

the porous medium, or substrate. Note that φ and [K] are continuum approximations of

microscopic structure and can vary locally within a material. The last parameter, dynamic

viscosity, µ, is a property of the infiltrating liquid.

Porosity, φ The empty, porous volume of the substrate, Vpore, as a fraction of its bulk vol-

ume, Vsub. Porosity is a unitless number between 0 and 1 (with one indicating a completely

porous material):

φ =
Vpore

Vsub

(1.1)

Fibers occupy the other portion of the bulk volume, thus the fiber volume fraction, vfiber, is

related to porosity by vfiber = 1− φ.
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Permeability, [K] A measure of the ease (or difficulty) with which a fluid flows through

a porous medium. It is proportionality constant relating a pressure gradient to flow rate.

Higher permeability corresponds to a higher flow rate. [K] depends on substrate mi-

crostructure and, in certain cases, the fluid flowing through it. In three-dimensional Carte-

sian coordinates, [K] is a rank 2 tensor:

[K] =


Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

 (1.2)

Diagonal components, Kxx, Kyy, and Kzz, relate flow and pressure gradients in the same

direction. Off-diagonal components relate flow rate to orthogonal pressure gradients. [K]

can be diagonalized to remove off-diagonal components. Furthermore, the materials of this

work can be reduced to an in plane component parallel to the vehicle surface, KIP, and

a through thickness component perpendicular to the surface, KTT. With these simplifica-

tions, the permeability matrix can be written

[K] =


KIP 0 0

0 KIP 0

0 0 KTT

 (1.3)

In SI units, KTT and KIP are on the order of 10−10 m2 for the low density felts used in this

thesis.

Dynamic Viscosity, µ A measure of a fluid’s resistance to shear. Higher viscosity cor-

responds qualitatively to a thicker fluid. Quantitatively, it is a proportionality constant
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relating a shear velocity gradient, ∂u
∂x

to shear stress, τ :

τ = µ
∂u

∂x
(1.4)

For a Newtonian fluid, µ is independent of shear rate. The SI unit for viscosity is the

Pa·s, but an alternative unit, the poise, is also used frequently. One centipoise (cP), one

hundredth of a poise, is equivalent to 10−3 Pa·s. In these units, µ is around 1 cP for water

at room temperature.

Darcy’s Law

In one dimension, Darcy’s law relates a volumetric fluid flux, q, to the permeability of the

medium, viscosity of the infiltrant, and a pressure change, ∆P , across a domain, L,

q =
K

µ

∆P

L
(1.5)

Flux, q, has units of volume per time per area, or simply length per time. The macroscopic

fluid velocity, u, which is the rate at which the flow front progresses through the medium,

is the volumetric flux divided by porosity, which yields

u =
K

φµ

∆P

L
(1.6)

According to the equation, flow moves from high pressure to low pressure with a velocity

proportional to substrate permeability and inversely proportional to liquid viscosity and

porosity. Darcy’s law averages complex microscopic flows through the pores of a medium

into a single macroscopic, bulk velocity, u. The relationship is somewhat analogous to that

of Fourier’s law, relating heat conduction through a material to a temperature gradient. In
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higher dimensions, Darcy’s law becomes

ū = − [K]

φµ
∇P (1.7)

where P is a pressure field (and the negative sign accounts for the directionality of the gra-

dient). The bulk velocity, ū, is a vector and permeability, [K], is now a matrix as described

above. Combining this equation with conservation of mass for an incompressible fluid,

∇ · ū = 0 (1.8)

yields an elliptic partial differential equation governing the pressure field in the saturated

region.

Though originally an empirical formula, Darcy’s law has been derived from an anal-

ysis of Stokes flow [74], which describes low Reynolds numbers flows [75]. Adaptations

and extensions have attempted to address more complex phenomena not captured by the

original formulation:

1. Forchheimer added a velocity-squared term to capture inertial resistance for high

Reynolds number flows [76]. An alternative criterion derived from that work, the

Forchheimer number, describes the relative contribution of inertial effects [77].

2. Klinkenberg showed that gas permeability varied with pressure and developed a cor-

rection to account for slippage in the porous material [78]. This correction has been

used to approximate liquid permeability in the limit of continuum flow [79].

3. Brinkman introduced an additional term to Darcy’s law in an attempt to address

shearing along pore walls [80], but it has numerous shortcomings [81].

While Darcy’s law is relatively simple in form, complication arises in its application

to LCM processes. In some cases, the substrate is compacted to increase fiber density and

eliminate voids (dry, unfilled regions) leading to permeability and porosity variation [66].
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If the process is not isothermal (i.e. resin is heated during infusion to initiate curing), then

thermal coupling arises due to the temperature dependence of µ. Separating mold filling

and curing into distinct phases somewhat simplifies the task. Furthermore, maintaining the

mold and resin at a single temperature (i.e., an isothermal process) removes temperature

dependence, and temperature may be treated as a fixed input to the model, which is done

in the present work.

Solution Approach

Solution of the mold filling problem, summarized by Rudd, et al. [61], involves an iterative

procedure of (1) solving for the pressure field from the governing partial differential equa-

tion (Equations 1.7 and 1.8), (2) obtaining resulting fluid velocities at the flow front from

Equation 1.7, (3) updating the location of the flow front, then (4) repeating until the mold

is filled. In the literature, various approaches have been employed. Methods for solving

the pressure field include finite difference, boundary element and finite element. Boundary

conditions are typically specified by:

1. Constant pressure, constant flow rate, or a combination of both at the gate(s)

2. Zero gauge pressure along the flow front

3. Zero normal velocity along the mold wall

A single iteration of the simulation is illustrated in Figure 1.14. The initial saturated region

(dark green) is defined by zero gauge pressure along the unrestricted flow front and zero

normal velocity along the upper boundary of the domain. The gate may be defined by any

of the boundary conditions described above. After solving for the pressure field, the flow

front is advanced to the next time step (light green). The procedure is repeated until the

saturated region completely fills the domain.

The time-varying geometry of the saturated region, and thus the solution domain, lends

additional complexity to the problem. Both fixed and moving grids have been utilized for
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Initial flow front

Updated flow front

Saturated region

Zero normal velocity boundary

Zero gauge 
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(constant pressure 

and/or flow rate)

Figure 1.14: Numerical depiction of the mold filling problem.

flow front advancement. In the moving grid approach, the solution domain is re-meshed at

each time step yielding an accurate flow front geometry at the expense of large computa-

tional cost. The fixed grid approach is substantially faster but the flow front shape is less

accurate and violations of mass conversation can arise.

Control volume / finite element (CV/FE) methods first developed by Bruschke and Ad-

vani attempt to bridge the gap between fixed and moving grid methods [82]. This approach,

which has now been widely adopted, ensures local conservation of mass while leveraging

the computational efficiency of a fixed grid. Flow front advancement is achieved by track-

ing fluid flow into and out of control volumes (CV) around each mesh node. A fill factor,

ff , denotes the fraction of resin saturation within a CV allowing numerical representation

of an empty node (ff = 0), a fully saturated node (ff = 1) and a partially saturated node

(0 < ff < 1). Logically, partially saturated nodes represent the approximate flow front

location.
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1.4 Gap Analysis

The current method of fabricating conformal ablators, relying on the liquid impregnation

technique of older rigid substrate ablators, has several inefficiencies as seen in the previous

discussions. These relate to both the manufacturing and the design processes for these

materials. Cumulatively, these inefficiencies lead to added labor, time, and cost in making

a conformal ablative heatshield and can impact material quality and consistency.

1.4.1 Manufacturing Inefficiencies

First, open processing is inherently wasteful because large openings in and around the mold

are required to ensure adequate resin infiltration. More open space yields better resin flow

and ensures full impregnation but generates more waste. Excess resin necessarily remains

outside the substrate only to be discarded after curing. More than half of the resin may be

wasted (as described in Chapter 3). Not only does this excess add to direct material costs,

but it also negatively impacts other aspects of manufacturing.

Larger demands on resin consumption necessitate a larger inventory and the capacity to

store it. Prior to processing, resin must be stored and, in some cases, at low temperatures

to prevent composition changes. Waste generation significantly burdens both processing

technicians and disposal facilities. Resin removal is messy and laborious. Materials are

often hazardous and generate significant dust requiring careful cleaning and appropriate

handling. Personal protective equipment (PPE) is necessary to mitigate health risks. Once

removed, hazardous resin waste must then be disposed of in compliance with local, state,

and federal regulations.

The open process requires atmosphere control (i.e., a vacuum oven or chamber) to

prevent resin oxidation during curing and drying. Compared to conventional ovens, vacuum

ovens are much more expensive and limited in size, a comparison presented in Chapter 3.

Open processing also exposes the oven, or chamber, to resin and solvent which evaporates
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and collects on the interior during processing. The oven, or chamber, must be frequently

cleaned, and interior surfaces deteriorate over time.

1.4.2 Design Inefficiencies

Traditionally, mold design is a trial and error process informed by operator experience. No

computational tool exists to support design and, thus, each new TPS geometry requires

substantial design effort. Without a numerical tool, sizing and locating mold openings re-

lies on best practices and engineering intuition but is not simulated prior to fabrication.

Thus, non-optimal mold designs, which may yield poor material quality, can only be iden-

tified after fabrication and subsequent material characterization. Mold fabrication requires

substantial upfront investment, and modifications to a tool may be costly or even impossi-

ble. Additionally, because a single processing run takes several days from start to finish,

iterations incur a steep penalty on manufacturing time and cost.

Tile layout, which is coupled to manufacturing, also impacts processing. Tiles must

be manufacturable while meeting design and process restrictions. Again, without a com-

putational tool, these criteria are manually incorporated into heatshield design and then

translated to tooling and processing. A change in material composition (e.g., alternate sub-

strate dimensions) will necessitate a change to tile geometries and the subsequent mold

designs.

Finally, no framework exists for efficiently estimating conformal ablative TPS material

properties and their uncertainties. The current approach of experimentally quantifying ma-

terial uncertainties is rigorous, but, due to the time and cost involved in TPS processing

and testing, producing enough samples to obtain accurate statistical distributions is diffi-

cult, particularly during the conceptual phase of a flight project. Changes to material for-

mulation alter resulting properties and uncertainties requiring a whole new set of property

data.
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1.4.3 Applicability of LCM

LCM appears to be well-suited to TPS manufacturing — a closed process produces little

resin waste and numerical modeling enables mold and process design. Despite its potential,

however, LCM has had limited usage in TPS manufacturing to date. Applications have pri-

marily focused on using vacuum bagging to pack ablative resin into a reinforcing structure

as an alternative to hand packing/injection for fiber filler ablators. Vacuum drawn on the

bag applies compression to the layup, forcing resin into the cells of the reinforcement. This

approach is described in a patent for Boeing Lightweight Ablator [83] and a related patent

for the Boeing CST-100 [84]. A similar approach was developed for SRAM and Phen-

Carb [85]. RTM processing of a thick (>0.25 inch) fully dense TPS material, 3D-MAT,

was demonstrated in recent work [45, 23], the only known example employing LCM for a

fiber substrate ablator. However, no simulation was employed in mold design, which could

potentially impact material quality.

1.5 Study Overview and Objectives

In this work, a vacuum infusion process (VIP) was developed for conformal ablative TPS

materials which injects resin directly into a fiber substrate within a closed, evacuated mold.

Like state-of-the-art (SOTA) processing, VIP proceeds in three steps depicted in Figure

1.15: resin infusion (or mold filling), curing, and drying. Infusion is performed with the

enclosed substrate under vacuum. Curing and drying are then carried out with a secondary

lid to allow resin expansion. The process is described in more detail in Chapter 3.

VIP — a subset of LCM — addresses inefficiencies in the design and processing of

conformal ablators. First, VIP injects resin into the fibrous substrate within a closed mold

resulting in little to no waste and allowing use of a conventional, rather than vacuum, oven

for curing and drying. Demolding and clean up are simplified because the part does not

need to be extracted from surrounding excess, and there is less waste to dispose of. Second,
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Step 1: Infusion/Mold Filling

Resin Inlet

(Gate)

Vacuum

(Vent)

Step 2: Curing

Inert gas Volatiles/inert gas
Heat

Step 3: Drying

Inert gas Volatiles/inert gas
HeatPlugs

Figure 1.15: Vacuum infusion processing of conformal ablators.

Darcy’s Law enables simulation of the mold filling step, which can identify areas of poor

infusion and inform mold design. Design iteration on a computer enables high quality,

well-infused TPS without costly experimental trial and error.

VIP was demonstrated on a representative conformal TPS material that combines a low

density carbon felt with a dilute phenolic resin. VIP was first demonstrated on small, flat

coupons and then scaled up to large, curved tiles forming the acreage of a large heatshield.

Fabricated TPS materials were assessed through visual inspection and material characteri-

zation. Both global and local properties of the tiles were measured and analyzed to assess

variability.

A computational framework was developed combining a Darcy’s law simulation of

mold filling with optimal tile layout and material property estimation. The latter included

properties required for the mold filling simulation (substrate permeability and porosity, and

resin viscosity and vapor pressure) and those describing the resulting TPS material (vir-

gin density, resin mass fraction, and char yield). The framework forms the basis for a

conceptual design methodology allowing rapid evaluation of changes to constituent mate-

rials, process parameters, and TPS geometry and their impact on manufacturing and TPS

properties.

This study is the first to develop a LCM process for fabricating a conformal ablator

and pair it with a methodology and simulation tool to perform automated heatshield de-

sign and material characterization. It advances the state of the art of conformal ablator

manufacturing, design, and evaluation by integrating much of the design and fabrication
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process shown in Figure 1.9. The approaches developed here are relevant to a range of

conformal ablative materials, aeroshell geometries, and tile layouts. VIP is applicable not

only to conformals but could also be used to manufacture related low density rigid substrate

ablators such as PICA. The approach may be especially attractive for small, single piece

heatshields around 1.5 m in diameter. Such a design may be fabricated with a single mold

in VIP yielding significant reductions in resin waste. The mold filling simulation can also

be useful as a standalone tool to design molds for unusual or complex tile geometries, such

as those forming the shoulder of an entry vehicle.

1.6 Summary of Contributions

Advancements in this investigation include both experimental development of the VIP pro-

cess and the computational framework to design and fabricate a heatshield using that pro-

cess. Academic contributions to the state of the art are summarized here.

Formulation of A Constitutive Model of Fiber Substrate Ablators for Conceptual De-

sign

A filamentary analog model of a fibrous substrate was combined with known properties of

a resin to approximate a composite TPS material resulting in closed-form expressions for

virgin density, resin mass fraction, and char yield. While not a replacement for experimen-

tal characterization, the approach reduces experimental burden and accelerates evaluation

of alternative compositions when full experimental characterization is difficult or impracti-

cal such as during conceptual design. Uncertainty bounds formulated from the closed-form

expressions help to quantify TPS variability and the constituent properties that drive it.

Numerical uncertainties provide a useful sanity check on manufacturing to confirm that a

fabricated material is within accepted tolerances.

Development and Demonstration of a Vacuum Infusion Process for Conformal Abla-

tive TPS Materials
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A vacuum infusion process was developed for conformal ablative materials that improves

efficiency over the state-of-the-art method, reducing resin consumption and eliminating the

need for an atmosphere-controlled oven or chamber. Less excess resin reduces the bur-

den on processing technicians who clean tooling and discard the hazardous material. It

also decreases the required inventory of the resin and other additives saving storage space.

Switching to a conventional oven for processing significantly decreases equipment costs,

especially when scaling to a large heatshield, and the oven is not exposed to harsh sol-

vents which can affect longevity. Combined, these advancements make manufacturing of

conformal ablative TPS simpler and more accessible.

Development of a Methodology to Optimize a Conformal Ablative Heatshield De-

sign

A rigorous design methodology integrating material selection, tile layout, and processing

was developed. The methodology improves on largely manual, segregated approaches tai-

lored to a specific material and aeroshell geometry. A Darcy’s law mold filling simulation

was paired with an approach for tiling a heatshield geometry. Optimization of mold de-

signs ensures consistent, high quality parts without voids. Material property estimation

generalized the approach to a range of constituent materials and geometries enabling rapid

conceptual design of a conformal ablative heatshield. A designer is freed to evaluate other

aspects of heatshield design such as TPS material composition and its impact on processing

and properties.

1.7 Outline of Thesis

Contributions of the thesis are organized into the following chapters:

Chapter 2 presents the constitutive model for fiber substrate ablators. The model com-

bines properties of the underlying substrate and resin to estimate properties of the final

TPS material. Substrate properties are modeled using a filamentary analog approach which
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assumes smooth, cylindrical, uniform density fibers. Expressions for porosity, density, and

material shrinkage follow from this approach. Resin properties in the composite TPS ma-

terial are estimated from known properties of the pure resin. Then, substrate and resin

properties are combined by assuming resin occupies only the porous space within the sub-

strate resulting in closed-form equations describing properties of the composite material:

virgin density, resin mass fraction, and char yield. Two felt variants were processed into

several small C-PICA coupons for comparison to numerical models. Finally, bounds on

TPS properties were computed from known input parameter uncertainties and confirmed

by a Monte Carlo analysis. Results were then used to correlate input and output uncertain-

ties to determine primary drivers of material variability.

Chapter 3 describes the vacuum infusion process for conformal ablators and contrasts it

with the conventional process. Early development work, fabricating small 4 inch square,

flat coupons, is reviewed. Then, results of a scale up to larger, curved C-PICA tiles, approx-

imately 0.5 meters across, are presented. Aspects of design and processing are reviewed

from mold configuration to substrate preparation and finally VIP. Results of material char-

acterization indicated successful infusion and good material quality. Fabricated parts were

visually inspected and sampled at several locations across the part. Virgin density, resin

mass fraction, and char yield of both the bulk parts and the small coupons compare well to

predicted values from the constitutive model of Chapter 2.

Chapter 4 introduces the design methodology for a conformal ablative heatshield. The

complete methodology, encompassing both inputs and design tasks, is outlined followed by

a detailed discussion of the inputs. Inputs are differentiated into primary and intermediate

parameters. The latter are quantities that are typically unpublished or unavailable but are

nonetheless required for subsequent mold filling analysis and TPS property estimation.

Approaches for estimating these inputs are presented to speed early conceptual design.

The final section compares these estimates with experimentally obtained values for C-PICA
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constituent materials.

Chapter 5 completes the description of the design methodology. The beginning of the

chapter discusses each design task: tile layout, mold and process design, and TPS property

estimation. Iteration on tile layout yields a design that minimizes the total number of tiles

subject to manufacturing constraints. Subsequent tile geometries feed into the mold and

process design, which selects an optimal gate location and then generates relevant process

metrics. The final design task uses the constitutive model of Chapter 2 to estimate TPS

properties.

Chapter 6 demonstrates the integrated methodology on a 4.5-meter diameter, 70 degree

sphere-cone, C-PICA heatshield. Then, mold design is carried out independently for the

prescribed tile geometry of Chapter 3. Predicted mold flow is compared to the experimental

process, linking the computational methodology to experimental work.

Chapter 7 summarizes the thesis and its contributions. Potential extensions of this work

are suggested.
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CHAPTER 2

A CONSTITUTIVE MODEL OF FIBER SUBSTRATE ABLATORS FOR

CONCEPTUAL DESIGN

2.1 Introduction

Modeling TPS performance requires a database of properties describing material response

under aerothermodynamic heating. These parameters, outlined in Chapter 1, include both

thermomechanical and thermochemical properties. Due to material variability, uncertainty

in these properties must also be factored into a design. Traditional methods rely on ei-

ther a worst-case stack up of uncertainties or a RSS method that considers uncertainties in

the aerothermal environment and material response separately [49]. These approaches of-

ten rely on ad hoc judgments of underlying uncertainties resulting in non-optimal designs.

More rigorous, probabilistic uncertainty analyses have been developed more recently [50,

51, 52]. Carrying out a probabilistic analysis requires knowledge of parameter distribu-

tions. Monte Carlo simulation is then used to assess TPS material response uncertainty and

appropriately size the heatshield to yield high confidence of success.

The material model is typically accumulated through an experimental campaign which

tests many samples over many processing runs to obtain relevant statistical distributions.

Such a time-consuming approach may not be appropriate or feasible in all scenarios, e.g.,

when a heatshield is undergoing rapid iteration during conceptual design, or when eval-

uating alternative formulations of a TPS material. A recent study, mentioned in Chapter

1, explored alternate felt substrates for C-PICA [16]. Changing the substrate of a given

ablator requires a whole new set of property data to evaluate its performance. Full material

characterization would not even be carried out until much later in development after downs-

election to the final material(s). Changes to composition also impact resulting uncertain-
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ҧ𝑥𝑖 = 𝜌sub,𝑖, 𝜌resin,𝑖, …

Traditional Approach Constitutive Model Approach

Figure 2.1: Description of TPS material properties: traditional and constitutive model ap-
proaches.

ties. Variation in a single input can affect multiple outputs — e.g., starting substrate density

affects not only virgin density but also char yield, char density, thermal conductivity, and

other parameters. These uncertainties are difficult to quantify without a full-fledged experi-

mental campaign. Furthermore, capturing correlations between input and output properties

could advance the understanding of what drives material variability.

This chapter adopts a constitutive model of the TPS material based on properties of

the underlying substrate and resin. Rather than materials represented by distinct databases

of properties, they are represented by a common set of constituent properties (Figure 2.1).

Each TPS formulation is functionally dependent on these underlying properties. Composi-

tion changes can then be assessed by changing the properties of the constituents rather than

through exhaustive testing of each unique formulation. This approach allows material prop-

erty estimation when full experimental characterization is difficult or impractical. While

it is not a replacement for accurate experimental characterization, the method reduces re-

liance on experiment in early design and materials development. For example, data from a

known resin solution can be applied to another fiber substrate without further testing.

This chapter presents such a constitutive model of fiber substrate-based ablators. Sub-
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strates are modeled using a filamentary analog method where fibers are assumed to be

smooth, nonporous cylinders of uniform density distributed randomly through the mate-

rial. The resin is described by its cured density, cure shrinkage, and char yield. These

simplifications yield closed-form expressions describing the substrate, the resin, and the

composite TPS material. Estimated TPS properties include virgin density, resin mass frac-

tion, and char yield though these could potentially be extended to other relevant modeling

parameters. Properties are shown to be functionally dependent on the underlying substrate

density, resin density in the composite, and resin char yield.

Small samples of two C-PICA variants, possessing the same resin composition but

different carbon felt substrates, were fabricated for comparison to numerical models. Virgin

density and resin mass fraction were measured for each sample. Then, the materials were

charred in a furnace at 1200 ◦C to obtain yields. In most cases, experimental results align

well with numerical models though certain discrepancies are identified. Finally, bounds

on TPS properties were computed from known input parameter uncertainties. Property

distributions generated using Monte Carlo confirmed computed bounds. Results were then

used to correlate input and output uncertainties to determine primary drivers of material

variability.

The framework presented here is well suited for conceptual design and for rapidly eval-

uating the impact of changes to TPS composition. Development of new TPS materials

could also benefit from this approach by allowing designers to identify the constituent

properties driving variability. These properties could then be targeted for modification or

manufacturing improvements to reduce variations. Numerical uncertainties can provide a

useful sanity check on manufacturing to confirm that a fabricated material is within ac-

cepted tolerances. Out-of-tolerance properties may help identify a manufacturing problem

or material defect. Finally, though not carried out here, statistical property distributions

could be input into a larger probabilistic material response analysis to carry out TPS de-

sign.
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2.2 Methodology and Results

2.2.1 Material Formulation and Processing

Present testing was carried out on two low density carbon felts manufactured from a rayon

precursor. Felt 1 ranged in density from 0.07 g/cc to 0.10 g/cc with thicknesses ranging

from 0.80 in to 0.96 in (2.0 cm to 2.4 cm). Felt 2 ranged in density from 0.10 g/cc to

0.12 g/cc with thicknesses between approximately 0.70 in and 0.95 in (1.9 cm and 2.4 cm).

Both felt materials were infiltrated with C-PICA resin, a proprietary phenolic resin solution,

using the conventional open liquid impregnation technique described in Chapter 1. Resin

loading, as measured by the difference between virgin density and substrate density, is

between 0.16 g/cc and 0.18 g/cc.

Felt cores were cut from larger billets using a 1 in (2.54 cm) cylindrical punch. Sixteen

samples were taken from a single billet of Felt 1 and 22 samples were taken from a single

billet of Felt 2 — 38 coupons in total. These cores were infused with resin in an open con-

tainer at room temperature. Cores were placed between two plates to keep them submerged

in the resin solution during processing. Thickness variation resulted in some samples being

compressed slightly pre-process (by a few percent of their initial thickness) while others

remained uncompressed, and the results below are differentiated accordingly. They were

subsequently cured and dried at high temperature to produce the composite TPS material.

Resulting TPS cores were then charred at 1200◦C under inert atmosphere in a tube furnace

to obtain yields. Processing steps, from initial dry felt to virgin TPS to charred TPS, are

depicted in Figure 2.2. Mass and dimensions were recorded for each sample at each step

of the experiment.

Relevant resin properties were drawn from eleven approximately 0.45” diameter sam-

ples of pure resin. These samples were obtained from holes in the tooling (expansion ports)

during the processing of the four C-PICA tiles described in Chapter 3. Each tile produced

several resin plugs, but only a few of these were intact after removal. In total, four samples
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Figure 2.2: Material at each step in experimental processing (left to right): dry felt prior to
processing, virgin TPS, and charred TPS.

were taken from Tile 2, three from Tile 3, and four from Tile 4. Tile 1 was ignored due to

a deficiency in the experimental setup which was corrected in later runs.

Measured properties included cured density, ρR, one-dimensional shrinkage, εR, and

char yield, YR. Shrinkage, εR, is the non-dimensional, fractional length change that occurs

as the resin polymerizes. Mean values and observed ranges are presented in Table 2.1.

Table 2.1: Properties of the cured resin.
Property Symbol Mean Range Units

Cured density ρR 0.30 0.28–0.33 g/cc

Fractional length shrinkage εR 0.10 0.05–0.13 m/m

Char yield YR 52 48–54 %

2.2.2 Properties of the Fiber Substrate before Processing

Methodology

Fibrous substrates are modeled as networks of smooth, nonporous cylindrical fibers with

uniform density. Such an approach, the filamentary analog method, has been applied else-

where to estimate porosity, permeability, and specific surface area of low density carbon

felts similar to the present work [86, 87]. Employing the filamentary analog model sim-

plifies preform properties to functions of density. Porosity, φ, the fraction of empty space

in the substrate, is estimated as a ratio of apparent substrate density, ρsub, to fiber density,
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ρfiber,

φ = 1− ρsub

ρfiber

(2.1)

Note that ρsub is an average of the fiber mass, mfiber, over the bulk volume and is strictly

less than ρfiber. That is,

ρsub =
mfiber

Vsub

(2.2)

where Vsub, the bulk volume, includes the volume of the fibers, Vfiber, and volume of open,

porous space, Vpore:

Vsub = Vfiber + Vpore (2.3)

Porosity and substrate density are inversely proportional, φ decreases as ρsub increases.

Fiber density, ρfiber, depends on precursor material and processing. Fiber density for Felt

1 was computed as 1.395 ± 0.055 g/cc in Appendix A.1, a value that is consistent with

other data for rayon-based carbon fibers. Pierson suggests a historical range from 1.40

g/cc to 1.80 g/cc though the upper end encompasses high modulus fibers that are no longer

manufactured [88]. Morgan lists current commercially available fibers from 1.35 g/cc to

1.44 g/cc [89].

Areal density, ρareal
sub , is assumed to be constant here because it is controlled during

manufacturing of the felt materials under investigation. Figure 2.3, which shows areal

density plotted against the initial, uncompressed thickness of each of the cores, confirms

this assumption. Means for each felt (0.194 g/cm2 for Felt 1 and 0.209 g/cm2 for Felt 2)

vary between the two materials as can be expected from different manufacturing processes.

However, for a given felt, areal density shows little to no correlation with thickness. Stan-

dard deviation is also higher for Felt 2 (0.007 g/cm2) compared to Felt 1 (0.003 g/cm3).

Note that volumetric substrate density, and thus porosity, is dependent on compaction.

Flexible substrates are typically processed to near net shape in a mold. Resulting compres-

sion increases substrate density and decreases porosity. Assuming constant areal density
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Figure 2.3: Substrate areal density plotted against thickness.

reduces substrate properties to a function of the material thickness:

ρsub =
ρareal

sub

tsub

(2.4)

The relevant porosity is that based on the pre-process, compressed thickness, tpre. In a

mold, this is equivalent to the distance between the two sides of the cavity. The pre-process

substrate density is then,

ρpre
sub =

ρareal
sub

tpre
sub

(2.5)

with pre-process porosity

φpre = 1− ρareal
sub

ρfiber

1

tpre
sub

(2.6)

Results

Porosity was measured on 19 half-inch (1.27 cm) diameter cylindrical felt samples, differ-

ent from the samples described above, described in Appendix A.1. Fourteen Felt 1 samples

and five Felt 2 samples were tested taken from single billets of each respective material.

Porosity was calculated using Archimedes principle — comparing dry mass and saturated

43



mass after infiltrating with water using a technique described in Appendix A.1. Resulting

porosities are plotted against substrate density (Figure 2.4). The porosity model (Equation

2.1) shows good agreement with experimental data. The bounds reflect the range of fiber

densities for Felt 1, 1.395 ± 0.055 g/cc. Felt 1 exhibits high variability around the nominal

value whereas Felt 2 has little variation but is biased toward the upper bound. This may

indicate a higher nominal fiber density for Felt 2, despite the same precursor material.
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Figure 2.4: Substrate porosity as a function of density.

2.2.3 Properties of the Fiber Substrate after Processing

Methodology

In addition to mechanical compression, flexible substrates can undergo dimensional changes

during processing due to shrinkage of the resin infiltrant. The carbon felts here provide little

resistance to contraction through the thickness due to a lack of fiber connectivity in that di-

rection. Resulting shrinkage is typically between 5% and 10% of the pre-process thickness,

but may be lower with higher levels of compression. In plane shrinkage also occurs but to

a lesser degree, typically from zero to 2% percent [90]. Due to this directional dependence,

shrinkage is differentiated into through thickness and in plane components with fractional

changes denoted εTT and εIP, respectively. Note that these are quantities of the composite
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material and are thus a function of the combined substrate-resin system. In contrast, the

one-dimensional shrinkage of the pure resin (in the absence of a substrate) is denoted εR

and is assumed equal in all directions. Thus, the volumetric shrinkage of the pure resin,

αR, is

1− αR = [1− εR]3 (2.7)

Assume momentarily that shrinkage occurs in one dimension alone. Then, the post-process

volume of the composite material is related to the pre-process volume by

V post
sub = V pre

sub [1− ε] (2.8)

where ε is the composite shrinkage in the chosen direction. Similarly, for the pure resin

undergoing shrinkage in one dimension,

V post
resin = V pre

resin [1− εR] (2.9)

where superscripts denote pre- and post-process quantities. Now, in the composite material,

the volume of resin is taken to be equivalent to the pore space in the material, i.e., resin

occupies the empty volume between fibers. Setting Vresin = Vpore = φVsub,

φpostV post
sub = φpreV pre

sub [1− εR] (2.10)

This substitution effectively reduces the effect of resin shrinkage in the composite by the

porosity. Combining this expression with Equation 2.8 yields

φpost [1− ε] = φpre [1− εR] (2.11)
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Now, Equation 2.1 can be written in terms of mass for both the pre- and post-process

substrate,

φpre = 1− msub

V pre
sub ρfiber

(2.12)

φpost = 1− msub

V post
sub ρfiber

(2.13)

Note that substrate mass does not change during processing. Combining these expressions

with Equation 2.8 yields a relationship between pre- and post-process porosity based on

composite shrinkage alone,

φpost =
φpre − ε

1− ε
(2.14)

Finally, combining Equations 2.11 and 2.14 and simplifying gives an expression for the

one-dimensional composite shrinkage as a function of resin shrinkage assuming the sub-

strate does not resist the volume change,

ε = φpreεR (2.15)

Intuitively, composite shrinkage scales with initial substrate porosity. Absent a substrate

(φpre = 1), the material is purely resin with a shrinkage equivalent to the resin shrinkage.

As porosity decreases (φpre → 0), there is less porous volume, less infused resin, and less

shrinkage. A nonporous substrate (φpre = 0) possesses no resin and thus does not shrink.

Equation 2.15 can be used to bound results for these composite materials. The substrate

may be either incompliant or compliant in each direction. That is, if incompliant, the

substrate resists dimensional change and ε = 0. If compliant, the substrate provides no

resistance to such changes and ε follows from the equation. Shrinkage is differentiated into

an in plane component, εIP, and a through thickness component, εTT. Three limiting cases

are derived from this approach: (1) a fully incompliant substrate, (2) a partially compliant

substrate, and (3) a fully compliant substrate (Table 2.2). The first case represents a rigid
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fiber substrate (e.g., FiberForm) that does not shrink at all during processing (εIP = εTT =

0). The second case represents a material that shrinks through the thickness (εTT = φpreεR)

but not in plane (εIP = 0) approximating the felt materials of this work. The last case is

a theoretical upper bound on shrinkage where shrinkage occurs equally in all directions

(εIP = εTT = φpreεR). Post-process substrate density, the density of the substrate alone

ignoring the resin, can then be computed as

ρpost
sub =

ρpre
sub

1− α
(2.16)

with corresponding porosity

φpost = 1− 1

1− α
ρpre

sub

ρfiber

(2.17)

where 1− α is the fractional volumetric change of the composite appearing in Table 2.2.

Experimental results should fall somewhere between the bounds provided by the fully

incompliant and fully compliant cases, and near to that predicted by the second case, par-

tially compliant, which approximates the through thickness compliance of these materials.

However, it is important to note that these felts are not perfectly compliant through the

thickness, resisting compression/shrinkage to some degree, which is not captured by the

model.

Table 2.2: Limiting cases of volume change during processing.
Case Description εTT εIP 1− α

1 Fully Incompliant 0 0 1

2 Partially Compliant φpreεR 0 1− φpreεR

3 Fully Compliant φpreεR φpreεR [1− φpreεR]3
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Results

Pre-process substrate density is plotted against post-process density in Figure 2.5. Felt sam-

ples that were compressed during processing are denoted by filled markers while uncom-

pressed ones are denoted by open markers. Note that here and elsewhere resin shrinkage
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Figure 2.5: Change in substrate density during processing.

and fiber density are assumed to be nominal (εR = 0.10 and ρfiber = 1.395 g/cc, respec-

tively). Therefore, variation around the modeled lines is expected. Experimental results

are near to expected bounds with most samples falling between Case 1 and Case 2. Be-

cause the fiber substrate provides some resistance through the thickness, shrinkage tends to

be somewhat less than the theoretical value predicted by Case 2. Pre-process compression

of the substrate may further suppress shrinkage (as deflection of the material increases, its

stiffness increases). Compressed samples of Felt 2 shrunk less than the uncompressed sam-

ples. However, the relationship is less clear for Felt 1 samples. Note that one sample falls

below Case 1, an apparent decrease in density. In this sample, negligible through thick-

ness shrinkage (less than 1%, likely due to relatively high compression of that sample) was

offset by a slight increase in the diameter. Note that in plane expansion was observed in

another C-PICA investigation related to this work [90]. In that work, a 4-inch square sam-
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ple fabricated using the SOTA method shrunk during curing but expanded during drying,

yielding a 2% increase in area post-processing.

2.2.4 Properties of the Resin

Methodology

The resin undergoes both mass and volume change during processing. Mass loss occurs

due to evaporation of solvent and/or reaction products. Volume change occurs as the so-

lution expands due to heating and contracts due to crosslinking. Shrinkage is coupled to

substrate compliance and mold boundary conditions. That is, any resistance to shrinkage

reduces volume contraction leading to lower resin density. An incompliant substrate resists

shrinkage as does bonding to a mold wall. Post-process resin density, ρpost
resin, is a globally-

averaged quantity such that

mresin = ρpost
resinφ

postV post
sub (2.18)

where mresin is the total resin mass in the TPS after processing. Note that ρpost
resin is averaged

over the porous, not bulk, volume and is not a local resin density, which is somewhat higher

due to clumping around the fibers.

With known properties of the pure resin, its cured density, ρR, and volumetric shrinkage,

αR, the density of the thermally expanded resin prior to shrinkage can be computed,

ρ′R = [1− αR] ρR (2.19)

This quantity is not the physical density of the resin solution itself, which contains solvents

that are removed in processing, but rather a theoretical quantity representing the density

of solids that will remain in the processed material. Assuming the mass of solids present
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within the substrate does not change as the material shrinks, this density is equivalent to

ρ′R =
mresin

φpreV pre
sub

(2.20)

This approach assumes that the resin binds to the fibers instantaneously at the curing tem-

perature, and then no further movement of solids into or out of the substrate occurs. In re-

ality, curing occurs gradually and solvent evaporation carries away some resin throughout

the process. Combining Equations 2.18–2.20, leads to an expression for the post-process

resin density in the composite material,

ρpost
resin = [1− αR]

φpre

φpost

V pre
sub

V post
sub

ρR (2.21)

Substituting for volumetric shrinkage yields

ρpost
resin =

1− αR

1− α
φpre

φpost
ρR (2.22)

Applying the limiting cases in Table 2.2 predicts constant ρpost
resin for Cases 1 and 2, respec-

tively, [1− εR]3 ρR and [1− εR]2 ρR. Using properties from Table 2.1, predicted densities

are 0.22 g/cc and 0.24 g/cc, respectively.

Results

Results are compared to predicted values in Figure 2.6. Note that actual resin density does

appear constant across substrate density as predicted with no dependence on pre-process

compression. However, its value falls somewhat below the estimated values. Mean resin

density across the samples is 0.187 g/cc, which is 15% below the Case 1 model and 22%

below the Case 2 model. The discrepancy could be due to additional resin loss in the TPS

during curing. Recall that ρR is drawn from pure resin samples. While the curing profiles

were identical, it is possible that the pure resin samples solidified earlier in the cycle than
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the TPS samples. The individual resin plugs were in direct contact with the aluminum tool-

ing and were much smaller in volume than the resin container used to process these TPS

samples. Thus, the TPS materials may have heated more slowly and experienced evapo-

ration for a longer period of time, losing a larger amount of solids through the process.

Practically then, this method provides an upper bound on resin density, one where little or

no resin evaporation occurs. Previous results for the same material processed in a small,

closed mold, which presumably better limited evaporation, agree more closely with predic-

tion. In those samples, ρpost
resin was computed as 0.233 g/cc [90], which falls between values

predicted by Cases 1 and 2.
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Figure 2.6: Post-process resin density plotted against pre-process substrate density.

2.2.5 Properties of the Composite Ablative Material

Methodology

Selected properties of the final TPS material — composite, or virgin, density, ρcomp; resin

mass fraction, wresin; and char yield, Ycomp — can be computed from post-process substrate

and resin densities, fiber density, and resin char yield. Assuming no substrate mass loss,

51



char mass is

mchar = msub + YRmresin (2.23)

Equations 2.18 and 2.23 reduce TPS properties to functions of density, which are summa-

rized in Table 2.3. Note that post-process porosity, which appears in each model equation,

is listed for clarity. These quantities can be related back to pre-process substrate density and

the known resin properties using Equations 2.7, 2.16, 2.17, and 2.22 and material shrinkage

from Table 2.2.

Table 2.3: Expressions for TPS property estimation.
Property Symbol Expression Model

Post-process porosity φpost
V post

pore

V post
sub

1− ρpost
sub

ρfiber

Virgin density ρcomp
msub +mresin

V post
sub

ρpost
sub + ρpost

resinφ
post

Resin mass fraction wresin
mresin

msub +mresin

ρpost
resinφ

post

ρcomp

Composite char yield Ycomp
mchar

msub +mresin

ρpost
sub + YRρ

post
resinφ

post

ρcomp

Results

Virgin density is plotted against pre-process substrate density in Figure 2.7. Note that

nominal resin density, ρpost
resin, was assumed equal to the mean of all present samples, rather

than that estimated from Equation 2.22, to better reflect actual results. Experimental data

agrees well with that predicted by the model equation. Results largely fall near to Case 2 as

expected, though the density of a few coupons was lower than anticipated (falling below the

line for Case 1). These samples were compressed, likely reducing shrinkage and yielding

results more in line with the rigid substrate. Virgin density increases with substrate density,

though not one-to-one. The increase in substrate density is partially offset by reduced

pore volume and, thus, less infused resin. Resin mass fraction also shows good agreement
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with prediction with most results again between Cases 1 and 2, though a few compressed

samples more closely align with Case 1 (Figure 2.8). Here, the relationship between mass

fraction and substrate density is not linear. Resin mass fraction decreases with substrate

density due to both increased substrate mass and reduced porosity.
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Figure 2.7: Virgin density as a function of pre-process substrate density.

Char yields vary more significantly from predicted values (Figure 2.9). An analysis

of underlying resin char yield suggests a difference between the two substrate materials.

Using Equation 2.23, YR was computed from the experimental data as YR = 55.8 ± 3.8%

for Felt 1 and 49.2 ± 3.0% for Felt 2. Ranges reflect the 95% confidence intervals (CIs).

The discrepancy may stem from processing the two felts in different containers. While both

were cured at the same time in the same oven, the temperature profiles would have varied

slightly between the containers due to oven non-uniformity.

Applying the mean YR to its respective material yields better fits (Figure 2.10). Model

predictions are those of Case 2 and bounds reflect the 95% CIs on YR. Large variation in

resin char yield produces corresponding spread in the char yield of the composite itself.
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Figure 2.8: Resin mass fraction as a function of pre-process substrate density.
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Figure 2.9: Composite char yield as a function of pre-process substrate density.
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Figure 2.10: Composite char yield with YR computed separately for each felt.

2.3 Uncertainty Analysis

2.3.1 Methodology

Bounds on final TPS material properties can be computed from an analysis of input uncer-

tainties. For this work, a known substrate with nominal thickness, tsub, areal density, ρareal
sub ,

and fiber density, ρfiber, was assumed. Known resin properties include one-dimensional

cure shrinkage, εR, post-process density in the composite, ρpost
resin, and char yield, YR. All

input variables, Xi, are assumed to fall within a range [Xi −∆Xi, Xi + ∆Xi]. For exam-

ple, substrate thickness ranges from [tsub − ∆tsub, tsub + ∆tsub] where ∆tsub denotes the

one-sided, symmetric deviation. Bounding values are indicated as the upper (+) or lower

(-) bound. Flexible substrates are considered here, though a similar approach could be used

for rigid materials.

The substrate is compressed to a uniform, constant starting thickness equal to the min-

imum substrate thickness,

tpre
sub = tsub −∆tsub (2.24)
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to avoid gaps with the tool. From Equation 2.5,

(ρpre
sub)+ =

(
ρareal

sub

)+

tpre
(2.25)

(ρpre
sub)− =

(
ρareal

sub

)−
tpre

(2.26)

Volumetric shrinkage is allowed to vary between zero (Case 1) and φpreεR (Case 2). This

range approximately captures uncertainty observed in the experimental results. Shrinkage

is numerically represented as

α = csφ
preεR, cs = [0, 1] (2.27)

Nominal shrinkage is set to the middle of this range, cs = 0.5. Bounds on final TPS proper-

ties are obtained by first rewriting the model equations in Table 2.3 in terms of independent

parameters to remove cross-correlation. Deviations are then applied to each independent

property in order to maximize (or minimize) the target property. Expressions for virgin

density and resin mass fraction are rewritten by substituting Eqs. 2.16, 2.17, and 2.27 into

the model equations and collecting terms:

ρcomp =

[
1 +

(
ρpre

sub

ρfiber

− 1

)
csεR

]−1 [
ρpre

sub + ρresin

(
1− ρpre

sub

ρfiber

)
(1− csεR)

]
(2.28)

wresin =

{[
ρpost

resin

(
1− cseR

ρpre
sub

+
cseR − 1

ρfiber

)]−1

+ 1

}−1

(2.29)

Noting that ρpost
resinφ

post = wresinρcomp and ρpost
sub = (1− wresin) ρcomp, composite char yield

can be rewritten as a function of resin mass fraction and resin char yield,

Ycomp = (YR − 1)wresin + 1 (2.30)
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Applying appropriate deviations to the independent parameters to maximize (or minimize)

these properties yields the set of expressions for nominal and bounding values in Table 2.4.

Table 2.4: TPS properties: nominal and bounding values.
Property
/ Bound

Expression

ρcomp

[
1 +

(
ρpre

sub

ρfiber

− 1

)
0.5εR

]−1 [
ρpre

sub + ρresin

(
1− ρpre

sub

ρfiber

)
(1− 0.5εR)

]
ρ+

comp

[
1 +

(
(ρpre

sub)+

ρ+
fiber

− 1

)
εR

]−1 [
(ρpre

sub)+ + ρ+
resin

(
1− (ρpre

sub)+

ρ+
fiber

)
(1− εR)

]
ρ−comp

[
(ρpre

sub)− + ρ−resin

(
1− (ρpre

sub)−

ρ−fiber

)]

wresin

{[
ρpost

resin

(
1− 0.5εR
ρpre

sub

+
0.5εR − 1

ρfiber

)]−1

+ 1

}−1

w+
resin

{[(
ρpost

resin

)+
(

1

(ρpre
sub)−

− 1

ρ+
fiber

)]−1

+ 1

}−1

w−resin

{[(
ρpost

resin

)−( 1− eR

(ρpre
sub)+ +

eR − 1

ρ−fiber

)]−1

+ 1

}−1

Ycomp (YR − 1)wresin + 1

Y +
comp

(
Y +

R − 1
)
w−resin + 1

Y −comp

(
Y −R − 1

)
w+

resin + 1

2.3.2 Results

Statistical Distributions

Results were generated for the C-PICA formulation based on Felt 1. Resin shrinkage and

char yield were taken from Table 2.1. Additional input values and uncertainties are listed in

Table 2.5. Substrate thickness was obtained from tolerances listed in the material datasheet

for Felt 1. Areal density and post-process resin density were both drawn from the above

experimental results. Areal density reflects the observed bounds of Felt 1 (Figure 2.3).

Post-process resin density was derived from the bounds of all samples (Figure 2.6). Nomi-
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nal values were set to the midpoint of their respective ranges. As above, fiber density was

assumed to be in the range 1.395 ± 0.055 g/cc.

Table 2.5: Inputs to uncertainty application, nominal values and one-sided deviations
Category Property Nominal One-sided deviation Units

Substrate tsub 0.88 (2.235) 0.08 (0.203) in (cm)

ρareal
sub 0.194 0.006 g/cm2

ρfiber 1.395 0.055 g/cc

Resin ρpost
resin 0.187 0.007 g/cc

Bounds were computed from the expressions in Table 2.4 using the parameter values

in Table 2.5. Property distributions were generated using a Monte Carlo simulation with

10 million points. Input variables were randomly selected from uniform distributions. His-

tograms of the output distributions are shown in Figures 2.11–2.13. Nominal values are

denoted by the solid vertical line. Bounds indicate both the maximum extents computed

from Table 2.4 and the range containing 95% of the data. Virgin density (Figure 2.11)

and resin mass fraction (Figure 2.12) are close to normally distributed, albeit with flattened

centers and truncated tails. Virgin density ranges from 0.259 g/cc to 0.287 g/cc with 95%

of the data falling between 0.264 g/cc and 0.282 g/cc. Resin mass fraction ranges from

0.603 to 0.661 with 95% of the data in the range 0.614–0.652.

Composite char yields have a larger variance (Figure 2.13). Yields from 68%–70%

are roughly equally probable due to the large uncertainty in resin char yield. This spread

may explain the large variance observed in experimental char yields. Char yields range

from 65.6% to 72.3% at the bounds while 95% of the data fall in the range 66.8%–71.1%.

Nominal values and ranges for all properties are summarized in Table 2.6.

Table 2.6: Uncertainty results for C-PICA fabricated from Felt 1
Property Units Nominal Full Range 95% of Data

ρcomp g/cc 0.273 [0.259, 0.287] [0.264, 0.282]

wresin — 0.633 [0.603, 0.661] [0.614, 0.652]

Ycomp — 0.690 [0.656, 0.723] [0.668, 0.711]
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Figure 2.11: Distribution of virgin density with bounds.
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Figure 2.12: Distribution of resin mass fraction with bounds.
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Figure 2.13: Distribution of char yield with bounds.

Linear Correlations

Linear correlations between individual input uncertainties and the output TPS properties

were computed from Monte Carlo results using a linear regression analysis [51]. For the

ith input, Xi, and jth output, Zj , the correlation coefficient is calculated over k points,

ri,j =

∑
k

(
Xi,k − X̄i

) (
Zj,k − Z̄j

)[∑
k

(
Xi,k − X̄i

)2∑
k

(
Zj,k − Z̄j

)2
]1/2

(2.31)

where X̄i and Z̄j are the respective means of input i and output j. Computed coefficients

are shown in Table 2.7. Output variables appear in the leftmost column with correlations

Table 2.7: Correlation coefficients relating input and output uncertainties
ρfiber ρareal

sub ρpost
resin α YR

ρcomp 0.066 0.33 0.79 0.52 0.00041

wresin 0.04 -0.46 0.52 -0.72 0.00015

Ycomp -0.016 0.18 -0.21 0.29 0.92

appearing across the corresponding row. Resin char yield has almost no effect on the vari-

ability of ρcomp and wresin, a logical result given that these properties are not functionally
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related. Fiber density does not contribute significantly to variability in any of the output

properties. Resin density is the primary driver in virgin density variability with secondary

contributions from shrinkage and substrate areal density. Resin mass fraction is negatively

correlated with shrinkage and areal density with α having the largest relative contribution.

Unsurprisingly, variability in Ycomp is strongly correlated to variability in YR with smaller

contributions from the other inputs.

2.4 Summary

In this chapter, a methodology was presented for estimating properties of a fiber substrate

ablator from its constituents. This approach is well suited for conceptual design of thermal

protection systems. The numerical approach presented herein improves on the traditional

method, which relies on significant experimental characterization, by representing TPS

materials through a limited set of constituent properties. This approach does not eliminate

the need for experimental characterization. However, it does reduce experimental burden

in the early stages of design allowing rapid iteration on ablator composition. The approach

can be used to estimate both nominal properties and their uncertainties, which can aid

thermal modeling and probabilistic heatshield design.

Substrate properties were estimated using a filamentary analog model of the material.

This model, combined with resin parameters, allowed closed-form expression of composite

TPS properties. Process shrinkage was estimated for three substrates of varying compli-

ance. A model was then presented for estimating the resin density in the composite ma-

terial from the properties of the pure resin and known shrinkage. Finally, virgin density,

resin mass fraction, and char yield were computed from post-process substrate density,

fiber density, resin density, and resin char yield.

Thirty eight one-inch cylindrical samples of a conformal carbon felt-phenolic TPS ma-

terial were processed for comparison to numerical predictions. Two different fiber sub-

strates, spanning densities from 0.08–0.12 g/cc, were used. Mass and dimensions of the
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pre-process substrate and the post-process TPS samples were measured to obtain substrate

density, resin density, virgin density, and resin mass fraction. These samples were then

charred in a furnace to obtain char yields. Experimental results generally showed good

agreement with prediction. Most data fell between predictions for the idealized incom-

pliant (Case 1) and partially compliant (Case 2) substrates — a result of some through

thickness resistance to dimensional change. Pre-process compression appeared to increase

resistance to shrinkage, skewing results toward Case 1 in a few samples. Post-process resin

density deviated from that predicted by the model due to resin evaporation during curing.

Nonetheless, resin density was constant across substrate density as expected. Char yield

showed a large degree of spread around the predicted values due to apparent variability in

resin char yield. The material based on Felt 1 exhibited a slightly higher resin char yield

than that based on Felt 2. Considering each population separately provides better agree-

ment with the model equation. Differences in temperature profile may have contributed to

this discrepancy, and further analyses to that end are suggested in Chapter 7.

Analysis of the model equations yielded bounds on the TPS properties which are useful

for understanding material variability. Monte Carlo simulation confirmed the validity of

these bounds. A linear regression analysis was then used to estimate the contributions of

input variability to that of the output properties. Variability in virgin density was driven

primarily by variability in resin density with additional contributions from substrate den-

sity and material shrinkage. Resin mass fraction was driven by material shrinkage with

secondary contributions from resin and areal densities. Uncertainty in the composite char

yield was strongly correlated to variability in resin char yield with lesser effects from the

other inputs.

The results of this chapter are foundational to both the experimental work of Chapter

3 and the computational methodology of Chapters 4–6. TPS fabricated in the study of

Chapter 3 are validated against predicted properties and uncertainties presented here. These

models are then used to estimate TPS properties in Chapter 5, the final design task of the
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methodology, allowing evaluation of the final heatshield material.
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CHAPTER 3

VACUUM INFUSION PROCESSING OF A LOW DENSITY CONFORMAL

ABLATOR

3.1 Introduction

This chapter describes a new vacuum infusion process (VIP) for conformal ablators that

improves efficiency over the SOTA process, reducing resin consumption and waste, equip-

ment cost, and processing time. The closed process scales efficiently because it does not

require an evacuated oven or chamber for processing, and purging and backfilling are done

within the mold cavity.

The first section outlines the SOTA and discusses challenges implementing LCM for

conformal ablators. VIP itself is described, including how it addresses these challenges,

followed by an analysis of its advantages and limitations. The next section discusses the

experimental methodology in this investigation, briefly outlining preliminary development

processing small, flat coupons of C-PICA using a partial implementation of VIP. Then,

the remainder of the chapter discusses a full demonstration of VIP scaled up to larger,

curved tiles approximately 0.5 meters across. Vent pressure, curing conditions, and drying

configuration were varied during the course of the current investigation. Resulting TPS

materials were characterized through visual inspection, dimensional analysis, and property

evaluation. The fabricated tiles were well-infused in depth with voidage limited to the

external surfaces. Material properties generally aligned well with predictions from the

material model of Chapter 2 though differences in post-process resin density, stemming

from resin evaporation during curing, appeared to cause some variation. Accounting for

this difference yielded similar variation across all tiles.

The process demonstrated here was developed for conformal ablators but could be ex-
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tended to other TPS materials as well. VIP can be applied to materials possessing a similar

substrate density and resin viscosity, such as PICA and other low density rigid substrate

ablators, with little modification. Higher density substrates, which are less permeable and

pose greater resistance to resin flow, may benefit from pressurizing the resin delivery above

atmospheric pressure, which was the limit here. Less dilute resins, with correspondingly

higher viscosity, could be preheated to similarly assist flow.

3.2 Motivation

Conventional conformal ablator processing, described in Section 1.2.2, relies on a modified

liquid impregnation technique where a matched mold containing a fiber substrate is slowly

infiltrated under vacuum in a large, open container. The process is slow (up to several hours

for large parts) and inefficient (producing significant excess resin waste). Additionally,

certain resin systems, like phenolic, require a vacuum oven or chamber to provide inert

atmosphere.

Direct injection of resin into a closed mold — as in a LCM process — appears to be

a solution to these shortcomings. However, unlike typical structural composites which are

compacted during processing to yield high fiber fraction and low porosity, conformals are

lightweight and porous by design. Substrates are lightly compressed during processing

(yielding only ∼10% fiber fraction by volume), and resins are substantially diluted to con-

trol loading and allow infusion at lower pressures. While conformal ablators are porous on

a microscopic scale, larger macroscopic voids must be prevented. Large regions without

resin offer little thermal protection. No pyrolysis occurs without resin, and no reinforcing

carbonaceous char is formed. Thus, voids reduce energy absorption and may compromise

the structural integrity of the TPS. Finally, most ablative resins oxidize in air, requiring

inert atmosphere during processing.

Combined, these factors pose unique challenges for LCM of a conformal ablator:

1. Air removal must be achieved without compaction, which compresses and shrinks
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entrapped air bubbles in a typical LCM process. Vacuum infusion typically addresses

this problem by fully evacuating the cavity prior to mold filling, and a cavity pres-

sure of 1 torr is suggested to ensure low voidage in VIP [61]. However, such a low

pressure could easily fall below the vapor pressure of these diluted resins and cause

boiling along the flow front leading to bubble entrapment and unpredictable flow.

2. Resin expansion and evaporation during curing and drying must be accommodated

while also facilitating removal of evaporated solvent. Lengthy heating cycles more

or less require that these occur without manual intervention.

3. The interior of the mold must provide inert atmosphere during curing and drying to

avoid resin oxidation.

These challenges were addressed by the VIP developed in this investigation, which is de-

scribed next.

3.3 Vacuum Infusion Processing

3.3.1 Overview of the Process

The VIP developed in this investigation was designed to: (1) constrain the part to near

net shape with minimal compaction of the fiber substrate, (2) facilitate air removal while

maintaining vent pressure above the resin vapor pressure, and (3) allow resin expansion

and solvent evaporation during heat treatment within a closed, inert atmosphere. Like the

SOTA process, VIP proceeds in three steps: resin infusion (also called mold filling), curing,

and drying. Unlike the SOTA process, VIP is carried out within a closed mold.

Figure 3.1, which was originally presented as Figure 1.15 in Chapter 1, depicts each

of the processing steps. The substrate is first draped and enclosed within a double-sided

rigid mold with a single gate and a single vent. In Step 1, vacuum is applied at the vent

to evacuate internal air. Vent pressure is maintained above the resin vapor pressure to

prevent boiling. Resin, driven by atmospheric pressure, enters the substrate at the gate.
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Step 1: Infusion/Mold Filling

Resin Inlet

(Gate)

Vacuum

(Vent)

Step 2: Curing

Inert gas Volatiles/inert gas
Heat

Step 3: Drying

Inert gas Volatiles/inert gas
HeatPlugs

Figure 3.1: Vacuum infusion processing of conformal ablators.

Full saturation is critical to material quality. Trapped air will lead to partial saturation and

voidage. Evacuation of the cavity limits this risk but not completely. Because the vacuum

level is relatively high, residual internal air must be continuously vented during filling.

If an unsaturated region of the mold is blocked from the vent by advancing resin flow, air

cannot be properly evacuated, becoming trapped and forming a void in the material. Proper

gate and vent locations, the subject of the methodology in Chapters 4 and 5, are crucial to

venting, ensuring that blockage does not occur during mold filling.

Once the substrate is saturated, plugs sealing the mold top are removed and a secondary

lid installed to enclose the chamber above the part. In Step 2, this assembly is then heated

to cure the resin. As the material heats up, some resin expands into the upper chamber

and cures there. After curing, the excess is removed and discarded, the secondary lid is re-

installed, and the mold is subjected to a second heating cycle to remove residual solvent and

dry the part in Step 3. Inert gas is flowed through the mold during both curing and drying,

preventing resin oxidation and carrying away volatiles generated during processing.

3.3.2 Comparison to Conventional Processing

Compared to SOTA processing, VIP improves efficiency, reducing resin consumption and

waste while streamlining clean up and disposal. It also eliminates the need for an atmosphere-

controlled oven, or chamber, and a large vacuum pump to evacuate it, simplifying pro-

cessing equipment and facilitating larger tile sizes. Additionally, VIP allows numerical

simulation of the mold filling process, which can inform mold design and ensure high ma-
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terial quality. The two processes are compared and contrasted in the following section with

examples illustrating improvements over the SOTA.

Examples are partially based on an analysis of a representative heatshield, shown in Fig-

ure 3.2, based on the MSL forebody geometry. The outer mold line (OML) is a 4.5-meter

diameter, 70 degree sphere-cone [26, 91]. The tile layout was modified to a symmetric lay-

out with a single nose tile and two concentric rings of tiles, approximately 1 meter across,

covering the flank. Like MSL, TPS thickness, tTPS, in this configuration is uniformly 1.25

inches (3.18 cm) across the aeroshell. Typical conformal ablative TPS properties are as-

sumed based on experimental results in this investigation: pre-process substrate porosity,

φpre = 0.93, through thickness shrinkage, εTT = 0.06, and 20% resin thermal expansion by

volume.
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Figure 3.2: Example heatshield and tile geometry based on MSL (dimensions in meters).

Other aspects of the comparison (processing time and clean up) draw on experience

with both methods during this work. Oven and vacuum pump costs were compared using

data for commercially available equipment. Tooling cost for processing the 0.5-meter tiles
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in this investigation was compared with that from a similarly-sized part made using the

SOTA process. Finally, computational methods for simulating infusion were contrasted.

Resin Consumption and Waste

Accounting for shrinkage, the pre-process substrate thickness for the example heatshield

is 1.33 inches (3.38 cm). In VIP, additional shims made of the same substrate material

add approximately 10% to this thickness, 1.46 inches (3.71 cm) in total. For the SOTA

process, no shims are added, and a 0.5 inch (1.27 cm) thick, matched mold encloses the

substrate with a custom tray matching its outer dimensions. Shoulder tiles, which are a

small percentage of the overall volume, are neglected in this example.

The tile in the outer ring, highlighted in Detail A in Figure 3.2, has a final bulk volume

of 29.5 L. With VIP, resin is injected directly into the part with little to no excess, con-

suming an amount of resin approximately equal to the pre-process porous volume (32.0 L).

In contrast, the SOTA method consumes nearly twice that volume of resin (55.2 L) due to

large empty spaces above and below the curved part. A larger mold could occupy more of

this empty volume, and thus displace more resin, but some amount of open space is still

required around the mold to allow resin to flow freely.

Higher curvature only exacerbates the problem. The SOTA process more than doubles

the resin consumption of VIP for the inner ring and nose tiles. VIP yields reductions of

62% and 68%, respectively, for these parts. Table 3.1 summarizes resin consumption for

each of the three tiles. For the entire heatshield (excluding the shoulder), VIP reduces resin

consumption by 50% over the SOTA process, a total volume of 544 L. With resin solutions

on the order of $10 dollars per liter, material cost is reduced by several thousands of dollars.

Excess resin complicates clean up in SOTA processing as the surrounding resin must

be chipped away to expose the mold and enclosed part, which takes a significant amount

of time and generates a substantial mess because the resin is brittle, producing small dust

particles that coat the work area. VIP shortens and simplifies clean up because the mold
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Table 3.1: Resin consumption for the example heatshield.
Resin Consumption

Final Bulk Volume SOTA VIP Reduction

(L) (L) (L) (%)

Nose Tile 15.2 51.4 16.6 68%

Inner Ring Tile 21.5 61.8 23.3 62%

Outer Ring Tile 29.5 55.2 32.0 42%

Full Heatshield 498 1085 541 50%

is not encased in resin. The little excess residing in the expansion chamber above the part

is easily discarded after disassembling the secondary lid. For the 0.5-meter tiles fabricated

in this investigation, clean up time was about two-thirds less than a similar volume part

processed in the SOTA method (20 minutes versus upwards of an hour for the conventional

process).

In the example, cured resin occupies a volume of approximately 1302 L in the SOTA or

649 L in VIP. Of that total, 463 L remains within the tiles while the rest resides externally

and must be cleaned up post-curing. Note that in VIP some of the resin waste is contained

in the shims. Resin waste is approximately 839 L in the SOTA and 186 L in VIP, a factor

of four difference. Discarding this material would require four 55-gallon hazardous waste

drums in the SOTA. VIP requires not quite one full drum. In addition to cured resin waste,

the volume of evaporated solvent, which is collected during processing, is also reduced in

VIP.

Figure 3.3 contrasts resin consumption, demolding, and waste for the two processes.

Relative consumption and waste are based on the analysis above. Photos depict the after-

math of demolding two TPS parts of similar volume. Note the significant mess resulting

from SOTA processing. In summary, for this example, VIP reduces:

1. Resin consumption by 50%

2. Resin waste by 78%
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3. Clean up time by approximately two-thirds

Results from recent processing of a large, curved C-PICA panel using the SOTA process

suggest that waste may be even more than that estimated here. That work, partially de-

scribed in Ref. [47], used approximately 80 L of resin solution to process a 21 L panel,

about one-third more than that estimated above for the inner ring tile, which is a similar

volume, and about three times that of the comparable VIP process.

Resin Consumption

SOTA

WasteDemolding

VIP

Figure 3.3: Improvements in resin consumption, clean up, and waste compared to the state
of the art.

Processing Equipment and Associated Impacts

Oven TPS can be processed in a conventional, rather than vacuum, oven in VIP because

the mold interior provides inert atmosphere. The switch to a conventional oven reduces cost

and limits long term oven degradation. Figure 3.4 explores these impacts. Figure 3.4(a)

compares publicly available cost data for two well known vendors of both conventional and

71



vacuum ovens, Vendor 11 and Vendor 22. Both product lines allow programmable temper-

ature control, which is necessary for curing and drying. A linear least squares regression

(LSR) of the data is shown for each oven type. Conventional ovens are both cheaper and

available in larger capacities. Marginal cost is an order of magnitude smaller for conven-

tional ovens ($12 vs. $130 per additional liter on average) and maximum capacities are

more than twice as large (800 L vs. 300 L). For the largest vacuum oven, cost is five

times that of the similarly-sized conventional oven. Larger oven capacity may facilitate

production of larger tiles.
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Figure 3.4: Open processing impacts both oven cost and wear on interior surfaces.

In addition to higher cost, open processing exposes the oven to evaporated resin and

solvent requiring frequent cleaning and damaging interior surfaces. Figure 3.4(b) shows

discoloration and flaking inside an oven used to process a phenolic-based TPS material.

Solvents are contained within the mold in VIP and not exposed to the surrounding oven.

1Thermo ScientificTM, Lindberg/Blue MTM and HerathermTM product families, URL:
https://www.fishersci.com/, accessed: October 22, 2018

2CascadeTekTM, TVO and TFO product families, URL: https://www.cascadetek.com/, accessed: October
22, 2018.
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The SOTA process may use a vacuum chamber placed inside a conventional oven as

an alternative to a vacuum oven, but this configuration does not significantly improve the

picture. The vacuum chamber adds additional equipment cost while similarly limiting part

size. Given the same conventional oven, VIP still allows a larger maximum tile size and

avoids the extra piece of equipment.

Vacuum Pump VIP further improves efficiency because only the mold interior must be

evacuated, rather than the entire vacuum oven or chamber, which can accelerate purging

and backfilling (a reduction in labor) or reduce pump capacity (a reduction in equipment

cost). Figure 3.5 investigates the latter alternative. On the left, pump cost is compared

against pumping capacity for a well known pump vendor3. A linear LSR model fitted to

the data was used to estimate pump costs for the two processes as a function of the tile

surface area, Acomp, in Figure 3.5(b).
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Figure 3.5: Estimated vacuum pump cost compared for both processes.

The theoretical required pumping speed, qpump, was computed from the equation [92],

qpump =
Vevac

Tevac

ln
Patm

Pvac

(3.1)

3Welch Vacuum, DuoSeal Product Family, URL: https://welchvacuum.com/products/duoseal-1400. Ac-
cessed: October 22, 2018.
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where Vevac is the volume to be evacuated, Tevac is the evacuation time, Patm is atmospheric

pressure, and Pvac is the desired vacuum pressure. Equation 3.1 describes evacuation of a

chamber in the range 1–1000 mbar. The computed pumping speed, qpump, was assumed

equal to the pump specification, which assumes no leaks, no flow restrictions through tub-

ing, and no additional sources of gas. As such, the calculation provides an estimate under

ideal conditions. Evacuation time was fixed to an arbitrary value (Tevac = 10 min) and

vacuum pressure to a value typical of current processing, which is within the range of

applicability of Equation 3.1.

For VIP, evacuated volume, Vevac, was assumed to be equal to the tile volume,

Vevac = AcomptTPS (3.2)

where tile thickness, tTPS, is again 1.25 inches (3.18 cm). For the SOTA, Vevac was equal

to

Vevac = (Acomp)3/2 (3.3)

This expression assumes that the vacuum oven or chamber scales similarly in all three

dimensions, driven by tile area, leading to the cubic relationship. Figure 3.5(b) suggests

little difference in cost below 0.5 m2 but a significant increase for the SOTA at larger sizes.

Pump cost could be offset by extending evacuation time in the SOTA process. However,

VIP limits both evacuation time and pump cost, which further improves scale up.

Mold/Tooling While a rigorous evaluation of tooling costs between the two processes

has not been performed, two examples are presented here for comparison. Tooling for

the curved tiles processed in this work, with a 0.40 m x 0.56 m footprint, consisted of

three aluminum pieces that cost $4700 to procure, machine, and coat. The SOTA scale

up mentioned earlier processed a tile with a footprint of approximately 0.63 m x 0.60 m

using the tooling shown in Figure 3.6 [47]. A third part not shown in the figure, the tank,
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was required for holding resin during infiltration. Combined, these parts cost between

$8000 and $9000 to manufacture. The SOTA method benefits from not needing to fully

enclose the substrate. VIP requires additional width around the perimeter of the part to

accommodate a joint between the two sides of the mold. Thus, while the overall tooling was

of a similar size between these two examples, the SOTA produced a larger tile. However,

cost was also slightly more for SOTA processing. Therefore, it appears that tooling cost is

of the same order of magnitude between the two processes, and it may in fact be slightly

cheaper for VIP.

Figure 3.6: Tooling design for the state of the art process (Credit: Beck, et al. [47]).

Processing Time

In addition to reducing clean up time, VIP shortens the length of infusion and, potentially,

curing and drying. Shorter cycle times can not only speed up production of a heatshield

but can also allow faster evaluation of alternative material formulations during early stage

development. Infusion is sped up because infiltration is driven by a large pressure gradi-

ent unlike the open process where resin slowly seeps into the fiber substrate as it fills the

surrounding container. The 0.5-meter tiles described later in this chapter, which were ap-

proximately 4L in volume, were infused in 5–9 minutes. Similarly sized TPS processed

using the SOTA process required about an hour to infuse, which is about an order of mag-
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nitude longer. Totaling infusion and clean up, VIP required approximately 25–30 minutes

versus over 2 hours for the SOTA.

Speeding up curing and drying, which account for the bulk of total processing time, can

further benefit cycle time. There is less resin and, therefore, less thermal mass in VIP. Thus,

while not investigated in this thesis, it may be possible to accelerate temperature ramping

as well as shorten the hold time at the final curing temperature relative to the SOTA. Drying

might also be accelerated using higher gas flow rates, which are feasible given the smaller

cavity volume of the closed process.

Part Quantity

In this thesis, VIP was carried out on single parts only, and scale up focused on increasing

part size, rather than quantity. While a higher quantity capability matching the SOTA has

yet to be demonstrated, VIP will likely scale at least as well given the arguments above:

larger and cheaper ovens, smaller vacuum pumps, and a more efficient process. Ideas for

simultaneously processing multiple tiles using VIP are suggested in Chapter 7.

Computational Design

The mold filling process of VIP can be simulated using a numerical application of Darcy’s

law, which leads to two advances over the state of the art: (1) it allows mold design without

experimental trial and error, and (2) it can generate relevant process metrics such as infusion

time. While modeling the current process to the same end may be possible, it would appear

to be significantly more complicated. Absent the strong pressure gradient that dominates

flow in LCM, the open process is influenced by other, no longer negligible, forces (e.g.,

gravity and capillary forces).

Adaptations of the classical Lucas-Washburn equation, which describes capillary flow

through parallel tubes [93], have been used to model imbibition of porous media [94] in-

cluding that of fibrous fabrics [95]. In the latter, Pezron, et. al. vertically suspended pieces
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of fabric and then brought them into contact with an infiltrating liquid. The authors found

that absorption was dominated by two distinct filling processes, in depth and along the

surface, not described by Lucas-Washburn alone. Infiltration of a conformal ablator adds

complexity in both geometry (three-dimensional, curved shapes) and boundary conditions

(multiple interfaces between the substrate and surrounding empty space). Thus, modeling

the SOTA process appears to be significantly more complicated. Regardless of the possi-

bility, such an approach is not used currently. Therefore, the availability, and heritage, of

Darcy’s law simulations for modeling infusion in VIP is a distinct advantage over the state

of the art.

3.3.3 Limitations of the Process

While VIP is well-suited to the low viscosity resins and high porosity, high permeability

substrates typical of conformal ablators, the relatively small pressure gradient of vacuum

alone may not be suitable for infiltrating higher density TPS or higher viscosity resin solu-

tions. A supplemental study in Appendix B investigated the range of applicability of VIP

for similarly formulated materials (rayon-based carbon substrates infused with phenolic

resin) by varying substrate density and resin viscosity. Mold filling was simulated on an

approximately 1 m x 1 m tile using the approach in Chapters 5 and 6. Infusion times less

than 8 hours, the length of a standard work day, were considered feasible.

With the current resin formulation, VIP is feasible up to a pre-process substrate density

of ∼0.2–0.25 g/cc depending on part thickness. Based on the constitutive model of the

previous chapter, such a composition would yield nominal virgin density around 0.4 g/cc.

The applicable range shrinks as resin dilution decreases (and viscosity increases). For

the base resin without dilution, which possesses a viscosity over eight times that of the

current formulation, substrate density is limited to approximately 0.1 g/cc. Post-process

resin density would be correspondingly higher without dilution. Despite limitations of

the current implementation, VIP could likely be extended to higher density TPS materials

77



through additional modifications discussed in Chapter 7.

3.3.4 Summary

Vacuum infusion processing of conformal ablators leads to improvements in efficiency

— reducing waste, labor, and cost compared to the state of the art — and introduces a

computational design capability for conformal ablative heatshields. The entire process is

closed, rather than open. Resin is injected directly into the substrate with little excess,

and air removal is achieved without compacting the substrate ensuring a low density, mass

efficient TPS material. Combined with a switch to a conventional oven, as well as smaller

evacuated volumes, these advances enable quick and efficient fabrication of large tiles.

While a tiled example was considered here, VIP may also be suited to small, single

piece heatshields (∼1.5 m diameter). Flexible substrates can facilitate such a single piece

design, but SOTA processing would again lead to large inefficiencies. With VIP, the entire

forebody (or aft) heatshield could be formed and processed using a single mold yielding

significant reductions in resin consumption and waste.

3.4 Experimental Methodology

3.4.1 Material Formulation

All testing was carried out on a C-PICA formulation consisting of a low density carbon

felt, Felt 1 from Chapter 2, and the phenolic resin solution also described in that chapter.

Recall that the felt is nominally 0.9 in (2.29 cm) thick with a density of 0.09 g/cc. Resin

loading is approximately 0.18 g/cc resulting in a TPS density of around 0.27 g/cc.

3.4.2 Overview of Development

Testing of the vacuum infusion process began with partial implementations on small sam-

ples in 2016 and 2017, culminating in scale up to the full process during 2018 (Figure 3.7).

Preliminary development of the VIP process (2016) was carried out using a benchtop-sized
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mold to process flat, four-inch (10 cm) square coupons. Initial testing infused carbon felt in

the closed mold, but carried out curing and drying with the mold open as in the SOTA pro-

cess. Properties of these materials showed good agreement with that fabricated using the

SOTA method. While voids were present on external part surfaces, VIP-fabricated materi-

als were uniformly infiltrated through the thickness. Additional testing which applied only

partial, rather than full, vacuum at the vent resulted in trapped air pockets and significant

in depth voidage, demonstrating the significance of vent pressure to material quality.

2016 2017 2018

Infusion: closed

Curing: open

Drying: open

Infusion: closed

Curing: open and closed

Drying: open

Infusion: closed

Curing: closed

Drying: open and closed

Figure 3.7: Overview of VIP development from initial testing to final scale up.

Subsequent testing (2017) extended VIP to alternate curing configurations (both closed

and open) [90]. However, the closed curing configurations proved unsuccessful, allowing

air into the mold and causing some resin oxidation. Drying was again done outside the

mold, open to the oven atmosphere. Voidage on external surfaces proved to be an issue in

this testing as well, but, again, most TPS materials were generally well infused in depth.

The one exception was a sample cured under reduced pressure, which showed significant in

depth voidage. Otherwise, bulk physical properties, virgin density and resin mass fraction,

compared favorably to the standard material.
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Changes were then implemented to address problems in the small scale testing. Sol-

vent bubbles appeared at the vent during infusion, indicating bubble formation somewhere

within the cavity. The gate design was changed to limit resin flashing at the inlet, which

may have contributed, and a approach for regulating vent pressure was introduced to pre-

vent boiling along the flow front. For curing and drying, instead of a completely sealed

system during curing and drying, inert gas was flowed through the mold to provide positive

internal pressure and prevent air ingress. With these changes, the complete VIP process was

then demonstrated on large, curved tiles (2018). The remainder of this chapter discusses

the results of that scale up.

3.4.3 Mold Design

Part geometry was based on the 4.5-meter diameter, 70 degree sphere-cone heatshield

shown in Figure 3.2. A flank tile adjacent to the nose with an angular span of 45 degrees

was selected for processing (Figure 3.8). The tile is approximately 0.56 m x 0.40 m. While

 0.56 

 45  
 0.40 

 4.50 

Selected
Tile

 R1.125 
 70.00° 

Dimensions: Meters

Figure 3.8: Selected tile geometry on aeroshell (left) and expanded separately (right).

tile size was limited by available oven dimensions, it still represented a significant scale up

from earlier work, a 20 times increase in volume over the small samples. Furthermore, the

demonstrated approach can be rather easily scaled to even larger parts given a sufficiently
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large oven. Indeed, this is one of the aforementioned advantages of VIP.

A three-part aluminum mold was used to process the TPS tiles (Figure 3.9). The cavity

in the bottom mold part forms the inner mold line (IML) as well as the tile edges. The core,

machined in the top part, forms the OML. The distance between the two sides is 1 in (2.54

cm). A cross-section of the joint design is depicted in the figure. Offset drafts on the cavity

and core side converge to zero clearance at the OML. This design, based on guidelines

summarized by Rudd, et al. [61], prevents resin from escaping the cavity and flowing

around the substrate (in a phenomenon called racetracking). The interior of the mold was
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Figure 3.9: Exploded view of mold design (left) and detailed view of joint between the core
and cavity sides (right)

coated with PTFE to facilitate release. A planar gasket sealed the mold around its perimeter
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and was clamped by bolts spaced uniformly along its length. Gate and vent locations,

optimized via the numerical simulation presented as a design example in Chapter 6, were

at opposite corners of the part. For infusion, resin and vacuum lines were connected via

compression fittings in the top part. Holes in the top/core (expansion ports) allowed resin

expansion and volatile removal during curing and drying but were sealed during infusion

by pull through plugs. The 0.5 inch (1.27 cm) diameter expansion ports, 18 holes in total,

spanned the part surface in a rectangular grid, nominally spaced 3.5 in (8.9 cm) apart. Three

pressure gauges also installed in the top during infusion (not depicted in the figure) were

used to measure cavity pressure and identify flow front arrival. Experimental arrival times

are compared to theoretical ones from the mold filling simulation in Chapter 6. For curing

and drying, the lid was installed above the expansion chamber in the top part with a second

gasket sealing that volume. Fittings in the lid were used to connect the mold interior to

inert gas, vacuum, and exhaust during curing and drying.

3.4.4 Processing

This section outlines fabrication using the above design to infuse, cure, and dry several

C-PICA tiles. Steps in the process are depicted in Figure 3.10 and described below.

Preparation

Substrates were first cut from several pieces of the raw felt by converting the curved, three-

dimensional tile shape to its corresponding flat, two-dimensional pattern. For each tile, two

thin felt spacers were also layered above and below the main substrate in an attempt to

limit resin evaporation from the tile surface. Two cutting methods were used, a 75-W laser

cutter for the thin felt materials and a water jet cutter for the main substrate (Figure 3.10,

top left). The latter was employed because the laser cutter was not able to fully penetrate

the thick felt. The water jet was operated at low pressure and without abrasive additives

to avoid substrate contamination, and the felt was weighted down along the cutting path to
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limit movement during operation. The resin solution was mixed according to the standard

formulation and stored prior to processing.

Figure 3.10: Experimental steps: (1) cutting the raw substrate, (2) draping the substrate
in the mold, (3) mold configured for infusion, and (4) mold, with lid installed, in oven for
curing/drying.

Substrates were then draped in the mold cavity with the main substrate sandwiched be-

tween the thin felt spacers (Figure 3.10, top right). The gasket was installed in the perimeter

groove and pull through plugs inserted into the top mold part to seal the cavity. Finally, the

top and bottom mold parts were bolted together. The assembly, with substrate inside, was

then connected to the vacuum and resin lines (Figure 3.10, bottom left). The vacuum line

was connected first to a resin trap, to collect overflow, and then to the pump. Valves in both

lines controlled flow within the system. Vacuum was pulled on the cavity and maintained

for several hours to remove any trapped moisture within the substrate.

Infusion

Prior to infusion, the resin line was placed at the bottom of a resin reservoir which was

open at the top. Figure 3.11 depicts the experimental configuration. Vacuum was regulated
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to a selected vent pressure and, then, the resin valve was opened to allow resin to flow into

the cavity. With infusion started, the pressure gauges were monitored to identify flow front

position, and resin arrived at the vent approximately 5–9 minutes later. At that point, the

resin trap was allowed to fill slightly before shutting off flow.

Vacuum 
Pump

Pump 
Exhaust

Resin 
Trap

Resin

Pump 
Valve

Trap 
Valve

Resin 
Valve

*Not installed during
  first processing run

Figure 3.11: System configuration for infusion.

In the first processing run, no valve was installed between the vent and the resin trap.

Therefore, resin flow was stopped by closing the resin valve, which resulted in slightly less

than full saturation. Subsequent processes added a valve upstream of the trap to stop further

collection allowing resin to continue filling the cavity until the internal pressure equalized

with the ambient pressure before finally closing the resin valve.

Curing

After infusion, the pull through plugs were removed from the mold top, and the exposed

holes were filled with additional resin to ensure that the substrate remained fully sub-

merged. The gate and vent fittings were capped sealing those ports. The lid was then

installed above the expansion chamber with the secondary gasket. Fittings in the lid were

connected to the vacuum pump, an inert gas line, and an exhaust line and placed inside an

oven. Figure 3.12 depicts the experimental set up, which is also shown in the bottom right

of Figure 3.10.

Inert gas was flowed continually through the mold during curing to prevent resin oxida-
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tion and to carry released volatiles out of the system. Evaporated resin and solvent traveled

out the exhaust line and collected in a trap. Exhaust flow was regulated by a manual valve,

which was periodically adjusted to maintain a desired internal pressure. However, continual

monitoring was infeasible due to the length of the process resulting in imprecise control.
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Figure 3.12: System configurations for curing (left) and drying (right).

The exhaust valve was installed upstream of the resin trap during the first two process-

ing runs (Tiles 1 and 2) but downstream of the trap for the latter two runs (Tiles 3 and 4)

in an attempt to better regulate exhaust flow and internal pressure. Both locations are de-

picted in the figure. After curing, the lid was removed, and excess resin was cleaned from

the expansion chamber and expansion ports.

Drying

The first two tiles were dried at the same time using the conventional, open approach with

the oven providing inert atmosphere. The first tile was dried outside of the mold, oriented

horizontally and supported along the sides, while the second tile was dried inside the mold

with the lid off to expose the part to the oven atmosphere. The latter two samples, Tiles 3

and 4, were dried within the mold with the lid installed, depicted on the right in Figure 3.12.

Inert gas was flowed through the closed mold as it was during curing. However, gas and

evaporated solvent were removed through the vacuum line here rather than the exhaust line,

which was not used. All parts were within 2%–3% of their fully dry mass after undergoing
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a standard drying profile. Shims were dried along with the tiles.

3.4.5 Test Matrix

Four C-PICA tiles were fabricated in the present testing under a variety of test conditions

summarized in Table 3.2. Vent pressure was varied between runs as were curing and drying

configurations. Vent pressure was nondimensionalized by the measured vapor pressure

of the resin solution, discussed in the next chapter. Thus, a vent pressure less than one

indicates a pressure below the solution vapor pressure, which was true of Tile 1.

Test conditions were adjusted to address issues observed in prior runs. For example,

after noting resin boiling during the first infusion, vent pressure was set higher in subse-

quent runs in an attempt to suppress bubbling. The exhaust valve was moved downstream

of the resin trap because evaporated resin collecting in the valve made flow control difficult

during curing of the first two tiles.

Due to the lack of precise control, internal pressure was not well-regulated and is thus

indicated by a range in Table 3.2. Curing pressure was purposely increased for the last

tile in an attempt to limit resin evaporation. Drying was performed with the part open

to the oven (open) or sealed within the mold (closed). The first tile was dried out of the

mold, while the others were constrained inside, in order to assess any impact on the final

part geometry. Tiles 3 and 4 were dried with the system sealed and, thus, represent a full

implementation of VIP.

Table 3.2: Matrix of test conditions.
Infusion Curing Drying

Tile Vent Pressure Internal Pressure Exhaust Valve Open / In / Out
No. (non-dimensional) (psi) Location Closed of Mold

1 0.75 1–4 Upstream Open Out of mold

2 1.5 1–6 Upstream Open In mold

3 7.5 1–6 Downstream Closed In mold

4 2.5 3–10 Downstream Closed In mold
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3.5 Analysis

3.5.1 Material Characterizations

Full tiles and small cylindrical cores removed from the tiles were characterized through

visual inspection, dimensional analysis, and material property evaluation. Figure 3.13 de-

picts the core locations relative to expansion ports and the gate and vent. Eleven 1-inch

(2.54 cm) diameter cores were removed: eight from the perimeter (one in each corner and

one at the midpoint of each side) and three in the center of the part. Perimeter locations

were selected due to the possibility of air entrapment in those regions. Locations 1 and

1 2
3

4
65

Gate

Vent

Expansion 
holes

7

8

9

10

11

12

13*

*Sample 3 only

Figure 3.13: Core locations relative to part geometry and port locations.

11 were directly under the gate and the vent, respectively. Central locations were selected

to investigate the effect of expansion ports on material properties. Location 8 was directly

underneath one of these ports while Locations 5 and 6 were for a nearby comparison. An

additional 0.5-inch (1.27 cm) core was also removed in this region (Location 12). This

coupon was split in half to investigate variation through the thickness using thermogravi-

metric analysis (TGA). A final 1-inch (2.54 cm) diameter core (Location 13) was removed

from the third tile to investigate extensive surface voidage in that area.
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Visual Inspection

Visual inspection assessed the uniformity of resin infusion, presence (or absence) of voids,

and substrate delamination. Cured phenolic, characteristically yellow in color, should be

distributed through the thickness filling all open pore volume within the substrate. Voids,

darker dry areas lacking resin, are undesirable because they offer little thermal protection.

Substrate delamination, when felt layers separate due to curing stresses as the resin shrinks,

compromises mechanical strength.

(a) Surface voidage due to solvent
evaporation

(b) In depth voidage due to air trapped
during mold filling

Figure 3.14: Void formation during processing.

Two types of voids are typically encountered during processing. Smaller voids along

the top surface stem from solvent evaporation during curing (Figure 3.14, left). Premature

solvent evaporation causes the resin to “collapse”, that is, to no longer be suspended in

solution leaving a layer of small dry spots near the top surface. Larger voids in depth

result from air entrapment during infusion (Figure 3.14, right). The latter sample exhibits

both in depth and surface voidage. Note that surface voidage is frequently found on the

VIP-produced parts, but it typically does not extend far in depth and can be removed in

post-process machining.

Mass and Dimensions

Dry substrate masses and dimensions, both the primary substrate and shims, were recorded

prior to processing. Thicknesses were measured at each corner and the midpoint of each
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side and compared to the same locations on the post-process TPS tile. Perimeter dimen-

sions were also measured pre- and post-process to estimate in plane shrinkage. Pre-process

felt surface area was reduced by the average in plane shrinkage to estimate the post-process

TPS surface area. Note that the full tiles were not sanded prior to measurement. Thus, com-

puted properties were influenced by areas of voidage on the external surfaces. However,

this voidage was small, typically less than 5% of the total thickness.

In contrast, cylindrical cores were sanded until all surface voidage was removed and

then subjected to additional drying to ensure complete solvent removal. Sanding approxi-

mated the post-process machining that would be carried out on an actual TPS tile, leaving

the well-infused in depth material. Coupon thicknesses were measured before and after

sanding to estimate the depth of the evaporation layer. Masses were recorded after addi-

tional drying. The 0.5-inch (1.27 cm) core from Location 12 was sanded, dried, and then

segmented in half.

Finally, full three-dimensional tile geometries were captured using a laser scanner and

compared to a 0.76 inch (1.93 cm) thick tile with the nominal OML and IML curvature.

Due to differences in the starting substrate thickness, final tile thicknesses also varied,

but 0.76 in was selected as a baseline. Laser scanning was performed after core removal.

Resulting holes, accounting for between 5% and 6% of the total surface area, were excluded

from the analysis.

Composite TPS Properties

Virgin densities and resin mass fractions were estimated for both the full tiles and each of

the 1-inch coupons. Tile masses were adjusted by the mass loss observed during additional

drying of the cylindrical coupons. Char yields were obtained on the cylindrical coupons by

heating to 1200◦C in an inert furnace (3◦C/min with a 30 minute hold). Assuming identical

resin composition, the char yield of the composite is related to the amount of phenolic

present in the material. Higher resin loading results in greater relative mass loss during
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charring and a lower char yield. Thus, variation in char yield can indicate differences in

resin loading.

3.5.2 Computational Methodology

Material properties were compared to expected values using the material model of Chapter

2 with additions relevant to the current investigation outlined below.

Properties of the Substrate

Substrate density was estimated by assuming constant areal density across the material and

adjusting for shrinkage. That is, the areal density of the substrate in the composite was

taken as the mass of the dry, pre-process felt, msub, divided by the surface area of the final

composite TPS part, Apost
comp,

ρareal
sub =

msub

Apost
comp

(3.4)

and the post-process substrate density as the ratio of the areal density, ρareal
sub , and coupon

(composite) thickness, tcomp,

ρpost
sub =

ρareal
sub

tcomp

(3.5)

Recall that post-process substrate density is that of the fiber material alone, ignoring the

resin.

Because substrates were compressed between the two shims, the pre-process thickness

of the substrate itself was not known precisely. An estimate was made by assuming uniform

compression of both the spacers and the substrate — that is, all layers were compressed by

the same fraction,

εpre =
tcav

t1 + tsub + t2
(3.6)

where tcav is the thickness of the mold cavity, and t1, t2, and tsub are the uncompressed

thicknesses of the two spacers and the substrate, respectively. Thus, the pre-process sub-
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strate thickness, as compressed in the mold, was estimated by:

tpre
sub = εpretsub = tcav

tsub

t1 + tsub + t2
(3.7)

Properties of the Composite TPS Material

Theoretical values for virgin density, resin mass fraction, and composite char yield were

estimated using the expressions in Table 2.3 of Chapter 2 and compared to measured quan-

tities. Material parameters were drawn from the experimental results of that chapter: ρfiber

= 1.395 ± 0.055 g/cc, YR = 52.5 ± 4.5%, and ρpost
resin = 0.187 ± 0.008.

3.6 Results and Discussion

3.6.1 Processing Results

Four C-PICA tiles were processed and characterized using the approaches described above.

All infusions were carried out near room temperature with the resin solution temperature

between 18◦C and 23◦C. Some bubble formation occurred during all infusions — bubbles

were observed at the vent line prior to arrival of the main flow front. The quantity of

bubbles was largest during infusion of the first tile, where a vent pressure below the vapor

pressure of the resin caused boiling. Fewer bubbles were present in the latter infusions,

which had higher vent pressures.

Table 3.3 summarizes relevant metrics from each process. Resin delivered to the mold

cavity during infusion was obtained by comparing initial and final volumes in the resin

reservoir. The volume of evaporated solution, collected in the exhaust line trap during

curing, was measured at the end of curing. Based on its color, the collected solution clearly

contained resin, in addition to solvent. These metrics are discussed next.
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Table 3.3: Resin delivered during infusion and collected during curing.
Tile Resin Delivered Evaporated Solution
No. (L) (L) (%)

1 3.81 0.65 17

2 3.92 0.50 13

3 3.93 0.73 19

4 3.90 0.63 16

Resin Delivery

The volume of delivered resin was nearly identical between Tiles 2–4 despite differences

in vent pressure, a result indicating that the cavity was vented well and residual air was

successfully evacuated throughout mold filling. Air trapped by advancing flow would leave

unsaturated regions in the cavity, reducing the volume of delivered resin by the volume of

the air pockets. Therefore, resin volume would depend on air density in the cavity and, thus,

vent pressure. That is, in a poorly vented mold, higher vent pressure leaves more residual

air in the cavity resulting in larger trapped pockets and less delivered resin. Instead, in

this testing, delivered resin volumes were similar, for all but the first tile, suggesting little

difference in infiltration at the present vacuum levels.

Infusion of Tile 1 was adversely affected by both low vent pressure and the lack of

a valve between the vent and the resin trap. Boiling along the flow front likely caused

significant bubble entrapment within the cavity. Resin flow was shut off upstream of the

mold, then vacuum was released at the resin trap. Resin in the vent line flowed back into

the cavity but not enough to fully saturate the substrate resulting in less delivered resin.

Evaporated Resin Solution

Resin evaporation was less for Tile 2 (13% of total resin volume) than the other tiles (16%–

19% of total resin volume), a result that appears to be correlated to the curing conditions.

The valve was placed upstream of the trap during curing of Tiles 1 and 2 and downstream

of the trap for Tiles 3 and 4. Evaporated solution collected inside the valve and constricted
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flow in the upstream location during processing of Tile 2, which made flow control some-

what challenging but may have helped to limit evaporation. The valve was moved to the

downstream location to avoid this issue, but this configuration led to overall higher gas

flow rates which may have contributed to more evaporation despite higher internal pres-

sures. Differences in resin loss appeared to alter the post-process resin density in the TPS,

which is discussed in the following sections.

3.6.2 Full Tiles

Visual Inspection

Figure 3.15 shows the front (OML) and back (IML) of the TPS tiles post-processing. Sur-

face variation typical of VIP is evident. Front views are oriented with the gate in the bottom

left and the vent at the top right while the back views are flipped with the gate in the bottom

right and the vent in the top left. Photos of Tiles 3 and 4 were obtained after core removal

and, thus, resulting holes are visible. Differences in coloration are apparent both within

each tile as well as between tiles. Tile 1 was markedly darker than the other samples due

to drying outside of the mold. Tiles 2–4, dried inside the mold, remained lighter in color.

Within individual parts, there were several irregularly-shaped stains which may be from

solvent and/or resin byproducts collecting on part surfaces. Differences in coloration did

not appear to affect material properties.

Surface voids appear to stem from the two sources identified earlier, resin evaporation

during curing and bubble entrapment during mold filling, though they seem to be coupled

here. Resin evaporation is evident on the OML surface of Tiles 3 and 4, both around the

expansion ports and along the top edge (Figures 3.15(e) and (g)). Inert gas flowed from the

inlet, at the top left, to the exhaust, at the top right, which may explain higher evaporation

along the top. This type of voidage does not appear around the expansion ports in Tiles 1

and 2, which had relatively lower gas flow.

Other voids appear to be localized near the gate and adjacent sides (i.e., the bottom right
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(a) Tile 1 (front) (b) Tile 1 (back)

(c) Tile 2 (front) (d) Tile 2 (back)

(e) Tile 3 (front) (f) Tile 3 (back)

(g) Tile 4 (front) (h) Tile 4 (back)

Figure 3.15: External surfaces of all tiles post-processing without sanding.
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corner on the back surface). While the exact cause of this voidage is unknown, it may stem

from large pore spaces at the surface of the felt trapping resin bubbles during infusion.

This voidage is particularly pronounced along horizontal lines, which correspond to low

points (valleys) in the felt surface. Closing the resin trap valve, which allowed the cavity to

continue filling while it equilibrated with atmospheric pressure, appeared to collapse most,

but not all, of these bubbles in Tiles 2–4. Tile 1 lacked the trap valve, which resulted in

significantly more voidage remaining across both surfaces.

As discussed above, vent pressure did not significantly change the volume of delivered

resin between Tiles 2–4. Therefore, any bubble entrapment was likely similar across these

infusions. However, surface voidage is clearly more prevalent on Tiles 3 and 4 than Tile 2.

Thus, it appears that resin evaporation drives most of the surface voidage. Trapped bubbles

exacerbate the problem because they leave voids as the material cures providing a path for

volatiles. This mechanism may help to further explain voidage appearing primarily along

valleys on the surfaces of Tiles 3 and 4 (Figures 3.15(f) and (h)).

Part Shrinkage and Bulk Properties

Properties of the pre-process substrate and the final TPS tiles are presented in Table 3.4.

Virgin density and resin mass fraction were computed from bulk part dimensions and com-

pared to theoretical values. The latter quantities are given as relative differences, rρcomp

and rwresin
. In all cases, the substrate was compressed to a pre-process thickness of approx-

imately 0.8 in (2.0 cm). Pre-process substrate density was roughly 0.1 g/cc for all tiles.

Final tile thicknesses ranged from 0.75 in (1.91 cm) to 0.76 in (1.93 cm) with post-process

substrate densities between 0.103 g/cc and 0.107 g/cc. Shrinkage was averaged across

thickness and in plane measurements, respectively, to yield the fractional length changes

shown in the table. Post-process resin density was estimated by rearranging the equation

for virgin density in Table 2.3.

Shrinkage through the thickness (εTT = 0.01–0.04) tended to be higher than in plane
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Table 3.4: Properties of the pre-process substrate and the final composite TPS tile (absolute
and relative to theoretical values).

Pre-Process
Substrate Shrinkage Post-Process Composite TPS

Tile ρpre
sub εTT εIP ρpost

sub ρpost
resin ρcomp wresin rρcomp rwresin

No. (g/cc) — — (g/cc) (g/cc) (g/cc) — % %

1 0.100 -0.04 -0.01 0.106 0.191 0.283 0.62 1.3 0.8

2 0.102 -0.01 -0.01 0.105 0.191 0.282 0.63 1.5 0.9

3 0.101 -0.04 -0.02 0.107 0.183 0.276 0.61 -1.2 -0.8

4 0.099 -0.03 -0.01 0.103 0.185 0.275 0.62 -0.5 -0.3

(εTT = 0.01–0.02) but not substantially so because these felts were already fairly com-

pressed within the mold prior to processing (about 7%–14% of the uncompressed thick-

ness). Therefore, the substrates appeared to resist much of the through thickness shrinkage.

In Chapter 2, εTT was estimated as φpreεR for these materials. Substituting previous results

for resin shrinkage and noting that φpre = 0.93 in this test yields a higher predicted value

(εTT = 0.06–0.14).

Bulk virgin densities and resin mass fractions are all within about a percent of their

theoretical values. Tiles 1 and 2 have slightly elevated resin loading, ρpost
resin, compared to

theory leading to higher ρcomp and wresin. In contrast, Tiles 3 and 4 have slightly reduced

resin loading with correspondingly lower ρcomp and wresin. Between tiles, post-process

resin density was approximately 3–4% higher in the first two tiles relative to the latter two,

which may stem from differences in resin evaporation and shrinkage. Less resin evaporated

during processing of Tile 2, which likely increased resin content in the final material. While

more resin evaporated during Tile 1 processing, it also shrunk more through the thickness

than Tile 2, offsetting the effect on density.

Dimensional Analysis

Figure 3.16 shows deviations between Tile 4 and the nominal tile geometry (left) and their

distribution (right). Contour lines denote the relative deviation. Gray areas correspond to
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the drilled holes excluded from the analysis. Material directly under the expansion ports

was raised around 0.06–0.12 cm relative to the surrounding area due to little substrate com-

pression there. The average deviation was -0.06 cm indicating that the mean part thickness

was less than nominal. Results for the other tiles, summarized in Table 3.5, were similar.

Table 3.5: Summary of deviations from nominal tile geometry.
Tile No. Mean Std. Dev.

(cm) (cm)

1 -0.06 0.05

2 -0.08 0.04

3 -0.04 0.04

4 -0.06 0.04

Variation in tile thickness yield slight differences in the mean deviation, but the difference,

less than half a millimeter, was small. Standard deviation was also largely the same across

all tiles (0.04–0.05 cm). These results suggest that there was no improvement in dimen-

sional tolerance drying inside of the mold (Tiles 2–4) versus outside of the mold (Tile 1).

Drying inside the mold can prevent large changes to part geometry (i.e., warping) but not

small ones because the tile is not fully constrained by the mold cavity after cure shrinkage.

Therefore, any dimensional changes during drying were small enough to be unaffected by

the mold.

3.6.3 Cylindrical Coupons

Visual Inspection

Cylindrical coupons were well infused at all locations with no observable voids through

the thickness. Surface voidage did not extend significantly in depth for any of the tiles.

Cores from Location 1 and Location 10 are depicted in the figures below. Location 1 was

directly below the gate (Figure 3.17) while Location 10 was near to an expansion port

along the top edge (Figure 3.18). Despite significant surface voidage in both locations,

phenolic appeared to be uniformly distributed through the thickness with voidage limited
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Figure 3.16: Dimensional analysis for Sample 4: map of deviations across the OML surface
(left) and their distribution on both OML and IML surfaces (right).

(a) Tile 1 (b) Tile 2 (c) Tile 3 (d) Tile 4

Figure 3.17: Drilled cores from Location 1.

(a) Tile 1 (b) Tile 2 (c) Tile 3 (d) Tile 4

Figure 3.18: Drilled cores from Location 10.
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to a thin surface layer only. Other locations demonstrated similar infusion, and no substrate

delamination was found in any of the coupons.

Dimensions and Properties

Thickness Analysis Figure 3.19 (a) shows typical thickness reduction, ∆tcomp, of 0.05–

0.1 cm after removal of surface voidage, though a few coupons had larger reductions. Lo-

cation 1 on Tiles 3 and 4 had the largest reduction, ∆t = 0.20–0.25 cm. Location 2 on

Tiles 1 and 4 and Location 8 on Tile 4 were slightly elevated with ∆tcomp around 0.15

cm. Bubble entrapment near the gate may have contributed to increased surface voidage at

Locations 1 and 2. High resin evaporation under the expansion port likely contributed to

more pronounced surface voidage at Location 8 on Tile 4, but there was little effect on the

other tiles at that location.

Coupon thicknesses are summarized in Table 3.6, which presents the minimum, mean,

and standard deviation for each tile. Here, minimum thickness roughly dictates tile thick-

ness after post-process machining. By this measure, Sample 2 yields the most usable mate-

rial (1.83 cm). However, the other samples are only slightly thinner at minimum (1.74–1.76

cm). Mean thickness is similar across all samples ranging from 1.83 cm to 1.88 cm. Sample

2 possessed the smallest standard deviation whereas Sample 1, 3, and 4 had higher devia-

tions. This result appears to be correlated to the overall amount of resin evaporation during

processing. Again, the volume of evaporated solution was lower for Tile 2 than all other

parts (Table 3.3). Higher rates of evaporation for Tiles 1, 3, and 4 may have contributed to

both the lower minimum thicknesses (because evaporation occurs at the surface) and larger

variances (because evaporation was not uniform across the part).

Material Properties by Location Figure 3.19(b)–(d) shows virgin density, resin mass

fraction, and composite char yield for each coupon. Summary statistics for each tile, and

comparison to theoretical predictions, are shown in Table 3.7. Theoretical values were
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Table 3.6: Summary of coupon thicknesses for each tile.
Tile Minimum Mean Std. Dev.
No. (cm) (cm) (cm)

1 1.75 1.84 0.04

2 1.83 1.86 0.02

3 1.76 1.88 0.05

4 1.74 1.83 0.05

computed from the mean post-process substrate density of all coupons within a tile. Stan-

dard deviations were derived from the uncertainty distributions found in Chapter 2. The

relative difference between mean and nominal quantities is reported as a percentage of the

theoretical value whereas standard deviations are compared as a ratio of the experimental

to the theoretical span. Thus, a value of 100% indicates identical standard deviations.

Virgin density and resin mass fraction, which are closely coupled, vary similarly across

each tile with ρcomp ranging between 0.254 g/cc and 0.295 g/cc and wresin between 0.57 and

0.64. Tile means ranged from 0.264 g/cc to 0.281 g/cc and from 0.61 to 0.63, respectively.

Mean virgin densities here are somewhat less than their corresponding bulk values above,

which may be a result of selected core locations not being representative of the entire tile.

Tile 3 had the largest difference between mean coupon density (0.264 g/cc) and the bulk

tile density (0.274 g/cc). Other tiles align more closely with their bulk properties.

Char yields, plotted in Figure 3.19(d), ranged from 69.5% to 76.9%, but the majority of

samples possessed char yields between 70% and 73% and average values mirror a narrower

range. Location 11 of Tile 4 may have picked up debris mass during charring artificially

inflating this value.

Tile 1 properties varied widely across the part with low resin loading near the gate (Lo-

cations 1–4) and under the expansion port (Location 8). Partial saturation of the substrate

likely led to these material deficiencies. Tiles 2–4 demonstrated more consistent results.

Virgin density and resin mass fraction were much less variable (standard deviations about

half that of Tile 1). However, the lower resin loading of Tiles 3 and 4 is again evident here
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Figure 3.19: Properties of the cylindrical coupons.
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Table 3.7: Mean and variation in coupon properties compared to theoretical predictions.
Experimental

Virgin Density Resin Mass Fraction Char Yield

Tile Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
No. (g/cc) (g/cc) — — % %

1 0.277 0.014 0.61 0.02 71.1 1.2

2 0.281 0.007 0.63 0.01 70.5 0.4

3 0.264 0.006 0.61 0.01 72.1 0.8

4 0.273 0.005 0.62 0.01 72.7 1.8

Theoretical
Nominal Std. Dev. Nominal Std. Dev. Nominal Std. Dev.

(g/cc) (g/cc) — — % %

1 0.280 0.005 0.62 0.01 70.7 1.2

2 0.278 0.005 0.62 0.01 70.4 1.2

3 0.277 0.005 0.63 0.01 70.3 1.2

4 0.276 0.005 0.63 0.01 70.2 1.2

Relative
Mean* Std. Dev.** Mean* Std. Dev.** Mean* Std. Dev.**

(%) (%) (%) (%) (%) (%)

1 -1.1 280 -1.6 200 0.6 100

2 1.1 140 1.6 100 0.1 33

3 -4.7 120 -3.2 100 2.6 67

4 -1.1 100 -1.6 100 3.6 150

*The difference between the experimental mean and the theoretical value as a per-
centage of the theoretical value
**The ratio of the experimental deviation to the theoretical deviation as a percent-
age
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— leading to lower densities and elevated char yields compared to Tiles 1 and 2. Proper-

ties at Location 13 did not deviate significantly from the other coupons of Tile 3 despite

substantial surface voidage (ρcomp = 0.262 g/cc, wresin = 0.61, Ycomp = 71%), and the depth

of that voidage was also comparable (0.08 cm). Because visual inspection did not show

any significant in depth voidage, it is unlikely that deviations in mean properties stem from

differences in infiltration but rather from resin evaporation during curing, as stated earlier.

Resin loss was higher during curing of Tiles 3 and 4 likely reducing post-process resin

density in those parts.

Still, resin loading appears to be relatively consistent with predictions for Tiles 1, 2,

and 4. Relative differences are within about 1% of nominal. Tile 3 possessed the largest

deviations with virgin density and resin mass fraction falling -4.7% and -3.2% below their

respective theoretical values. In Tile 4, these quantities were also somewhat below predic-

tion, but less so than Tile 3, indicating that higher curing pressure may have suppressed

evaporation as intended. Tile 1 also possessed slightly depressed resin loading here, con-

trary to estimates from the bulk part, but, this aligns with higher resin evaporation compared

to Tile 2.

Mean char yields were in line with predictions for Tiles 1 and 2 but elevated for Tiles 3

and 4. Tile 4 was influenced by a potentially erroneous data point noted above. The outlier

also produced larger than predicted variance in char yield in that part (1.8% vs. 1.2%).

Neglecting Location 11 yields a standard deviation (1.3%) closer to the theoretical value.

Tiles 2 and 3 have comparatively lower variation in char yield. Variation in density and

resin loading appears to be near to that expected from the theoretical model for Tiles 2–4,

with Tile 4 possessing the least variation in these quantities. The large variation in Tile 1

properties is again evident here — standard deviations are about twice predicted by theory.

Deviation from Mean Properties by Location Despite differences in absolute proper-

ties stemming from variations in resin density, Figures 3.20(a)–(c) show relatively similar
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variation relative to their means. In the figures, black lines denote the percentage difference

relative to the mean of a given tile. Zero lines (gray) are included to assist in differentiating

positive and negative deviations. Bounds are based on the uncertainty predictions from the

Chapter 2 model (Table 2.4). Tiles 2–4 were averaged to produce the magenta line. Tile 1

was neglected in this average due to aforementioned issues with the experimental setup.
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Figure 3.20: Deviations from mean by location.

In general, resin loading was depressed, relative to the mean, near the gate and along the

bottom edge of the tile. Locations 1–4 tended toward lower virgin density, lower resin mass

fraction, and slightly elevated char yield. Location 3, which was in the bottom right corner
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of the tile, was an exception to this rule. Locations further away from the gate and including

the vent exhibited the reverse trend — higher virgin density, higher resin loading, and lower

char yield. A slight reduction in resin loading existed under the expansion port relative to

the surrounding volume, but not to a significant degree. Apart from Tile 1, deviations were

generally within a few percentage points of the mean and within theoretical uncertainties.

The one exception was Location 11 on Tile 4 with a char yield outside expected bounds.

However, density and resin mass fraction were nominal at that location suggesting that the

yield was indeed artificially inflated by debris mass.

Thermogravimetric Analysis TGA results for Location 12 are shown in Figure 3.21

differentiated into the top half (black lines) and bottom half (magenta lines). Mass loss

curves are plotted as a percentage of the initial mass, which was taken at 150◦C to account

for slight variation in sample dryness. Sample masses were between 300 mg and 375

mg. Final TGA yields in Table 3.8 were obtained at 1200◦C and compared to yields from

Locations 5, 6, and 8, which were in close proximity.
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Figure 3.21: Thermogravimetric analysis of cores from Location 12.
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Tile 1 exhibited the greatest through thickness variation with final char yield of 68.5%

at the top and 69.8% at the bottom, a difference of 1.4%. Other tiles exhibited a smaller

spread (1% or less) between top and bottom, and all were between 70% and 71%. Tile 2

yielded the most consistent results through the thickness with a difference of only 0.3%.

Table 3.8: Comparison of char yields derived from TGA (Location 12) and from furnace
results (Locations 5, 6, and 8).

Core Locations
Tile No. 12 / top 12 / bottom 5 6 8

1 68.5% 69.9% 70.2% 70.7% 72.1%

2 70.5% 70.2% 70.3% 70.6% 70.9%

3 70.6% 70.2% 71.3% 72.3% 72.4%

4 70.0% 71.0% 71.1% 71.3% 71.5%

Tile 1 did not exhibit any appreciable mass loss between 200◦C and 300◦C, unlike the

other tiles which lost around 2% in that range. Differences to resin composition may have

resulted from drying Tile 1 outside of the mold. If the resin were not fully cured prior to dry-

ing, further evaporation could perhaps alter composition. Nonetheless, the tiles processed

in the mold showed little through thickness variation in char yield which is promising for

the VIP process.

Furnace yields appeared to be slightly elevated compared to TGA yields, especially at

Location 8. Deviation at Location 8 likely resulted from reduced resin loading under the

expansion port noted previously. Still, results were within approximately ±2%, matching

uncertainties from Chapter 2.

3.7 Summary

This chapter presented a new vacuum infusion process for conformal ablators, which re-

duces resin consumption and waste, simplifies clean up, eliminates the need for a vacuum

oven or chamber, and ultimately reduces labor and cost. Preliminary testing on small sam-

ples eventually led to the successful scale up to 0.5-meter curved C-PICA tiles in this
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investigation. Though voidage appeared on external surfaces, fabricated TPS tiles were

generally well infused in depth. No substrate delamination was observed in any samples.

Material properties compared favorably with theoretical predictions, though Tiles 1 and 2

tended toward higher resin loading than Tiles 3 and 4 leading to elevated virgin density

and resin mass fraction and reduced char yield. Because there was no significant in depth

voidage in any samples, differences in material properties were likely driven by curing

conditions and their corresponding effect on post-process resin density. With consistent

and well-controlled curing conditions, it is likely that properties would be more uniform

between parts.

Within each tile, properties were fairly consistent varying only a few percent from the

mean. Resin loading tended to be depressed near the gate and elevated elsewhere. Resin

loading was also depressed, though not significantly, directly under the expansion port.

TGA found little difference in char yield between the top and bottom of the tile. Tile 1 was

again the exception here, exhibiting larger variations in properties through the thickness

and in plane likely due to poorer saturation during infusion.

The results of this chapter demonstrate the importance of proper gate and vent position-

ing. Tiles 2–4 were all similarly well infused, despite variation in vent pressure, because

residual air inside the cavity could be evacuated throughout infusion with little or no entrap-

ment. A poorly placed gate can result in air being trapped by advancing flow, preventing

full saturation of the substrate. The mold filling simulation, which is described in Chapter

5, is thus crucial to mold design and forms the backbone of the final contribution of this

thesis, a methodology to design a conformal ablative heatshield. Chapter 4 introduces the

methodology and its inputs followed by the design tasks and their outputs in Chapter 5.

Finally, two design examples using the methodology are presented in Chapter 6, including

the design of the experimental mold shown in this chapter.
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CHAPTER 4

OBJECTIVES OF THE DESIGN METHODOLOGY AND ITS INPUTS

4.1 Introduction

Chapter 3 described VIP, a new process for making conformal ablative TPS materials. VIP

not only improves manufacturing efficiency over the SOTA but also allows computational

design of the mold filling process using an application of Darcy’s law described in Chapter

1. A mold filling simulation can identify potential dry spots during infusion, ensuring high

quality TPS with no voids. However, a conformal heatshield consists of multiple tiles each

requiring a potentially unique mold design. Connecting the mold filling simulation with a

tile layout procedure can tailor a heatshield to VIP, generating the minimal set of tile ge-

ometries and the mold designs required to fabricate them. Such a methodology, integrating

material selection, tile layout, and processing to produce a configuration optimized for VIP,

forms the final contribution of this thesis.

This chapter introduces the methodology, outlining its inputs, subsequent design tasks,

and their outputs, then discusses the scope of the current implementation. The remainder of

the chapter is devoted to describing the inputs, which are divided into primary parameters,

known a priori, and intermediate parameters, which can be estimated. The former quantities

include TPS geometry, constituent material properties, and process parameters. Models for

estimating intermediate inputs, derived properties of the substrate, resin, and the composite

TPS material, are based on the constitutive model of Chapter 2. Those results are extended

in this chapter to additional parameters (substrate permeability, resin viscosity, and resin

vapor pressure) relevant to the mold filling simulation and the process design. Predicted

properties are compared to experimental results for C-PICA.
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4.2 Overview and Objectives of the Design Methodology

The design methodology, depicted in Figure 4.1, combines a Darcy’s law simulation of

the mold filling process with a tile layout tailored to VIP. It encompasses three sequential

tasks: (1) generating a tile layout for the specified heatshield geometry, (2) producing a VIP

mold design for each tile geometry, and (3) estimating relevant properties of the fabricated

TPS material. These design tasks, shown on the right in the figure, form the core of the

methodology. Full exploration of the design space is carried out during tiling to select the

optimal tile layout. Mold designs are optimized using particle swarm optimization (PSO).

The outputs/objectives of each step are listed below each heading.

Inputs

4.3  Primary Inputs
4.3.1 TPS geometry

4.3.2 Primary substrate properties

4.3.3 Resin solution properties

4.3.4 Cured resin properties 

4.3.5 Process and design parameters

5.2  Tile Layout
Tile geometries

Substrate geometries (curved and flat)

4.4  Intermediate Inputs
4.4.1 Intermediate substrate properties

4.4.2 Resin solution properties

4.4.2 Composite properties

5.3  Mold and Process Design
Gate and vent locations

Vent pressure

Mold filling time

Resin consumption

5.4  TPS Material Property 

Estimation
Virgin density

Resin mass fraction

Char yield

Design Tasks

Figure 4.1: Design methodology for tiling and fabricating a conformal heat shield.

Tiling yields the minimal set of tile geometries spanning the aeroshell subject to con-

straints on manufacturing. Corresponding substrate geometries are generated by scaling

up the tile geometries to account for process shrinkage, then flattening them to produce

two-dimensional cutting patterns. Mold and process design iterates on the mold filling

simulation in order to find gate and vent positions that minimize the risk of air entrapment
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and void formation. Metrics for the selected design are also output from this step (total

filling time and resin consumption) as well as the vent pressure. Finally, in the last step,

results from Chapter 2 are used to estimate the virgin density, resin mass fraction, and char

yield of the fabricated TPS material. Each task is discussed in more detail in Chapter 5 in

sections corresponding to the numbers in Figure 4.1.

Required inputs to the methodology, on the left in Figure 4.1, precede the design tasks.

These are differentiated into primary and intermediate inputs. The former are quantities or

aspects of the design that must be known a priori (though some approaches for obtaining

these quantities are suggested below) while the latter can be estimated to simplify early

conceptual design where experimental data may be scarce. Inputs are discussed in detail in

corresponding sections below after noting some limitations of the current implementation.

4.2.1 Scope of the Present Work

The methodology itself is generally applicable to any aeroshell geometry and TPS mate-

rial. However, the present work is limited to conical aeroshells with a blunted, spherical

nose flying at zero angle of attack. Thus, the stagnation point falls on the nose of the ve-

hicle, and generated tile layouts are symmetric like the one depicted in Figure 4.2. TPS

thickness is assumed to be uniform across the heatshield. The spherical nose must be man-

ufacturable from a single tile. Otherwise, the nose tile is considered infeasible. Details of

the seam geometry are also neglected — each tile is assumed to butt up against the next at

a perpendicular joint with an orthogonal seam — and shoulder tiles are not considered.

Alternative tile layouts (e.g., asymmetric designs, non-uniform TPS thicknesses, shoul-

der tiles, and large nose tiles) cannot be generated automatically in the current implemen-

tation but could be designed externally and then treated as an input to the mold filling

simulation. Thus, mold designs, process metrics, and estimated TPS properties can still

be generated for these designs. However, note that, in this case, the number of unique

tile geometries should be minimized to limit the number of molds that must be fabricated.
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Shoulder

Nose Tile

Conical Flank 
Tiles

Figure 4.2: Front view of a symmetric tile layout with a single nose tile and two rings
forming the conical flank.

In the future, layout rules could be extended to allow automated tiling of these additional

configurations.

Molds are limited to single gate, single vent designs where injection and venting oc-

cur at point locations (though the gate is modeled as a two-dimensional circular source in

the simulation). This configuration proved sufficient for infusing the TPS materials and

geometries under consideration here (Chapter 3).

Finally, the methodology does not investigate expansion port size, number, or place-

ment. The previous chapter described a rectangular grid of 0.5 in (1.27 cm) diameter ex-

pansion holes spaced 3.5 in (8.9 cm) apart in the experimental mold. This arrangement

yielded good results, i.e., flow of resin and volatiles did not appear to be impeded during

curing or drying. However, other arrangements and spacing could be studied as suggested

in Chapter 7.
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4.3 Primary Inputs

Primary inputs to the methodology include design inputs (TPS geometry), material inputs

(properties of the constituent materials), and process and design parameters. These inputs

are not estimated in the present work and, therefore, must be known a priori from external

sources or analyses, some of which are suggested here.

4.3.1 TPS Geometry

TPS geometry is specified as a two-dimensional OML geometry and a TPS thickness, tTPS.

Ideally, a given geometry should be feasible for manufacturing. For example, the desired

TPS thickness must not exceed that which is achievable with the specified substrate and

any curvature should not be less than a minimum radius of curvature to ensure uniform

draping of the substrate without wrinkling (drapeability, considered below). The method-

ology identifies such infeasibilities — by comparing tTPS to the maximum manufacturable

thickness, tmax
comp, and the radius of curvature of each tile to the minimum, Rmin — but re-

quires the designer to supply an alternate material or a different manufacturing technique

to rectify them.

4.3.2 Properties of the Fiber Substrate

Bulk Properties

Required substrate properties include bulk dimensions (width, Wsub, length, Lsub, and

thickness, tsub), and areal density, ρareal
sub . Fiber substrates are only available, or manufac-

turable, in certain sizes. For example, Felt 1 is available up to a thickness of about 1 inch

(2.54 cm) and widths between 41 and 47 inches (104 to 119 cm). Areal density is assumed

constant as in previous chapters, though the equations below could easily be reformulated

in terms of the volumetric density. To compute uncertainties using the results of Chapter 2,

the variation in thickness, ∆tsub, and areal density, ∆ρareal
sub , must also be supplied. These
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quantities are often available from the manufacturer.

Fiber Properties

Properties of the the individual fibers composing the substrate — fiber density, ρfiber and

diameter, dfiber — are less available but can be approximated for carbon fiber materials

given a known precursor. Rayon-based substrates, typical in ablative TPS due to low ther-

mal conductivity, are commonly in the range 1.35 g/cc to 1.44 g/cc as was noted previously

[89]. Using micro-tomography, Panerai, et al. measured fiber diameters around 10–12 µm

for Felt 1 but noted that cross sections are lobular, not circular, and possess a hollow central

lumen. This work simplifies the fiber cross section to a circular cross section with diameter,

dfiber, and average density, ρfiber.

Drapeability

Drapeability generally describes the ability of a fabric to conform to a desired shape. High

curvature can lead to wrinkling, which can cause unpredictable, and undesirable, mold

flow (i.e., racetracking) as well as reduce usable thickness. Draping, and wrinkling, of

fabric materials are complex phenomena influenced by both microscopic and macroscopic

properties.

Modeling draping in LCM is an area of considerable research in itself. A kinematic

pin and joint model is frequently used to predict deformation and wrinkling of woven ma-

terials [96]. This model assumes fibers are pinned together and can rotate freely at these

intersections giving rise to shearing. Fiber directions are assumed to lie in one of only two

initial directions, warp and weft. Such a model has been used to assess change in substrate

permeability due to deformation [97]. Finite element methods which treat the material as

a continuum are an alternative to the kinematic approach, but these methods tend to be

computationally intensive [98].

Nonwoven materials pose a problem for the kinematic approach due to disordered,
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entangled fibers. Thus, fibers can undergo a variety of other deformations including un-

curling, disentanglement, and pull-out. Furthermore, failure mechanisms operate at vastly

different length scales. Martinez-Hergueta, et al. incorporated these effects in a multiscale

constitutive model to predict deformation of needled nonwoven fabrics similar to the felts

in this thesis [99]. Cherouat, et al. used an approach similar to the pin-joint model but

allowed filament elongation at high shear angles to approximate nonwoven behavior [98].

This methodology forgos a complicated draping simulation in favor of a simple mini-

mum radius of curvature constraint,Rmin, to ensure uniform draping. Above this minimum,

there is assumed to be no substrate wrinkling. The minimum radius of curvature is assumed

to be known a priori; the quantity used later in Chapter 6 is based on guidance from the felt

manufacturer. If the curvature of a tile violates this constraint, then it cannot be fabricated,

and an alternate process or material must be selected. Future extensions of the method-

ology, discussed further in Chapter 7, could include an accurate draping simulation along

the lines of the prior work to improve the mold filling simulation and material property

predictions.

4.3.3 Properties of the Resin Solution

Resin solutions are a mixture of components including resin, solvent, and potentially other

fillers. The methodology requires two properties of the resin solution, dynamic viscosity

and vapor pressure, both important parameters for mold filling. Mixture quantities are esti-

mated in the next section by weighted averages based on volume, weight, or mole fractions

of the components. Thus, in addition to resin composition itself (e.g., component amounts

by volume, vc, by weight, wc, and by mole, xc), individual component properties must be

known: viscosity (either the kinematic viscosity, νc, or dynamic viscosity, µc), vapor pres-

sure, Pvap,c, and density, ρc, of each component c must be supplied. Component viscosities

and vapor pressures can be obtained from chemical databases or material datasheets.
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4.3.4 Properties of the Cured Resin

Density and Dimensional Changes

The resin undergoes both mass and volume change during processing. Mass loss occurs

due to evaporation of solvent, reactants, and products. Volume change occurs as the so-

lution expands due to heating and contracts due to crosslinking. Contraction of the resin

system is coupled to the substrate present (which may resist shrinkage and prevent some

or all contraction) and mold boundary conditions (bonding to the mold walls also prevents

contraction). Section 2.2.4 reduced post-process resin density, ρpost
resin, to a function of two

inputs: ρR, and its volumetric shrinkage during processing, αR.

The quantities ρR and αR are properties of the pure resin where there is no resistance to

volume change, which may not hold in actual processing. An experimental approximation

can be made by curing a given resin within a container possessing non-bonding walls. For

example, PTFE coating, with its chemical resistance and non-stick properties, can achieve

the desired boundary conditions. The necessary quantities are then obtained from measure-

ment of pre- and post-cured mass and dimensions. Deviations in these quantities, ∆ρR and

∆αR are also necessary to predict uncertainty using the approach described previously in

Chapter 2.

Char Yield

Resin char yield, YR, is highly dependent on composition and processing. This quantity

may be measured experimentally. However, in the absence of experimental results, his-

torical data may be useful (e.g., as compiled by Williams and Curry [100] and Parker and

Winkler [101]). The latter reference contains char data for phenolic resins. It may also

be estimated using computational techniques. For example, Parker and Winkler present a

method for predicting phenolic char yield as a function of resin composition and degree of

crosslinking. A similar approach is presented by Wang, et al. [102]. Still other work uses
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a kinetics model of phenolic pyrolysis to predict char formation[103]. In addition to the

nominal value, variation in char yield, ∆YR, must also be supplied in accordance with the

uncertainty estimation in Chapter 2.

4.3.5 Process and Design Parameters

Gate Design

Gate design includes geometry and an appropriate boundary condition to reflect the process

setup. This work used a constant pressure boundary condition with gate pressure, Pgate, set

to the ambient atmospheric pressure, Patm, to reflect the process set up.

Minimum Seam Angle

A minimum seam angle, βmin, prevents seam alignment between adjacent tiles, a require-

ment typical of tiled heatshields (e.g., see the tile design for the Mars Science Laboratory

heatshield [26]). A single angle between adjacent seams, βj,j+1, is depicted on the represen-

bj,j+1
 

Figure 4.3: A seam angle, βj,j+1, illustrated on the previous tile layout example (Figure
4.2).
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Table 4.1: Summary of primary inputs to the design methodology.
Category Parameter Symbol(s) Description

TPS
Geometry

OML —
A two-dimensional curve describing
the external surface of the TPS

TPS Thickness tTPS
Desired thickness of the TPS after
processing

Fiber
Substrate

Dimensions Wsub, Lsub
Width and length of the substrate
material

Thickness tsub, ∆tsub
Nominal substrate thickness (and its
variation)

Areal density ρareal
sub , ∆ρareal

sub

Nominal substrate areal density (and
its variation)

Fiber density ρfiber, ∆ρfiber

Density of the fibers comprising the
substrate averaged over their cross-
section

Fiber diameter dfiber
Diameter of the fibers comprising
the substrate

Min. radius of
curvature

Rmin Curvature requirement to prevent
substrate wrinkling

Resin
Solution

Composition vc, wc, xc
Volume, weight, and mole fractions
of solution components

Viscosities νc or µc
Kinematic or dynamic viscosity of
solution components

Vapor pressure Pvap,c
Vapor pressure of solution compo-
nents

Cured
Resin

Density ρR, ∆ρR
Density of the pure resin (and its
variation) after curing

Volumetric
shrinkage

αR, ∆αR
Shrinkage of the pure resin (and its
variation) during curing

Char yield YR, ∆YR
Char yield of the pure resin (and its
variation)

Process
and

Design
Gate geometry —

Geometry of the gate, specified here
as a circle with radius, Rgate

Gate pressure Pgate
Pressure at the gate, specified here
as Patm

Minimum seam
angle

βmin Constraint on the minimum angular
offset between adjacent radial seams
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tative heatshield in Figure 4.3. The minimum angle constraint is enforced for all adjacent

seams during tile layout.

4.3.6 Summary of Primary Inputs

Table 4.1 summarizes the primary inputs, their symbols (where appropriate), and descrip-

tions. Quantities are differentiated by category, corresponding to the subsection headings

above.

4.4 Intermediate Inputs

The second set of inputs are intermediate material properties — properties that are func-

tionally dependent on those above and are required for subsequent mold filling analysis

and TPS property estimation. They are divided into properties of the substrate, properties

of the resin solution, and properties of the combined substrate and resin after processing

(i.e., the composite). Any of these properties may be experimentally measured and treated

as additional inputs to the methodology. As a result, some inputs identified above may no

longer be required.

Alternatively, these properties can be numerically estimated using simplified models be-

low to speed design evaluation. Some of these models were previously derived in Chapter

2, and those equations are referred to here where appropriate. Additions to these results pre-

sented in this section include estimates of substrate permeability and resin viscosity, which

appear in Darcy’s Law, and resin vapor pressure, which limits the vent pressure during pro-

cessing. These models are compared to experimental values for C-PICA to demonstrate the

validity of the approximations on a preliminary basis. Finally, an additional result describ-

ing the maximum manufacturable TPS thickness, tmax
comp, constrains TPS thickness during

tile layout.
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4.4.1 Properties of the Fiber Substrate

Density

In addition to the areal substrate density, multiple volumetric substrate densities appear

in this methodology: the uncompressed density, ρsub; the compressed density in the mold

prior to processing, ρpre
sub; and the density after processing, ρpost

sub . Practically, molds must

be designed to the minimum substrate thickness to ensure there are no gaps between the

fiber material and the tooling, which can lead to racetracking. Therefore, the uncompressed

substrate, with thickness variance ∆tsub, is compressed to a uniform pre-process thickness

(also Equation 2.24):

tpre
sub = tsub −∆tsub (4.1)

With known areal density, ρareal
sub , the compressed, pre-process volumetric density is given

by (also Equation 2.5):

ρpre
sub =

ρareal
sub

tpre
sub

(4.2)

and post-process density by (also Equation 2.16):

ρpost
sub =

ρpre
sub

1− α
(4.3)

where α is the volumetric shrinkage of the substrate. Results for α, discussed previously in

Chapter 2, are repeated later in this chapter.

Porosity

Porosity is estimated by (also Equation 2.1):

φ = 1− ρsub

ρfiber

(4.4)
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where the pre- or post-process substrate density may be substituted to estimate the corre-

sponding porosity. Recall that post-process substrate properties do not refer to the compos-

ite material but rather the substrate alone absent the resin.

Permeability

Kozeny-Carman relations have long been used to estimate the permeability of porous me-

dia [104]. Originally formulated for a bed of packed spheres, Kozeny-Carman has since

been expanded to other porous structures. This methodology uses an extension to an arbi-

trary randomly-oriented, three dimensional fiber mat by Tomadakis and Robertson [105].

Nondimensional permeability is estimated:

K

d2
fiber

=
φ

32 ln2 φ

(φ− φp)a+2

(1− φp)a [(a+ 1)φ− φp]2
(4.5)

where φp, the percolation threshold, and a are numerically derived quantities dependent on

geometry. For 3-D randomly overlapped fibrous media, these quantities are φp = 0.037 and

a = 0.661. Note that the notation has been adapted from the original to fit the nomenclature

of this thesis.

Results Figure 4.4 presents estimated permeability as a function of porosity for several

fiber diameters. Figure 4.4(a) depicts permeability across the full range of porosities, while

Figure 4.4(b) shows a narrower range relevant to the high porosity materials of this thesis.

Experimental results, discussed below, are included in the righthand plot. Note that porosity

here is that of the substrate compressed within the mold, φpre, so that K corresponds to the

material as infused. A truly random fiber network produces isotropic permeability, but

fiber organization in the actual material may yield variation between the in plane, KIP, and

through the thickness, KTT, components. However, the thinness of TPS tiles effectively

limits the dependence on KTT and allows use of a single value for permeability. This topic

is addressed further in Chapter 5.
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Figure 4.4: Tomadakis and Robertson permeability model [105] for a three-dimensional,
random fiber network.

Permeability was measured by flowing air through cylindrical cores cut from Felt 1 us-

ing the methodology described in Appendix A.1. Cores were oriented in both directions,

through thickness and in plane. Because the test fluid was a gas, the Klinkenberg correction

was used to obtain permeability in the limit of continuum (liquid) flow. Results, plotted in

Figure 4.4, compare well to theoretical values from the Tomadakis and Robertson model.

Permeability was found to be between 2 × 10−10 m2 and 4 × 10−10 m2 for these samples,

falling between dfiber = 10 µm and 12.5 µm which roughly corresponds to the range sug-

gested by Panerai, et al. for this felt. Permeability appears to be slightly lower through the

thickness than in plane. TT samples are clustered closer to the line corresponding to dfiber

= 10 µm.

4.4.2 Properties of the Resin Solution

The following properties are quantities for the resin mixture averaged over its components.

It is important to note that component properties must be specified at the infusion tempera-

ture, which is room temperature in the current process. Extrapolating to other temperatures

may be possible with knowledge of component properties as functions of temperature.
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Furthermore, an ideal solution is assumed, i.e., interaction between unlike molecules can

be neglected and mixture properties are functions of the individual components weighted

by their relative proportions. Because the C-PICA resin formulation is proprietary, ex-

perimental and theoretical results are compared on a relative basis, rather than providing

actual values. Experimental methodologies in this section are described in more detail in

Appendix A.2

Dynamic Viscosity

This work leverages the Chevron model, originally developed to approximate the viscosity

of petroleum blends, which uses a volume fraction weighted sum of component viscosities.

This mixing rule, and several others, were reviewed by Centeno, et al. [106]. The Chevron

method was found to yield good results at low viscosities while having a fairly simple for-

mulation, which led to its selection here. The Chevron model employs a viscosity blending

index (VBI) for each component of the mixture,

VBIc =
log νc

3 + log νc
(4.6)

The VBI of the mixture is a weighted sum of the component VBIc,

VBIsol =
∑
c

vcVBIc (4.7)

where vc is the volume fraction of a component in the solution. Rearranging Equation 4.6

yields an expression for the kinematic viscosity of the solution as a function of the mixture

VBI,

νsol = 10

(
3VBIsol
1−VBIsol

)
(4.8)
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Finally, dynamic viscosity, not kinematic viscosity, is required for Darcy’s law and can be

computed given the resin solution density, ρsol,

µsol = νsolρsol (4.9)

If not known, ρsol can be approximated using an average of its components based on mole

or weight fractions.

Results C-PICA resin viscosity was measured using a rotational viscometer over temper-

atures ranging from 16◦C to 29◦C. Portions of two separately mixed resin solutions were

measured, and the data were fitted using an exponential model. The fitted model was then

used to obtain nominal viscosity at 25◦C, which was nondimensionalized to µ∗sol=1. The

Chevron approach predicts slightly lower resin viscosity, µ∗sol=0.87. A weight fraction-

based average of the solution components was used to estimate ρsol for the viscosity pre-

diction. Minor components, comprising less than 1% of the solution in total by volume,

were neglected in the approximation. Even with the simplification, the model prediction is

only 13% below the measured value.

Vapor Pressure

Resin boiling effectively limits vent pressure in VIP. If the pressure is too low, boiling will

occur along the flow front and may lead to entrapped gas bubbles and voidage, a problem

for the first tile in Chapter 3. Resulting bubbles can be compressed after saturation, but not

completely, thus it is still beneficial to limit their formation during infusion. Vapor pressure

is estimated using Raoult’s law, the sum of component vapor pressures weighted by mole

fraction [107],

Pvap,sol =
∑
c

Pvap,cxc (4.10)
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The process pressure should not fall below the vapor pressure of the solution to avoid boil-

ing. Thus, for simulation purposes, the vent pressure, Pvent, is set equal to Pvap,sol. In

reality, vapor pressure may deviate from that predicted by Raoult’s law due to the sup-

pression or enhancement of intermolecular forces between unlike molecules. It is also

complicated by the fact that individual components may possess varying volatility and do

not behave as a uniform compound with a single boiling point. Thus, this method provides

a first order approximation but would likely need to be adjusted in subsequent processing.

In any case, the results of Chapter 3 indicated that a range of vent pressures in the vicinity

of the solution boiling point yielded similar material quality.

Results Vapor pressure was measured by slowly evacuating an approximately 500 mL

container of C-PICA resin until boiling was observed. Pressure was controlled by a vacuum

regulator which was set to ramp down from atmospheric pressure over several minutes.

There was some ambiguity in the actual boiling point (likely due to varying component

volatility discussed above). Large bubbles indicative of boiling occurred at a low pressure,

nondimensionalized here to P ∗vap,sol = 1, but small bubbles initially formed and percolated

through the solution at about three times that pressure. The lower pressure was taken

as the solution boiling point / vapor pressure, and relative to this quantity, Raoult’s law

agrees quite closely, P ∗vap,sol = 0.97. Minor solution components were again neglected in

the estimation, comprising less than 1% of the solution in total by mole.

4.4.3 Properties of the Composite Ablative Material

Resin Density in the Composite

Resin density in the composite post-processing, ρpost
resin, is coupled to the overall material

shrinkage and functionally depends on the shrinkage and density of the pure resin. That is,

a stiff substrate yields little volume contraction, and thus lower resin density, compared to
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a compliant substrate. This parameter is estimated by (also Equation 2.22):

ρpost
resin =

1− αR

1− α
φpre

φpost
ρR (4.11)

Recall that ρpost
resin is averaged over the post-process porous volume. Thus, it is not a mea-

sure of the local resin density but rather the density if the resin were uniformly distributed

throughout the porous volume. This expression assumes that no bonding occurs with the

mold walls, which is true of nonstick coated surfaces.

It was noted in Chapters 2 and 3 that post-process resin density is dependent on curing

conditions, specifically the evaporation of solids from the solution during curing. Thus,

while this approach bounds ρpost
resin, the resin density will likely be lower in actual processing.

In Chapter 2, experimental resin density was 15% to 22% below this prediction depending

on assumptions on substrate compliance. Resin density was similarly depressed for the tiles

processed in Chapter 3. Experimental results, if available, provide a better approximation

and improve predictions of final TPS properties.

Dimensional Changes during Processing

Shrinkage of the resin system during processing changes overall part dimensions, which

are differentiated into an in plane component, εIP, and a through thickness component,

εTT. These quantities, which are fractional length changes, can be approximated as func-

tions of the pure resin shrinkage and the substrate porosity as outlined in Section 2.2.3.

The expressions in Table 2.2 can then be used to approximate shrinkage according to the

substrate compliance. Total volumetric shrinkage is then,

1− α = (1− εTT) (1− εIP)2 (4.12)
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Through thickness shrinkage leads to a post-process composite thickness of

tcomp = tpre
sub (1− εTT) (4.13)

However, margin must be added to account for post-process removal of surface voidage.

Therefore, TPS thickness is reduced by an additional fractional change, εM, due to post-

process machining:

tmax
comp = tpre

sub (1− εTT) (1− εM) (4.14)

This equation, used later in Chapter 5, constrains the maximum tile thickness.

4.4.4 Summary of Intermediate Inputs

Table 4.2 summarizes the intermediate inputs, their symbols, and the relevant equations

for estimating them. Quantities are again differentiated by category, corresponding to the

subsection headings above.

Table 4.2: Summary of intermediate inputs to the design methodology and relevant equa-
tions.

Category Parameter(s) Symbol(s) Equation(s)

Fiber Substrate Pre-process density ρpre
sub 4.1–4.2

Post-process density ρpost
sub 4.3

Pre- and post-process porosity φpre, φpost 4.4

Permeability K 4.5

Resin Solution Dynamic viscosity µsol 4.6–4.9

Vapor pressure Pvap,sol 4.10

Composite Material Post-process resin density ρpost
resin 4.11

Volumetric shrinkage α 4.12

Maximum thickness tmax
comp 4.13–4.14
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4.5 Summary

This chapter introduced an integrated design methodology combining tile layout, process

design, and property estimation for conformal ablative heatshields. Inputs to the method-

ology, which were discussed in detail, describe the heatshield geometry, process parame-

ters, and the TPS formulation itself. Primary inputs, which must be known a priori, were

outlined first and included bulk substrate properties, fiber properties, resin solution com-

position, and cured resin properties. Process and design parameters were also specified,

including the gate design (geometry and boundary condition) and a minimum seam angle

constraint to prevent alignment of adjacent tile seams.

Intermediate inputs were discussed next. These quantities, which are required for car-

rying out the subsequent design tasks, included properties describing the substrate (density,

porosity, and permeability), resin solution (viscosity and vapor pressure), and composite

TPS (post-process resin density and shrinkage). Results from Chapter 2 were leveraged

in estimating several of these quantities. Additions presented here included permeabil-

ity estimation for random, three dimensional fiber mats using a model by Tomadakis and

Robertson, mixture viscosity estimation using the Chevron volume blending approach, and

vapor pressure estimation via Raoult’s law. Predicted properties agreed well with prelimi-

nary experimental results for C-PICA.
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CHAPTER 5

TASKS OF THE DESIGN METHODOLOGY

5.1 Introduction

This chapter completes the description of the conformal heatshield design methodology,

outlining approaches for the design tasks introduced in the previous chapter: tile layout,

mold and process design, and TPS property estimation. The latter task once again uses

estimations derived previously in this thesis (Chapter 2). Objective functions, defined in

this chapter, quantify the “goodness” of the tile layout and mold designs. Tile layout min-

imizes the total number of tiles, yielding a minimal set of tile geometries. Then, molds

are designed for each of the geometries to minimize the blocked length, a measure of air

entrapment during infusion. Constraints ensure that the design is manufacturable given

material selection and process parameters. The design tasks are discussed in the following

sections, laying out the inputs, solution approaches, and outputs for each step. Section

numbers correspond with those shown in the methodology outline in Figure 4.1.

5.2 Tile Layout

Tiling converts an untiled heatshield geometry (the input) into segmented, manufacturable

tiles (the output) based on a set of layout rules (constraints). Recall that blunted conical

or biconical geometries are within the scope of this work. Some constraints are implic-

itly enforced by the approach described below; other constraints are explicitly applied in

the optimization. The optimal design is that with the minimum total number of tiles (the

objective function). In the present approach, each tile requires one VIP run, and each tile

geometry requires one tooling set. Minimizing these quantities can limit costs (both non-

recurring and recurring) and manufacturing time (because there are fewer tiles to process).
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In addition, fewer tiles greatly simplifies aeroshell integration due to fewer seams and less

gap filling.

5.2.1 Tile Parametrization

Tiling proceeds radially outward from the nose of the vehicle forming axisymmetric, con-

centric rings. Each ring is divided into an integer number of identical tiles (thus, each ring

requires only one mold to fabricate). Each segment of the OML is treated separately start-

ing with the nose. For example, tiling a biconic aeroshell proceeds from the nose to the first

conical segment and then the second conical segment (Figure 5.1). Tiles do not span these

segments. Thus, a seam exists at the boundary between adjacent segments. Each segment

is operated upon to generate the optimal tile layout for that segment producing a layout

consisting of M OML segments each composed of Qmin
i rings. Qmin

i is the minimum num-

ber of rings required to tile segment i and is computed by assuming a number of tiles in

each ring equal to the maximum value, Nub, which yields the most coverage radially along

the flank. The number of rings is then increased sequentially from one, stopping with the

first feasible solution, which is set to Qmin
i .

OML geometries consist of the circular nose segment and one or more linear segments

forming the conical flank(s). Geometry is specified by a radial and height position relative

to the vehicle nose, (ri,j, zi,j). Subscripts denote segment and ring indices, i ∈ [1,M + 1]

and j ∈ [1, Qmin
i ], respectively. Segment geometries are defined by start and endpoints:

(ri,1, zi,1) and (ri+1,1, zi+1,1). The circular nose segment also includes a center, (r1,c, z1,c),

and radius of curvature, Rn (Figure 5.2). Within each segment, ring j spans from (ri,j, zi,j)

to (ri,j+1, zi,j+1). The nose design, formed as a single tile if possible, is trivial. If the nose

cannot be formed from a single tile, design of the flank continues, but an alternate material

or manufacturing process must be considered for the nose tile. The following discussion

describes the optimization procedure applied to each subsequent conical segment i.

129



(1) (2) (3)

Figure 5.1: Approach to generating tile layout for a biconic aeroshell: (1) nose tile, (2) 1st
conical flank, and (3) 2nd conical flank.
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Figure 5.2: An example OML geometry illustrating geometry definitions.
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5.2.2 Inputs

Inputs to the optimization include TPS geometry (OML segment geometry and desired TPS

thickness, tTPS), substrate geometry (Wsub, Lsub), and processing characteristics (tmax
comp,

maximum processed material thickness, and εIP, in plane shrinkage). Finally, the minimum

radius of curvature, Rmin, and minimum seam angle, βmin, are required to enforce their

respective constraints.

5.2.3 Optimization

Independent Variables

The independent design variables are the numbers of tiles in each concentric ring. Moving

from the innermost to the outermost ring, these are denoted by Nj , j ∈ [1, Qmin
i ].

Dependent Variables

Dependent variables, computed quantities following from the design specification, include

the dimensions of the curved tile as installed on the heatshield, the dimensions of the curved

substrate, and the dimensions of the corresponding substrate once flattened. For example,

the angle the curved tile spans on the heatshield, γj = 2π/Nj , is scaled up to a correspond-

ing angle spanned by the substrate, γsub
j , and then transformed to a flat pattern angle, γfj .

Other parameters are similarly transformed (Figure 5.3). Note that these transformations

are functionally dependent on segment geometry as well as the in plane material shrinkage

during processing.

A sub-optimizer maximizes substrate side length lsub
j given γfj and rfi,j by varying its

angular orientation relative to one side of the substrate, δ (Figure 5.4). The problem is

constrained by the substrate dimensions (width, Wsub, and length, Lsub), i.e. the flat pattern

must reside within the rectangular footprint of the material. Thus, the maximum side length

for a given orientation, lsub
j = lsub

j (δ), is contingent on the corner locations and, possibly,
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Figure 5.3: Transformation of (1) tile geometry to (2) scaled up substrate geometry to (3)
two-dimensional flat pattern.
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Figure 5.4: Illustration of the tile size optimization problem.

While a strictly geometric approach to the tile size problem does exist, it requires eval-

uating many cases in a network of conditional statements. Thus, optimization was selected

for its relative simplicity over enumerating every possible geometric case. Once deter-

mined, maximum substrate length is then transformed back to a maximum tile length, lmax
j ,

scaling by the shrinkage. That quantity, lmax
j , is connected to the OML geometry through

lmax
j =

√
(ri,j+1 − ri,j)2 + (zi,j+1 − zi,j)2. Thus, the starting coordinate of each ring de-

pends on that of the preceding one. In this way, tile layout is built radially outward.
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Objective Function

The objective function minimized by the optimization routine is simply the sum of all Nj ,

fobj,1 =

Qmin
i∑
j=1

Nj (5.1)

Constraints

The layout is subject to several constraints (Table 5.1) that ensure the design is manu-

facturable within size and curvature limitations and that seams of adjacent rings do not

align. Manufacturing constraints are applied, first, by two inequalities: tTPS ≤ tmax
comp and

rsub
i,j ≥ Rmin, j = [1, Qmin

i ]. The first inequality ensures that TPS thickness is not larger

than that of the processed material. If this constraint is violated, the methodology termi-

nates as no design would be feasible. Either the TPS thickness must be adjusted or another

substrate must be selected. The second inequality enforces the limit on curvature. This

inequality compares the minimum radius of curvature for each tile to the material con-

straint. If this second inequality is violated, the infringing tile(s) is (are) flagged, but the

optimization continues. Flagging warns the designer that this tile geometry may present

a challenge for VIP due to substrate wrinkling. An alternate design, material, or process

may be required in these cases to avoid wrinkling. To ensure the set of Nj can fully span

the OML segment, the sum of all lmax
j must be greater than or equal to the total segment

length,
√

(ri+1,1 − ri,1)2 + (zi+1,1 − zi,1)2.

The minimum seam angle constraint, βmin, prevents radial seams of adjacent rings from

being aligned. There are multiple seam angles between two adjacent rings j and j + 1, up

to two adjacent seams per inner ring seam, or 2Nj . Seams angles also depend on relative

positioning (i.e., one ring can be rotated relative to the other). For example, Nj = Nj+1

could yield a minimum seam angle of zero (with all seams aligned) or
π

Nj

(half the angular

span of each tile). The latter quantity is the value used by the methodology, βmin
j,j+1, the
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largest possible minimum seam angle. This computation is described further in Appendix

C. The minimum seam angles between all rings, i.e., all βmin
j,j+1 j ∈ [1, Qmin

i − 1], must be

larger than the minimum, or the design is infeasible. Finally, side constraints are imposed

on the Nj to practically limit the design space.

Table 5.1: Summary of tiling constraints for OML segment i.
Description Variable(s) Constraint

Thickness tTPS tTPS ≤ tmax
comp

Radius of Curvature ri,j rsub
i,j ≥ Rmin, j ∈ [1, Qmin

i ]

Segment Length lmax
j

Qmin
i∑
j=1

lmax
j ≥

√
(ri+1,1 − ri,1)2 + (zi+1,1 − zi,1)2

Seam Angle βmin
j,j+1 βmin

j,j+1 ≥ βmin, j ∈ [1, Qmin
i − 1]

Number of Tiles in Ring Nj Nlb ≤ Nj ≤ Nub

Solver

The tile layout problem is a discrete one (i.e., a limited set of Nj), and the seam angle

constraint significantly reduces the feasible design space. Thus, only a small subset of

all possible designs typically needs to be fully evaluated, and, even then, the computation

is quite fast. Thus, a full exploration of the design space is carried out, assuming tTPS

is feasible, generating every possible set of Nj that obeys the side constraints, Nlb and

Nub. The minimum seam angle is computed for each design, and those smaller than the

constraint, βmin, are eliminated. Resulting designs are then evaluated according to the

radius of curvature and segment length constraints (Table 5.1). Designs violating the former

constraint are flagged while designs violating the latter constraint are removed. Finally, the

design that minimizes fobj,1 is selected from among the remaining feasible set. In the

example presented later, the optimal tile layout was generated in only a few seconds in

parallel with relatively modest processing power1. Larger aeroshells, with several rings of
1A single 6-core Intel Xeon E5-1650 v4 processor.
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tiles, extend computation time but still only require a few minutes at most.

5.2.4 Outputs

Two outputs follow from the tiling procedure described above – the set of unique tile ge-

ometries and the corresponding substrate geometries required to make them. That is, for

a tile layout design comprised in total of Q =
∑

iQ
min
i rings, there are Q tile geometries

and Q substrate geometries. Recall that the substrate is scaled up from the final tile geom-

etry to account for process shrinkage. Futhermore, the substrate geometries yielded by the

procedure consist of both the two-dimensional flat pattern, used for cutting the substrate

from the raw material, and the three-dimensional curved geometry, used in simulating the

infusion process. The latter output is the subject of the next step outlined below.

5.3 Mold and Process Design

The next step of the methodology takes the set of substrate geometries generated above

and simulates mold filling to produce an optimal mold design for each tile. Mold filling

is simulated on the curved substrate geometry as it is draped in the mold. Designs are

limited to single gate, single vent configurations as mentioned earlier. Generally speaking,

the “best” designs are those that prevent voids from air entrapment during infusion, and the

objective function quantifying that metric is discussed below. Leveraging the fact that TPS

tiles are typically much smaller through the thickness than in plane, infusion is simulated

on a two-dimensional shell to speed iteration. This simplification neglects through the

thickness variation in substrate properties due to draping, but these variations are typically

small for the materials and geometries here. Mold filling is simulated using Liquid Injection

Molding Simulation (LIMS), a CV/FE simulation developed at the University of Delaware

[82, 108], to compute the time of resin arrival across the part (time to fill, Tf ).
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5.3.1 Inputs

Inputs to the mold and process design steps include substrate geometry, material proper-

ties, and process settings. As described above, substrate geometry is that of the three-

dimensional, curved material and is scaled up from the tile geometry to account for process

shrinkage. Material properties include the porosity and permeability of the substrate, and

the dynamic viscosity of the resin – the parameters appearing in Darcy’s law (Equation

1.6). Note that substrate quantities are for the material compressed in the mold. Thus,

these are the pre-process quantities of the substrate: φpre and its corresponding K.

The final inputs form the boundary conditions for mold filling. These parameters are

the gate design and the vent pressure. A circular, constant pressure gate with fixed radius,

Rgate, is used here. Gate pressure is atmospheric pressure minus vent pressure, Pvent, where

vent pressure is set to the vapor pressure of the resin solution.

5.3.2 Optimization

Independent Variables

Independent design variables describe the position of the gate relative to the curved sub-

strate geometry: non-dimensional radial, λgate, and angular, Γgate, locations defined as

fractions of substrate length, lsub
j , and angular span, γsub

j ,

λgate =
lgate

lsub
j

(5.2)

Γgate =
γgate

γsub
j

(5.3)

where both quantities can range from [0,1]. Note that the vent is implicitly assumed to be

located at the last point reached by the flow. Thus, vent location is not controlled by the

optimization but is instead dependent on the other simulation parameters.
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Mesh Generation

Two-dimensional finite element meshes are automatically generated in gmsh using mesh-

ing rules generalized to an arbitrary tile geometry and gate location. Element sizes scale

proportionally with tile size maintaining an approximately constant number of elements

along the perimeter, nel. Elements are concentrated near the gate to capture rapid flow ad-

vancement in that region. Element sizing and mesh convergence are discussed further in

Appendix D. An example mesh generated using the selected spacing rules (nel = 200) is

depicted in Figures 5.5 and 5.6. The former, a top down view, shows element clustering at

the gate while the latter, a side view, shows part curvature.

According to Šimáček and Advani, the 2-D shell approximation is appropriate for most

simulation tasks, assuming the aspect ratio of the part is small [108]. The authors note

that the relevant aspect ratio, ar is not simply geometric (i.e., part thickness divided by its

length) but must be adjusted by the ratio of in plane and through thickness permeability,

ar =
tpre
√

KIP

KTT

Lc
(5.4)

Beyond a characteristic length, Lc, flow is essentially two-dimensional with no pressure

gradient (and no flow velocity) through the thickness. Šimáček and Advani do not identify

a specific constraint on the aspect ratio, only suggesting that full 3-D modeling may be

necessary when this adjusted part thickness is comparable to the planar dimensions. In this

work, whereKIP andKTT are of approximately the same order of magnitude, Equation 5.4

can be reduced to the geometric aspect ratio, and ar is around 0.02 to 0.03, assuming parts

approximately 1 meter across with thickness, tpre, of 1 inch (2.54 cm). Three-dimensional

modeling is not carried out during optimization to speed iteration, but it is performed after

gate selection to compute time to fill in the actual process, which is not accurately generated

in the 2-D simulation.

137



0.52

0.272

0.26

0.388

0.13

0.503
0

0.619 0.735

0.39

Figure 5.5: An example two-dimensional finite element mesh used to simulate mold filling
(top view).

138



0.735

0.52 0.619
0.39

0.503
0.26

0.3880.13

0.2720 0

0.0637

0.127

Figure 5.6: An example two-dimensional finite element mesh used to simulate mold filling
(side view).

Objective Function

Each mold design is evaluated according to the objective function,

fobj,2 =
p′

ptotal

(5.5)

where p′ is the length of the perimeter blocked from the vent during processing and ptotal is

the total perimeter length. Thus, fobj,2 ranges from [0,1] and reflects the proportion of the

perimeter that is blocked (i.e., unfilled with no path for air to escape through the vent).

Practically, fobj,2 quantifies the degree of air entrapment during infusion, which can

lead to incomplete filling and voidage. Minimizing fobj,2 limits this risk, ensuring complete

saturation of the substrate. Mold filling is simulated on the specified design, and then time

to fill is extracted for nodes along the perimeter of the part. This yields the time to fill as

a function of distance along the perimeter, Tf (p), which is operated upon to compute p′

(Figure 5.7). Note that two curves are plotted, one for each direction around the perimeter.

Each curve begins and ends at the same location and time – the first and the last point

reached by the flow, respectively. Blocked regions correspond to a pair of perimeter points
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with the same time to fill Tf (p∗j+1) = Tf (p
∗
j), where p∗j+1 > p∗j . That is, the flow front has

reached two different locations on the perimeter at the same time. The length of all blocked

regions are summed to yield the total blocked length.
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(a) Simulation results showing time to fill,
Tf , across the part

(b) Time to fill, Tf , as a function of
perimeter location

Figure 5.7: Results of a mold filling simulation and those results extracted along the
perimeter.

This definition of blocked length was extended to include regions on the perimeter

where flow arrives at nearly the same time, which is also a concern in processing. An

additional term added to p′, which is discussed in Appendix D, addresses this issue. The

computational algorithm is also outlined in more detail there.

Constraints

Gate location is constrained so that it falls within the two-dimensional footprint of the

tile. A keepout area offset by Rgate from the perimeter enforces this requirement. The

mathematical constraints are summarized in Table 5.2. Note that the upper bound on Γgate

leverages the fact that tiles are symmetric down the midline and thus only one half of the

tile need be considered. Angular position is generated such that Γ = 0 corresponds to a

140



gate tangent to the side of the tile irrespective of λgate.

Table 5.2: Constraints on mold design.
Description Variable Type Constraint

Radial position λgate Side
Rgate

lsub
j

< λgate < 1− Rgate

lsub
j

Angular position Γgate Side 0 ≤ Γgate ≤ 0.5

Solver

Because the objective function, fobj,2, is computed from a numerical simulation with lim-

ited resolution, results are discontinuous and non-differentiable which pose a problem for

traditional gradient-based methods. Furthermore, the design space frequently possesses

several local optima which should be rejected in favor of the global optimum. Particle

swarm optimization (PSO), a metaheuristic method, was selected as the solver because it

does not use the gradient, performs broad exploration of the design space, and does not rely

on a discretization of the design space. It can also be run in parallel to speed design evalu-

ation. Though global optimality is not guaranteed, in practice, PSO was found to converge

to the global optimum quickly (on the order of a few minutes) in the example problems

below using the processor identified previously1. PSO was implemented in MATLAB us-

ing the particleswarm function with a swarm size of 20 particles. Function tolerance,

which controls convergence and ultimately termination of the algorithm, was set to 1×10−3

which is just below the resolution of the objective function at the selected element sizing

(see Appendix D.2). Iteration was terminated after 10 successive generations where the

relative change in the minimum objective value was less than the function tolerance.

5.3.3 Outputs

The optimal gate location, denoted (λ∗gate,Γ
∗
gate), minimizes fobj,2 for the given geome-

try, material and process parameters. Optimal vent location, (λ∗vent,Γ
∗
vent), is subsequently
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set to the last point reached by the flow. Mold filling is then simulated on the full three-

dimensional geometry using the selected gate location to obtain total infusion time and

resin consumption. Additional thickness must be added to the 3-D geometry to account for

top and bottom shims. These quantities, as well as vent (or vapor) pressure, which was esti-

mated in Chapter 4, are important parameters both for the designer and for those processing

the material. For example, knowing mold filling time helps a process technician anticipate

when flow must be shut off, and vent pressure indicates the setting for the vacuum pump

during processing. From a broader perspective, mold filling time and resin consumption

impact the overall process timeline and cost. Relevant properties of the fabricated TPS

material are also important outputs for the designer, and these quantities are the subject of

the last step of the methodology.

5.4 TPS Material Property Estimation

In the final step, selected properties of the fabricated composite TPS material (virgin den-

sity, ρcomp; char yield, Ycomp and resin mass fraction, wresin) are computed using the consti-

tutive model in Chapter 2. That chapter reduced these properties to functions of known, or

previously computed, densities. Nominal values are computed using expressions in Table

2.3 with bounds generated from those in Table 2.4.

5.5 Summary

This chapter described an integrated approach to tile layout, mold design, and TPS mate-

rial property estimation for a conformal heatshield. Optimal tile layouts for sphere-cone

aeroshells were generated that minimize the total of tiles while meeting constraints on tile

size, curvature, and minimum seam angle. A simple, but fast, solution approach was im-

plemented which evaluated the feasibility of the entire design space then selected the best

design. Resulting geometries were then fed to a Darcy’s law-based simulation to design

a mold for processing each tile using VIP. Gate locations were evaluated by an objective
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function, the blocked length, quantifying the degree of air entrapment during infusion. Par-

ticle swarm optimization identified the gate that minimized this function and, thus, best

limited the risk of air entrapment. Vents were located at the last point reached by resin

flow. Finally, results from Chapter 2 were used to estimate the virgin density, resin mass

fraction, and char yield of the final TPS material.

Combined with the previous chapter, the results of this chapter form a powerful, con-

ceptual framework for evaluating and manufacturing conformal ablative heatshields. The

integrated, automated methodology improves on state-of-the-art approaches, which rely on

segregated, manual, ad hoc methods tailored to a specific material and aeroshell geometry.

Heatshield designs, and the molds to manufacture them, can be automatically generated

for a range of materials and geometries reducing design time and freeing the designer to

rapidly evaluate alternative compositions and their impact on processing and properties. In

the next chapter, the methodology is demonstrated on two design scenarios.
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CHAPTER 6

APPLICATIONS OF THE DESIGN METHODOLOGY

This chapter presents two applications of the design methodology, which demonstrate the

capability of the integrated, yet decoupled, approach. First, the full methodology – from

material specification to tile layout to tooling – was applied to the design of a 4.5-meter

diameter, 70 degree sphere-cone conformal PICA heatshield. Second, mold design was

independently demonstrated on a prescribed tile geometry, that selected for experimental

processing in Chapter 3. Optimal gate and vent locations were translated to the mold de-

sign shown previously in that chapter. Theoretical flow times were compared against the

experimental process to assess simulation accuracy.

6.1 Design of a Conformal PICA Heatshield

Heatshield design was based on the MSL forebody geometry shown previously in Figure

3.2 (a 4.5-meter diameter, 70 degree sphere-cone [26, 91]) and the C-PICA formulation

used throughout this work. TPS thickness was set to tTPS = 0.75 inches in order to obey

the maximum manufacturable thickness for this material, tmax
comp. Substrate size was 1 meter

by 1 meter. Reflecting typical results from Chapter 3, shrinkage was 1% in plane and 4%

through the thickness with post-process reduction of 1% due to machining. Some resin

quantities again appear as the nondimensional values from Chapter 4. Estimated resin

properties were used here, but experimental quantities may improve the accuracy of the

simulation. Post-process resin density and resin char yield were drawn from Chapter 2 re-

sults (ρpost
resin = 0.187 g/cc and YR = 52%). Other parameters for the design are summarized

in Table 6.1, which lists primary inputs, and Table 6.2, which lists secondary inputs.

Table 6.3 indicates the constraints on the design. Minimum radius of curvature, Rmin,

was based on a manufacturer recommendation for this felt (Rmin = 0.15 m). The lower and
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upper bounds on the number of tiles, Nlb andNub, respectively, were selected to practically

limit the design space. It is not feasible to conform a single annular tile, Nlb = 1, to the

three-dimensional shape without significant wrinkling. Above Nub = 60, tile size is so

narrow as to be counterproductive. In any case, these bounds did not affect the resulting

optimum and could be adjusted for other designs as necessary.

Table 6.1: Primary inputs for the example design.
Category Parameter Value Units

Substrate Wsub 1.0 m

Lsub 1.0 m

tsub 0.88 in

∆tsub 0.08 in

ρareal
sub 0.194 g/cm2

ρfiber 1.395 g/cc

dfiber 11 µm

Resin ρpost
resin 0.187 g/cc

YR 52 %

Composite εTT 0.04 m/m

εIP 0.01 m/m

εM 0.01 m/m

Process Rgate 0.125 in

Pgate 101325 Pa

Table 6.2: Secondary quantities computed for the example design.
Category Parameter Value Units

Substrate ρpre
sub 0.095 g/cc

φpre 0.93 –

K 2.34 ×10−10 m2

Resin µ∗sol 0.87 –

P ∗vap,sol 0.97 –
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Table 6.3: Summary of design constraints for the example.
Description Variable(s) Value Units

Maximum TPS Thickness tmax
comp 0.76 in

Minimum Radius of Curvature Rmin 0.15 m

Minimum Seam Angle βmin 3 deg

Minimum Number of Tiles in Ring Nlb 2 non-dimensional

Maximum Number of Tiles in Ring Nub 60 non-dimensional

6.1.1 Tile Layout

The optimal tile design consists of a single nose tile, and a flank formed from two rings of

15 tiles each (N1 = 1, N2 = 15, and N3 = 15). The design space for the nose is trivial –

the nose is small enough to be fabricated from a single piece of the substrate material. The
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Figure 6.1: Tile layout for the example heatshield.

design space for the conical segment is depicted in Figure 6.1(a) with N3 plotted against

N2. Feasible designs are plotted with the design minimizing fobj,1 highlighted. Note that

the feasible space is bounded on the left and the bottom by, respectively, N2 = 6 and N3 =

14. That is, no design spans the conical segment if eitherN2 orN3 falls below its respective

bounding value. Note also that the minimum seam angle constraint substantially reduces
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the number of feasible designs, and these designs tend to fall along lines where N2 and N3

are integer multiples of one another (e.g., N2 = N3, N2 = 2N3, etc.). Figure 6.1(b) depicts a

front view of the optimal layout with N2 = 15 and N3 = 15. The seam angle offset is trivial

in this case, as N2 = N3. Therefore, the each radial seam in the outer ring is offset from the

inner ring by the angle
π

N2

. This layout, and the corresponding substrate geometries (three,

in total), were passed to the next step for mold and process design.

6.1.2 Mold and Process Design

Results of mold and process design for each of the three tile geometries, depicted in Figures

6.2 – 6.4, are discussed below. In each case, the full design space was generated first

followed by solution of the optimal gate location using PSO, shown in the plots on the left.

Mold filling was then simulated on the three-dimensional geometry using the selected gate

location. Those results are depicted in the plots on the right, which show contours of flow

position over time (time to fill, Tf , in seconds) on the tile geometry. These locations and

final processing parameters are summarized in Table 6.4.
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Figure 6.2: Mold design results for nose tile.
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Figure 6.3: Mold design results for the inner ring tile of the conical flank.
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Figure 6.4: Mold design results for the outer ring tile of the conical flank.
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Nose Tile

Figure 6.2 depicts results for the nose tile. Due to symmetry, there is no dependence on

Γgate and only λgate was varied. In this case, λgate was defined as a fraction of arc length,

from the stagnation point (λgate = 0) to the outer radius (λgate = 1). The value of the

objective function is fobj,2 = 1 with a centrally located gate λgate < 0.16, decreasing and

reaching a minimum at the perimeter (fobj,2 = 0.12). The optimal gate location is on the

edge (λ∗gate = 0.988) with the vent directly opposite (λ∗vent = -0.988).

The flow front is circular for an isotropic material such as this, so a centrally located

gate, λgate = 0, produces a front that reaches every point on the perimeter at the same

time and fobj,2 = 1. Any off center position, λgate > 0, yields a flow front that arrives at

the perimeter at a single point, and its location along the perimeter increases monotonically

with time from that point to the last point reached by the flow. However, the objective func-

tion, which includes perimeter regions with similar flow times, preferences gate locations

near the edge that maximize flow velocity along the perimeter.

Inner Ring Tile

Figure 6.3 depicts results for the inner ring tile of the flank. Both λgate and Γgate were varied

to produce the two-dimensional design space. The best designs occur along the inner and

outer radii of the tile with the optimum solution found at the outer corner (λ∗gate = 0.996,

Γ∗gate = 0.003) with fobj,2 = 0.20. In that design, flow becomes nearly parallel approaching

the inner edge, occurring between 1500 and 1600 sec in Figure 6.3(b). Thus, flow arrives

all along the inner edge at nearly the same time making the angular location of the vent,

Γ∗vent, somewhat irrelevant, though the result from the simulation is indicated (λ∗vent = 0,

Γ∗vent = 0.893). While similar arrival time along the inner edge may indicate risk of air

entrapment, the overall volume blocked, if any, would be small.
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Outer Ring Tile

Figure 6.4 depicts results for the outer ring tile. Like the inner ring tile, the best designs

occur with the gate located along the inner and outer radii. The optimal gate location is

again at the outer corner of the part (λ∗gate = 0.996, Γ∗gate = 0.001) where fobj,2 = 0.21.

Unlike the inner ring tile, the flow clearly converges to a single point at the vent location

(λ∗vent = 0, Γ∗vent = 1).

Summary

In general, the worst designs, with the highest objective function value, occur with gate

locations near the center of the tile (λgate = 0.5, Γgate = 0.5). In those designs, large regions

of the mold are cut off from the vent by advancing flow and have a high likelihood of air

entrapment causing partial saturation and voidage. The objective function value decreases

Table 6.4: Summary of optimal gate and vent positions and process parameters for each
tile.

Nose Inner Ring Outer Ring
Category Parameter Units Tile Tile Tile

Mold Design λ∗gate – 0.988 0.996 0.996

Γ∗gate – – 0.003 0.001

λ∗vent – −0.988 0 0

Γ∗vent – – 0.893 1

Process Parameters Time to Fill min 23.2 32.6 58.9

Resin Consumption L 11.38 9.35 17.00

as the gate shifts away from the center towards the edges indicating lower risk of air en-

trapment. Optimal gate, and corresponding vent, positions are summarized in Table 6.4

along with final process parameters, time to fill and resin consumption, generated for the

three-dimensional parts. Time to fill and resin consumption are both highest for the largest

tile (outer ring tile). Interestingly, fill time is longer for the inner ring tile than the nose tile.

Though the inner ring tile is smaller in total volume, the flow length from gate to vent is
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longer. Cumulative infusion time was 1395.7 min (≈23 hrs) though this could be reduced

by infusing several parts simultaneously. Also, recall that other phases of processing (e.g.,

curing and drying) also contribute significantly to time but are not considered in this total.

Total resin consumption was 406.6 L combined for all 31 tiles of the heatshield.

6.1.3 TPS Material Property Estimation

Table 6.5 compares nominal estimated TPS properties to a C-PICA material model from

Milos, et al. [38]. Deviations from the reference material can be attributed in part to a

difference in substrate densities, which are also included in the table, because substrates

are more compressed in the VIP process leading to higher fiber fraction and lower resin

loading. In this case, substrate density was predicted to be about 10% higher for the VIP-

produced material, which results in slightly higher virgin density and lower resin mass

fraction compared to the reference material. Predicted char yield was found to be slightly

elevated, a difference attributed to both lower substrate density and a lower nominal resin

char yield (YR = 45.9 %) in the reference material. The reference model based char yield

on room temperature mass, capturing an additional reaction around 150◦C which lowered

the final yield. Here, char yield was computed relative to sample mass at 150◦C, ignoring

the earlier reaction which was believed to stem from additional solvent loss and not resin

decomposition.

Table 6.5: Estimated final TPS properties compared to reference values.
Property Units Predicted Reference**

ρpost
sub g/cc 0.101 0.092

ρcomp g/cc 0.275 0.273

wresin non-dimensional 0.63 0.66

Ycomp % 69.7 64.2

**Material model parameters for C-PICA [38].
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6.2 Design of Mold for Experimental Processing

The experimental mold of Chapter 3 was evaluated using the mold design approach in

Section 5.3. Tile geometry, shown previously in Figure 3.8, was input directly into the mold

filling simulation as an a priori input, bypassing tile layout. Material property inputs were

identical to those outlined previously in Tables 6.1 and 6.2. Gate radius was slightly larger

than the above example to match an available drill bit size (Rgate = 0.166 in). Simulated

vent pressure was matched to the experimental setting in Table 3.2.

6.2.1 Mold Design

Figure 6.5(a) depicts the design space for the selected tile geometry with the optimal gate

location highlighted at λ∗gate = 0.012, Γ∗gate = 0.001. Unlike the mold designs above, the

optimal gate location is at the inner corner of the tile. Time to fill for the selected design

is shown on the right (Figure 6.5(b)). Like the outer ring tile above, flow converges to a

single point at the vent, in the opposite corner of the part. Note that time to fill is shown

for Tile 2 with P ∗vent = 1.5. These results, summarized later in Table 6.6, vary between tiles

due to differences in vent pressure. Gate and vent locations were translated to the tooling

design, shown in Figure 6.6 rotated to match the orientation of the simulation result. The

actual locations were offset slightly from the edge of the core to maintain a minimum wall

thickness.

6.2.2 Time to Fill Results

Time to fill was obtained experimentally at four locations in the mold: the three pressure

gauges located along the centerline of the part and at the vent, which was the last point

reached by the flow. As explained in Chapter 3, some bubbles appeared at the vent prior

to arrival of the main flow front. Flow front arrival was clearly distinguishable though,

producing a continual flow of resin out of the vent and into the trap. It was this arrival
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(a) Design space (b) Simulation of selected design (Tf in sec for Tile 4)

Figure 6.5: Mold design results for experimental tooling.
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Vent

Pressure Gauge 1

Pressure Gauge 2

Pressure Gauge 3

Figure 6.6: Mold top showing selected gate and vent placement, and pressure gauge loca-
tions.
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time that was recorded as the total fill time. Arrival times at the centerline gauges, shown

installed in the mold top in Figure 3.10, were identified by an increase in pressure. Table

6.6 compares experimental, T exp
f , to simulated, T sim

f , arrival times at each of these four

locations with the relative difference between the two indicated. Pressure gauge locations,

indicated in Figure 6.6, are numbered sequentially in order of flow arrival. Note that the

first pressure gauge malfunctioned while infusing the first tile, and no reading was obtained.

Table 6.6: Time of flow arrival at pressure gauges and vent, experimental and simulated
values.

Tile 1 Tile 2 Tile 3 Tile 4

Loc. T exp
f T sim

f Diff. T exp
f T sim

f Diff. T exp
f T sim

f Diff. T exp
f T sim

f Diff.
(sec) (sec) (%) (sec) (sec) (%) (sec) (sec) (%) (sec) (sec) (%)

1 — 107 — 89 107 20 117 114 -3 134 108 -19

2 239 204 -15 173 203 17 192 218 14 253 207 -18

3 289 367 27 236 365 55 256 393 54 343 371 8

4 408 645 58 324 648 100 457 693 52 522 655 25

6.2.3 Discussion

The order of filling (Gauges 1, 2, and 3, then the vent) was correctly predicted by the sim-

ulation. Furthermore, material characterization, discussed previously in Chapter 3, demon-

strated little, if any, air entrapment during filling. No significant in depth voidage was found

in any locations, and nearly identical volumes of resin were delivered in all but the first run

(which differed in its experimental setup). Together, these results indicate that the gate

and vent placement generated by the methodology successfully avoided air entrapment as

intended.

Arrival times at the first two gauges match reasonably well (within ∼20% of the exper-

imental results) but vary more significantly at Gauge 3 and the vent, which is overpredicted

by up to 100%. Figure 6.5(b) shows the flow front interacting with the far walls of the cav-

ity and changing shape between arrivals at Gauges 2 and 3. Initially, flow contours form

concentric rings centered around the gate. Once flow reaches the far walls, the flow front
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becomes more linear extending diagonally across the part. It is possible that the simulation

does not capture the wall interaction precisely, particularly due to the presence of resin

bubbles along the flow front which could influence behavior along the boundary.

Furthermore, the simulation relied on estimations of permeability, porosity and vis-

cosity from Chapter 4 and did not account for variation in resin temperature (which was

between 18◦C and 23◦C during testing). More accurate, experimentally-derived properties

would likely improve simulation results. Indeed, the methodology allows input of known

properties in place of estimations as material characterization improves. However, the use

of estimated parameters here was consistent with the aim of the methodology — concep-

tual evaluation of new materials lacking that characterization. Estimated time to fill can

also help guide processing. For example, in this work, estimated total fill times (∼10–11

minutes) provided a useful order of magnitude approximation to the actual infusion (∼5–9

minutes), allowing anticipation of vent arrival and subsequent valve closure to stop flow.

6.3 Summary

The design methodology was demonstrated on a 4.5-meter, 70 degree sphere-cone, confor-

mal PICA heatshield. The optimal tile layout consisted of 31 tiles in total – a single nose

tile and two rings of 15 tiles covering the flank. Mold design preferred gate locations on

the edges of the part because central locations led to a large amount of blockage. Optimal

gate locations were on the outer radius of the nose tile and at the outer corners of both

flank tiles. The heatshield consumes around 400 L of resin in total with individual infusion

times from 20–60 minutes. Predicted substrate density was slightly higher compared to

a C-PICA reference model, leading to slightly higher virgin density and lower resin mass

fraction. Predicted composite char yield was distinctly higher than the reference due to

differences in the computation of the resin char yield.

Mold design was then applied, independently of the other tasks, to the prescribed tile

geometry of Chapter 3. In this example, the optimal gate location was determined to be at
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the inner corner of the part with the vent placed at the opposite outer corner. Experimen-

tal flow times, measured at four mold locations, agreed well at the nearest two pressure

gauges but deviated more substantially at larger distances. Nonetheless, flow progression

matched qualitatively (i.e. the sequence of flow front arrival at each location), and theoret-

ical fill times were sufficiently accurate enough to inform actual processing. Significantly,

processing yielded well-infused tiles with no observed air entrapment, which is itself a

validation of the mold design.

While the optimal gate locations were somewhat trivial in these examples, always oc-

curring on the perimeter of the parts, and specifically one of the corners for the conical tiles,

other configurations necessitate the optimization approach developed here. More complex

tile geometries such as asymmetric, and/or concave shapes yield more complicated flow

patterns which are difficult to predict a priori. Furthermore, a two-dimensional line gate,

suggested for future work in Chapter 7, would more or less require the numerical approach.
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CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Summary of Contributions

This thesis developed a novel manufacturing process, VIP, that improves efficiency over the

existing open process, reducing waste and other manufacturing byproducts, and allowing

numerical simulation of the manufacturing process. A computational framework describing

that process, and the materials used, optimized a conformal heatshield design for VIP. A

short summary of each contribution is described below.

7.1.1 Formulation of A Constitutive Model of Fiber Substrate Ablators for Conceptual

Design

A constitutive model of fiber substrate ablators was developed in Chapter 2, combining

a filamentary analog model of the substrate with known properties of the resin. Blending

individual properties of the constituents yielded closed-form expressions describing the vir-

gin density, resin mass fraction, and char yield of the composite TPS material. Predictions

were compared to experimental results for two C-PICA variants, showing generally good

agreement. Estimation of TPS properties reduces experimental burden and accelerates eval-

uation of alternative compositions during conceptual design. Property bounds formulated

from the closed-form expressions quantified TPS variability, and a Monte Carlo simulation

assessed the sensitivity to the input parameters that drive uncertainty. Results in Chapter 2

were central to the rest of the thesis – providing a check on experimental results in Chapter

3 and forming the foundation for material property estimation in the design methodology

of Chapters 4 and 5 and the design example in Chapter 6.
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7.1.2 Development and Demonstration of a Vacuum Infusion Process for Conformal Ablative

TPS Materials

Chapter 3 described the vacuum infusion process for conformal ablators. Compared to

state-of-the-art processing, VIP reduces resin consumption and waste, simplifies clean up,

eliminates the need for a vacuum oven (or chamber), and ultimately reduces labor and cost.

VIP was demonstrated at a relevant scale, fabricating several large C-PICA tiles. Tiles were

generally well infused in depth, and material properties compared favorably to theoretical

predictions from Chapter 2. Deviations in properties between tiles were likely driven by

differences in curing conditions and their effect on post-process resin density. Within each

tile, resin loading was lower near the gate and higher elsewhere, but values remained within

expected uncertainties.

7.1.3 Development of a Methodology to Optimize a Conformal Ablative Heatshield Design

Chapters 4 and 5 described a methodology for designing a conformal ablative heatshield

that integrates material selection, tile layout, and processing. Chapter 4 outlined the method-

ology and its objectives, then laid out the inputs, extending the constitutive model of Chap-

ter 2 to include estimation of substrate porosity and permeability, and resin viscosity and

vapor pressure, which are required for the mold filling simulation. Chapter 5 paired that

simulation with a tile layout procedure to produce a conformal heatshield design optimized

for VIP. Symmetric tile designs minimizing the total number of tiles were generated for

sphere-cone aeroshells. Mold filling was then simulated on the resulting tile geometries to

select gate and vent positions that limited the risk of air entrapment during infusion. Finally,

in the last step, properties of the fabricated TPS material were estimated using expressions

from the constitutive model.

The methodology was demonstrated with two examples in Chapter 6. A complete de-

sign, based on the MSL forebody geometry, showed the fully integrated approach. Then,

mold filling was simulated for the tile geometry in Chapter 3. Resulting gate and vent po-
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sitions were used in the experimental mold design and yielded good results with consistent

saturation of the material through the thickness.

7.2 Suggestions for Future Work

Improvements and extensions of this work are suggested in the following sections, orga-

nized by contribution.

7.2.1 Constitutive Model of Fiber Substrate Ablators

Suggested future work for the constitutive model includes expanding and improving esti-

mations of material properties and updating the uncertainty analysis.

Properties of the Substrate

The filamentary analog simplified the substrate to randomly distributed, uniform density,

cylindrical fibers, but actual substrate fibers possess non-circular cross sections and non-

uniform density which may impact local properties. The model could be extended to ac-

count for this variation and its impact on material uncertainty. Fiber geometry and mi-

crostructure, discussed later, may also impact permeability and affect the flow simulation.

While substrates used in this work were flexible, they did resist shrinkage to some de-

gree, and stiffness appeared to increase with compression. As a result, Case 2 (a partially

compliant substrate) in Chapter 2 did not precisely capture the mechanical behavior, partic-

ularly for the compressed samples. Likewise, the tiles processed in Chapter 3 were highly

compressed and shrunk less on average than the less compressed coupons of Chapter 2. A

mechanical model that incorporates substrate stiffness and pre-process compression would

likely improve prediction of material shrinkage and resulting TPS properties.
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Properties of the Composite TPS

The constitutive model did not account for evaporation during curing and its effect on

post-process resin density, necessitating the use of an experimentally obtained value. An

extension of the model that accounts for solution evaporation, and resin loss, during curing

could improve predictions.

Char yield varied substantially between the two felts investigated in Chapter 2, a result

that was not anticipated by the current model. Experimental fits provided better agreement

with the theoretical model but did not explain the discrepancy. Substrate mass, msub, was

constant in the model, an assumption that could be checked by charring the dry felt alone.

The two felts should be processed at the same in the same container to avoid variation in

temperature profile and evaporation.

Finally, several more TPS properties relevant to thermal response modeling were out-

lined in Chapter 1. Extending the constitutive model to include some of these properties

may possible. Elemental composition of the virgin TPS may be deduced from known pro-

portions of substrate and resin and their individual chemical compositions. Kinetics-based

pyrolysis models (e.g., Wang, et al. [102], and Friedman, et al. [103]) may assist with

obtaining composition and properties of the pyrolysis gas and resulting char. Other prop-

erties may be deduced from the microstructure of the materials. For example, Panerai, et

al. used microscale modeling to estimate thermal conductivity and oxidative behavior of

carbon-phenolic ablators [109, 110].

Uncertainty Analysis

Other input distributions (e.g., normal distributions) may be appropriate for the uncertainty

analysis in Chapter 2. A mechanical model of composite shrinkage incorporating sub-

strate stiffness and compression, also discussed above, may better capture uncertainty in

the shrinkage.
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7.2.2 Vacuum Infusion Process for Conformal Ablative TPS Materials

Several process improvements and extensions to further improve efficiency and consistency

are identified below followed by suggestions for scaling the process to larger part sizes and

volumes.

Process Improvements

Mold Design

Changes to surface coating can address resin build up and improve tool longevity. All sur-

faces in contact with the resin must be properly coated to prevent bonding. The secondary

lid was not coated in this design, resulting in evaporated resin curing on its bottom surface.

Expansion holes were coated for this work, but a deficiency in the application process led

to poor coverage and exposed metal.

Mold closure (and opening) could be improved by using a slot, rather than through hole,

design to allow quick installation and removal of bolts. Other closure mechanisms may

yield similar improvements including temporary or built in clamps (which were depicted

in Figure 1.13).

Other mold materials, such as rigid tooling foams used for prototyping, may be possi-

ble given small production quantities and the low working pressure of VIP. Release films

could replace surface coating to seal tooling surfaces and facilitate part release. However,

their compatibility with ablative resins would need to be evaluated. Flexible tooling (e.g.,

vacuum bags) may offer an even cheaper alternative, but rigid support would be necessary

to prevent fiber compaction.

Infusion

Future investigations could evaluate even higher vent pressures to determine whether bub-

ble formation can be completely suppressed and its impact, if any, on material quality and

voidage. Other gating designs, such as larger diameter or line gates, could also be con-
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sidered to speed up infusion. A channel could likely be machined along a perimeter edge

to achieve the latter. In either case, vent placement would be crucial to ensure full evacu-

ation throughout filling. Multiple gates are also possible, but not preferred here, because

intersecting flow fronts can easily lead to air entrapment.

Curing and Drying

Passive flow regulation, perhaps using a back pressure regulating valve to maintain a fixed

internal pressure, would improve consistency during curing. Larger diameter exhaust tub-

ing would also help to avoid blockage from condensed resin solution. Locating the exhaust

valve after the resin trap is preferred for the same reason. Low gas flow rates should be

used to limit evaporation, and the size and number of expansion ports could potentially be

reduced as well.

Less thermal mass, due to less resin volume in VIP, may allow faster temperature ramp-

ing and shorter hold times during curing. Drying could be accelerated using higher gas flow

rates, which may be feasible given the small enclosed volume. In both cycles, cooling may

be accelerated by opening the oven to the ambient room atmosphere at the end of the heat-

ing cycle, which was not possible in the open process due to the risk of resin oxidation.

Temperature changes must not be too rapid, however, to avoid large thermal stresses which

can cause material failure.

Size and Volume Scaling

Even larger tiles can further simplify aeroshell integration by reducing part counts and

corresponding gap filling. The mold design in Chapter 3 could be easily scaled given a

sufficiently large CNC machine, but fill times would increase. Given a sufficiently large

substrate, small heatshields could even be fabricated from a single piece with a single mold,

eliminating gaps altogether.

Other gating strategies, discussed above, as well as pressurizing and/or preheating the
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resin could speed infusion. Bigger tiles require correspondingly larger, heavier tooling

to maintain adequate stiffness, which would complicate handling. A large, walk-in oven

would ease transfers during processing. Other mold materials may also mitigate the in-

crease in weight.

Increased processing volumes would benefit both early TPS development (allowing

multiple samples to be generated quickly) and later heatshield production (decreasing man-

ufacturing time). Two approaches are possible: (1) processing multiple tiles with multiple

molds or (2) processing multiple tiles in a single mold. The former could be easily imple-

mented by fabricating several identical molds. Resin delivery and vacuum lines could be

tied together to infuse parts at the same time, and a similar approach could be employed

for curing and drying.

Multiple parts could be stacked vertically in a single mold, but IML/OML curvature

would change through the stack, requiring additional post-process machining. Tolerances

would be large without a rigid tool conforming the second surface. Alternatively, adjacent

tiles could be laid out horizontally. This approach might allow several tiles to be joined

during processing, eliminating some gap filling. In either case, mold flow would need to be

investigated to ensure adequate saturation.

7.2.3 Design Methodology to Optimize a Conformal Ablative Heatshield Design

Suggestions for improving the design methodology are discussed within separate sections

corresponding to Chapter 4 (Inputs) and to Chapter 5 (Design Tasks). They are further

broken down based on the steps in the methodology presented earlier in Figure 4.1.

Inputs

Primary Inputs

TPS geometry could be extended to other shapes (e.g., spherical segments), shoulder tiles,

and variable TPS thicknesses as well as asymmetric tile layouts and non-orthogonal seam
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designs. Larger noses requiring multiple tiles could also be incorporated. All of these

would require adaptation or modification of the current tile layout rules as well as additional

files to define the subsequent mesh geometries. The tile layout for the MSL heatshield [26,

91], shown previously in Figure 1.7 and discussed further in Chapters 3 and 5, may provide

a useful starting point for asymmetric layouts. That design somewhat mirrors the concentric

rings in the present work but with extended tiles spanning multiple rings near the stagnation

point.

Substrate draping was reduced to an a priori minimum radius of curvature constraint,

but a draping simulation would better predict wrinkling behavior. It could also be used

to evaluate local variation in porosity and permeability due to bending, and its effects on

mold filling and TPS properties. The model proposed by Martinez-Hergueta, et al. likely

represents the most promising approach for future study because of its similarity to the felts

used in conformal ablators [99].

Secondary Inputs

Extending the permeability estimate to anisotropic materials would broaden the applicabil-

ity of the mold filling simulation. In addition to the isotropic three-dimensional model used

in Chapter 4, Tomadakis and Robertson developed models for one- and two-dimensional

fiber structures [105]. Anisoptropic permeability can be linked to distributions of pore size

and direction, loosely described by the tortuosity tensor [111]. A recent NASA software,

Porous Microstructure Analysis, computes tortuosity from microstructure and has direct

applications to TPS materials [112].

Regarding resin properties, alternative blending rules, described in the review by Cen-

teno, et al. [106] mentioned in Chapter 4, could also be considered for estimating viscosity.

Raoult’s law reasonably approximated the vapor pressure of the resin solution in this work

but must be adapted for solutions deviating from ideal behavior [113].
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Design Tasks

Tile Layout

In addition to other tile layouts and aeroshell geometries, tile layout could be improved by

incorporating detailed seam design. In this work, seam geometry was assumed to be or-

thogonal, but other geometries, depicted in Figure 1.10, may be necessary. Tile size would

also need to be adjusted to account for edge machining. Other potential modifications to

the tile layout include allowing multiple substrate options and incorporating a dimensional

constraint on the three-dimensional curved tile. The former would allow substrate selec-

tion when multiple variants are available. Such a capability would be useful for C-PICA,

which has both thin and thick substrates to accommodate variable TPS sizing. A constraint

on the three-dimensional tile can address size limitations due to the oven, shipping, and/or

handling.

Mold and Process Design

Alternative gating was suggested for speeding up infusion, and the mold filling simulation

could be adapted to those designs using the existing approach: embedding the gate geome-

try in the mesh (see Appendix D.2) and then selecting and applying the boundary condition

to the corresponding nodes. A constant flow rate boundary condition could also be applied

to mirror other processing setups (e.g., with a resin pump).

Tile geometry was simplified to a two-dimensional shell for computing the objective

function, the blocked length. Thicker parts, with larger aspect ratios, may require adapting

the simulation and objective function to the three-dimensional case. The perimeter would

be a surface, rather than a line. A blocked area (or volume) could be computed, somewhat

analogous to the blocked length here.

The fidelity of the three-dimensional simulation, which yielded total time to fill, could

be improved by specifying resin viscosity as a function temperature, and improving estima-

tion of substrate properties including local variation due to draping. Anisotropic permeabil-
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ity estimation from the fiber structure, which was discussed above, would be particularly

beneficial. Additional investigation is also needed to understand how bubbles along the

flow front may impact flow, especially along mold walls, and its impact on fill time.

TPS Material Property Estimation

Extensions to TPS property estimation follow those discussed above for the constitutive

model: approximating additional properties relevant to thermal response modeling and

improving the uncertainty analysis. In addition, the methodology could be extended to

other fibrous substrates (both carbon and non-carbon fiber materials) and alternative resin

formulations (other phenolic-based solutions as well as other ablative resins such as silicone

and cyanate ester).
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APPENDIX A

EVALUATION OF CONSTITUENT MATERIAL PROPERTIES

Experimental measurement of C-PICA constituent properties are reviewed in this section.

Substrate measurements (permeability, porosity, and fiber density) are described first fol-

lowed by the measurement of the resin viscosity. Measurement of the resin vapor pressure

was described in Chapter 4. Results were used for comparison to property models in that

chapter, then applied in the mold filling simulation described in Chapter 5 and demonstrated

in Chapter 6. Fiber density, ρfiber, was used throughout the thesis.

A.1 Felt Substrate

Substrate measurements were obtained on 14 half-inch diameter cylindrical samples of Felt

1, which were approximately 1” long by 0.5” diameter. Samples spanned several locations

across a single 41” by 12” piece. Eight samples were oriented in the through thickness

direction; six samples were oriented in the in plane direction (Figure A.1).

Through thickness

In plane

𝑥, 𝑦

𝑧

Figure A.1: Illustration of through thickness and in plane sample orientations.

A.1.1 Permeability

Sample permeabilities were obtained with an experimental setup and technique developed

by Marschall and Milos [79], which is summarized here. Pressure drop was measured
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across each sample while subjected to a steady, unidirectional flow of gas. A diagram

of the experimental apparatus is shown in Figure A.2. Felt specimens were press fit into

Figure A.2: Experimental setup for measuring permeability (Credit: Marschall and Milos
[79]).

the cylindrical test section. The test section was then evacuated, and gas, controlled by

two valves, was flowed through it. Upstream and downstream pressures were selected by

opening and closing the corresponding on/off valves. Measurements were taken over a

range of flow rates, from 1 sccm to 5000 sccm1. Under these constraints, the Darcy flow

approximation combined with mass conservation and the ideal gas law yields a relation

for mass flow, ṁ, as a function of sample geometry (diameter, d, and length, L), test gas

properties (viscosity, µg, temperature, T , gas constant, R, and molecular mass, M ), and

gas permeability, Kg:

ṁ = −πD
2M

4µgRT
KgP

dP

dx
(A.1)

1Standard cubic centimeters per minute
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Here, the pressure field, P , varies in one dimension only (along the length of the sample,

x). Gas slippage along pore walls (i.e. along the fibers) requires the Klinkenberg correction

[78]:

Kg = K

(
1 +

b

P

)
(A.2)

to estimate permeability in the limit of continuum (or liquid) flow, K, which is the relevant

parameter for modeling resin infusion. The other parameter, b, is a material-specific con-

stant that is not relevant to the current investigation. Substituting and integrating over the

length of the sample, the equation can be rearranged into a linear form:

F =
4µgṁRTL

πd2M∆P
= K (Pav + b) (A.3)

where F has units of Newtons. Here, Pav is the average of the pressures upstream and

downstream of the sample, and ∆P is the difference between them. Thus, K and b, both

unknown, can be obtained by measuring the two pressures, immediately before and imme-

diately after the sample, over a range of flow rates. A linear least squares fit of F vs. Pav

yields a slope equivalent to the permeability K.

Results

Figure A.3 plots F against Pav for one such sample, an in plane specimen. The line (and

equation) show the least squares fit with slope, K = 2.7× 10−10 m2. Based on the analysis

by Marschall and Milos, K has an uncertainty of +11%/-16% (a range from 2.3×10−10 m2

to 3.0×10−10 m2 in this example), though nominal values were plotted in Figure 4.4.

A.1.2 Porosity and Fiber Density

Fiber density, ρfiber, was computed using a linear regression model based on Equation 2.1,

which is repeated here:

φ = 1− ρsub

ρfiber

(A.4)
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Figure A.3: Permeability results for a single felt sample.

This equation can be rearranged in terms of the fiber fraction, 1− φ,

1− φ =

(
1

ρfiber

)
ρsub = ξρsub (A.5)

Plotting (1− φ) vs. ρsub yields a line with slope, ξ, equal to the reciprocal of fiber density.

As noted in Chapter 4, this fiber density ignores the central lumen (hollow space) character-

istic of rayon-based carbon fibers [110]. Instead, the density computed can be interpreted

as an average over the entire cross section. For the purposes of estimating pore volume in

the constitutive model, this quantity is sufficient.

Sample porosities were obtained from three mass measurements: the unsaturated mass

of the dry sample, mdry; the saturated mass of the sample infiltrated with a liquid, msat; and

the suspended mass, msus. The latter was the measured mass increase when the saturated

sample was suspended in a beaker full of the infiltrant (Figure A.4). Note that the mass

of the submerged sample was not being measured here, but rather the mass of the beaker.

The buoyancy of the sample increased the apparent mass of the beaker (due to an equal and

opposite reaction). Samples were infiltrated with water under vacuum to avoid trapping air

within the sample.
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Figure A.4: Saturated sample suspended in infiltrating liquid.

From the first two masses, pore volume is simply,

Vpore =
msat −mdry

ρliq

(A.6)

where ρliq is the density of the infiltrating liquid. The suspended mass is the sum of the

infiltrant mass and the buoyant force acting on the fibers,

msus = (msat −mdry) + ρliqVfiber (A.7)

which when rearranged gives an expression for the volume of the fibers

Vfiber =
msus −msat +mdry

ρliq

(A.8)

Finally, the (average) porosity of the sample is

φ =
Vpore

Vpore + Vfiber

=
msat −mdry

msus

(A.9)

Note that the dependence on infiltrant density is removed in this approach.

Substrate density was computed by measuring bulk volume (sample length and diame-
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ter). Measurement uncertainty resulted in a relative error of ± 2% on computed densities.

Additionally, the samples were found to shrink slightly in length once infiltrated, so there

exists a difference between dry and saturated substrate densities. This analysis used the

saturated density (consistent with the porosity measurement based on saturated samples).

However, the difference was less than 1%.

Results

Figure A.5(a) shows fiber fraction plotted against nominal density for each sample. The

least squares model is indicated by the solid line with bounds depicting a 95% CI on the

slope. Results are generally linear as predicted except for two potential outliers. Both

through thickness and in plane samples appear to follow the same linear trend. Grouping

by density is likely due to like samples being removed from the same region of the felt.
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Figure A.5: Regression analysis on substrate samples (nominal densities).

Both outliers are biased toward higher values of (1− φ) (and lower values of porosity,

φ), which may indicate that these samples were not fully infiltrated. Data are plotted with

outliers removed in Figure A.5(b). Removing the outliers produces a slight change in

slope as well as a smaller variance. As performed, this single regression assumes no error

in the independent variable, ρsub. To account for error in measured densities, regression
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was repeated with ρsub adjusted to its maximum and minimum values (based on a relative

error of ±2%), which yields worst-case bounds on the slope. Results for these subsequent

regression analyses are summarized in Table A.1. Recall that fiber density is the reciprocal

of the slope. Therefore, based on maximum and minimum bounds across all analyses, fiber

density lies between 1.34 g/cc and 1.45 g/cc, which was expressed as ρfiber = 1.395± 0.055

g/cc in the thesis.

Table A.1: Results of regression analyses with 95% CIs.
Case Regression Coefficient Fiber Density

ξ ± (95% CI) ρfiber (g/cc) ± (95% CI)

Nominal Density 0.718 0.015 1.39 0.03

Maximum Density 0.704 0.014 1.42 0.03

Minimum Density 0.733 0.015 1.37 0.03

A.2 Resin

A.2.1 Dynamic Viscosity

Viscosity was obtained using a Brookfield rotational viscometer (Figure A.6), which mea-

sures torque on a rotating spindle immersed in a test fluid. Based on recommendations

in the manufacturer’s reference manual, measurements were taken in a 600 mL low form

Griffin beaker using an LV-1 spindle rotating at 60 rpm, yielding ±1 cP accuracy over a

range from 15 cP to 100 cP [114]. Note that a smaller beaker, different from that used here,

is shown in the figure.

Viscosity was measured at several temperatures between 16◦C and 29◦C. The lower

range was obtained as the resin warmed to room temperature after removal from cold stor-

age while the upper range was obtained by heating the solution and then allowing it to cool.

Resin temperature was recorded with a thermometer (±0.2◦C accuracy) inserted into the

solution. However, the thermometer was immediately removed after recording the temper-

ature to avoid altering the viscosity reading.
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Figure A.6: Experimental set up with rotational viscometer.
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An exponential model, first proposed by Reynolds [115], was used to estimate viscosity

as a function of temperature,

µ(T ) = µ0 exp

(
− T
T ′

)
(A.10)

with model parameters µ0 (reference viscosity) and T ′ (reference temperature). The refer-

ence viscosity corresponds to fluid viscosity at T = 0, which depends on the temperature

scale. The parameter T ′ corresponds to the temperature at which µ = µ0/e and is related

to how quickly viscosity decreases with temperature. Taking the logarithm of both sides

yields a linear equation:

lnµ =

(
− 1

T ′

)
T + lnµ0 (A.11)

A linear least squares fit of lnµ vs. T yields the parameters, µ0 and T ′.

Results

Measurements were obtained for two resin samples, approximately 500 mL each, taken

from larger batches used during processing of Tiles 1–3 (Chapter 3). Figure A.7 depicts
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Figure A.7: Viscosity results.

nondimensional viscosity, µ∗, for both of these samples along with the least squares so-

lution of Equation A.11. As was indicated in Chapter 4, results were normalized by the
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viscosity at 25◦C to protect details of the resin formulation. The equation of the fitted

model is also shown. The exponential model provides an excellent fit of the experimental

results in this range.
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APPENDIX B

APPLICABILITY OF THE VACUUM INFUSION PROCESS

This appendix explores the limits of VIP relative to substrate density and resin viscosity,

supplementing the discussion in Chapter 3. Time to fill results were generated across a

range of densities and viscosities using the outer ring tile geometry in Chapter 6. Increased

tile thicknesses were also investigated.

B.1 Methodology

B.1.1 Geometry and Mold Design

The outer ring tile geometry was selected because its size, an approximately 1 m x 1 m

footprint, represents a notional goal for conformal ablators [40]. TPS thickness was 0.75

inches in the example, with tpre
sub = 1 in. This study evaluated several additional substrate

thicknesses (tpre
sub = 1.5 in, 2 in, and 3 in). Gate location was fixed to the optimal solution

(λ∗gate = 0.996, Γ∗gate = 0.001) found in Chapter 6 and the same gate radius, Rgate = 0.125

in.

B.1.2 Properties

Substrate

A rayon-based substrate was assumed with ρfiber = 1.395 g/cc and dfiber = 11 µm, reflecting

the nominal properties for Felt 1 used previously in Chapter 6. Porosity, φ, and permeabil-

ity, K were estimated from Equations 4.4 and 4.5, respectively. Figure B.1 depicts these

properties as functions of substrate density, ρpre
sub, ranging from zero to ρfiber (spanning the

full range of porosities). Permeability decreases with substrate density — more densely

packed fibers lead to more flow resistance. At the extremes, K becomes very large as ρsub
sub
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approaches zero (K → ∞ as ρsub → 0), and becomes very small as ρpre
sub approaches the

fiber density (K → 0 as ρpre
sub → ρfiber). These cases correspond to no substrate (empty

space) and a fully dense substrate (with no open porosity), respectively.
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Figure B.1: Variation of porosity and permeability with rayon-based substrate density.

Resin

Resin properties were based on the C-PICA resin formulation used in this work. Resin di-

lution was varied, by altering the amount of solvent, to obtain viscosity (from Equation 4.9)

as a function of vapor pressure (from Equation 4.10). Figure B.2 shows relative changes

in the two properties, normalized by values for the standard formulation (µ∗sol = 1, P ∗vap,sol

= 1). Viscosity was varied between µ∗sol = 0.7 and 8.4. The upper bound reflects the base

resin without additional solvent. Thus, in the figure, dilution increases moving from right

to left, i.e., adding solvent reduces both viscosity and vapor pressure. While the correla-

tion is specific to this resin formulation, a similar approach could be used for other resin

mixtures.
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Figure B.2: Correlation between viscosity and vapor pressure for a diluted phenolic resin
solution (based on the C-PICA formulation).

B.1.3 Simulation

Mold filling was simulated in LIMS using the approach in Chapters 5 and 6. Total time to

fill was generated on the full three-dimensional geometries, with tpre
sub equal to 1 in, 1.5 in,

2 in, and 3 in. Resin properties (µ∗sol and P ∗vap,sol) and substrate density (ρpre
sub) were varied

using the functional relationships depicted in Figures B.1 and B.2. Vent pressure, Pvent,

was set equal to Pvap,sol following the approach in Chapters 5 and 6.

B.2 Results

Figures B.3(a)–(d) depict the viscosity-density design space for each of the substrate thick-

nesses. Time to fill, denoted by the contours, is expressed in hours, with the upper contour

(yellow) indicating infusion times greater than 8 hours, reflecting the length of a standard

work day. Longer infusions could perhaps be accommodated, but become increasingly im-

practical especially considering that manual intervention is required to stop resin flow in
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the current implementation. In the figures, substrate density was limited to a maximum of

0.4 g/cc because the time to fill far exceeded the 8 hour limit for those configurations. The

current C-PICA formulation, used in the example in Chapter 6, is highlighted for reference

(ρpre
sub = 0.095 g/cc, µ∗sol = 1).
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Figure B.3: Time to fill (in hours) for example designs.

B.3 Discussion

Figure B.3(a) depicts the current substrate thickness (tpre
sub = 1 in). In that case, with the

current resin formulation (µ∗sol = 1), VIP is feasible up to ρpre
sub ≈ 0.25 g/cc. Decreasing
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viscosity by increasing resin dilution slightly extends that range (∼0.3 g/cc). Moving the

other direction (decreasing dilution and increasing viscosity) shrinks the viable density

range, approaching ρpre
sub = 0.1 g/cc with no resin dilution (and the highest viscosity). Note

that vapor pressure (and, thus, vent pressure) also increases with viscosity contributing to

longer infusion times. Given a fixed substrate density, ρpre
sub, time to fill increases rapidly

with viscosity below approximately µ∗sol < 4. Above that value, the increase in Tf is less

pronounced due to smaller changes in the vapor pressure (Figure B.2).

Infusion time increases with substrate thickness, due to an increase in fill volume,

demonstrated by a leftward shift in the limiting contour in Figures B.3(b)–(d). This re-

sult further limits the range of feasible densities. With the current resin formulation, VIP

is feasible up to ρpre
sub = 0.2 g/cc for the thickest substrate shown in Figure B.3(d), a 20%

decrease from above. Similarly, the upper limit at the highest viscosity decreases to 0.07

g/cc in this configuration.

Recall that these results pertain to a specific tile geometry (approximately 1 m x 1 m),

substrate (rayon-based carbon fiber), and resin formulation (diluted phenolic resin) and,

thus, serve as only a reference point for future investigations. Changes to these assump-

tions will alter the resulting time to fill (e.g, reducing the tile size shortens infusion and

extends the range of suitable substrate densities). Also, experimental times were generally

shorter than predicted for the mold design in this work (Chapter 6), so the numerical re-

sults are likely conservative. Infusion could also be accelerated, if necessary, using one of

the approaches suggested in Chapter 7: investigating other, larger gate designs as well as

pressurizing and/or preheating the resin delivery.
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APPENDIX C

COMPUTATION OF THE MINIMUM SEAM ANGLE

The seam angle constraint, described in Section 5.2.3, defines a minimum angular offset

between radial seams of adjacent rings in the tile layout. As discussed in that section,

multiple adjacent seam angles, γj exist, up to 2Nj total, where Nj is the number of tiles

in the inner ring, and the minimum seam angle in a layout, βmin
j,j+1, depends on the relative

positioning between the two rings. It is necessary to find the largest possible (maximum)

minimum seam angle between adjacent rings, which is the best-case configuration.

The example in Section 5.2.3, Nj = Nj+1, where Nj+1 is the number of tiles in the

outer ring, yields a minimum seam angle of zero (with all seams aligned) or a maximum

of
π

Nj

(half the angular span of each tile). Other configurations where Nj 6= Nj+1 pose

more of a challenge due to the presence of multiple different seam angles. This appendix

describes the computational approach in more detail.

C.1 Methodology

The solution approach relies on, first, enumerating the angles of all seams in the inner ring,

βi,

βi =
2π

Nj

, i ∈ [1, Nj] (C.1)

and in the outer ring, βk,

βk =
2π

Nj+1

, k ∈ [1, Nj+1] (C.2)

Equations C.1 and C.2 assume an initial orientation where one seam in each ring falls at

an angle of 2π radians, i.e. seams at i = Nj and k = Nj+1. Therefore, in this initial

configuration, there is at least one seam aligned. Next, the difference between every βi and
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every βk is computed, yielding the seam angle between every combination of seams in the

layout (not just adjacent ones). Finally, the smallest positive angle is selected from this

result — a quantity describing the minimum angle through which one ring must be rotated

(relative to the other) from the initial configuration to produce the next seam alignment.

(Note that, due to symmetry, selecting the largest negative angle would be analogous.) In

either case, the minimum seam angle is maximized by taking half of this rotation, halfway

between the two seam alignments, to obtain βmin
j,j+1, the result used by the methodology.

C.2 Code

Figure C.1 shows the MATLAB function used to compute the largest minimum seam angle

between two adjacent rings, j and j + 1, comprised of Nj and Nj+1 tiles, respectively.

Equations C.1 and C.2 are implemented in Lines 6 and 7. All seam angle combinations are
10/25/18 10:38 AM Untitled 1 of 1

 1 function beta_min = max_minseamangle(Nj,Njp1)
 2 
 3     % This function computes the maximum minimum seam angle
 4     % between two adjacent rings with N_j and N_(j+1) tiles    
 5 
 6     betai = (2*pi/Nj(k))*(1:Nj(k)); % inner layer
 7     betak = (2*pi/Njp1(k))*(1:Njp1(k)); % outer layer
 8 
 9     betai_mat = repmat(betai',[1,length(betak)]);
10     betak_mat = repmat(betak,[length(betai),1]);
11     
12     diff = betai_mat - betak_mat;
13 
14     tol = 1e-6;
15     beta_min = min(diff(diff > tol)) / 2;
16     
17 end
 

Figure C.1: MATLAB code used to compute the largest minimum seam angle between two
adjacent rings in the tile layout.

computed in Lines 9–12, by duplicating each vector of angles into matrices, betai_mat

and betak_mat, then subtracting to form the matrix of differences, diff. Thus, diff

contains all seam angles. Finally, the minimum seam angle is computed in Lines 14–15
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by taking half of the smallest positive angle in diff. The tolerance, tol, accounts for

rounding errors in the subtraction operation in Line 12 due to machine precision.
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APPENDIX D

FURTHER DETAILS ON THE MOLD FILLING SIMULATION

This appendix provides additional details on the mold filling simulation described in Chap-

ter 5 and applied in Chapter 6. In those chapters, mold designs were evaluated according

to Equation 5.5, which is repeated here:

fobj,2 =
p′

ptotal

(D.1)

This equation quantifies the fraction of the perimeter, ptotal, blocked by advancing flow

during infusion, i.e., the length of unfilled regions, p′, with no path for air removal through

the vent. Section 5.3 described the blocked length, p′, computation as follows:

Blocked regions correspond to a pair of perimeter points with the same time to

fill Tf (p∗j+1) = Tf (p
∗
j), where p∗j+1 > p∗j . That is, the flow front has reached

two different locations on the perimeter at the same time. The length of all

blocked regions are summed to yield the total blocked length.

The blocked length was notionally depicted in Figure 5.7. Programatically, such a compu-

tation is straightforward once the time to fill is extracted along the perimeter of the part.

The calculation is carried out separately for each direction around the perimeter (two seg-

ments in total), starting at the first perimeter point reached by the flow, p0 = 0, and ending

at the last point reached, pn. The set of perimeter points, P , ordered sequentially, are thus

defined:

P = {p0 ∪ pi | pi > pi−1, i ∈ [1, 2, . . . , np]} (D.2)

where pi is the distance along the perimeter from p0. Thus, there are np + 1 points in total

defining the perimeter segment. The nb points bounding the blocked regions are denoted
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by:

p∗j , j = [1, . . . , nb], p∗j ∈ P (D.3)

where nb is even. During iteration, one perimeter point, denoted pc, is selected for compar-

ison to other points:

pc ∈ P , c ∈ [0, . . . , np] (D.4)

where index c equals the corresponding index in the set of perimeter points.

The algorithm starts at the first perimeter point, initializing i = 0 and j = 1 and setting

pc = pi. Time to fill at this point is compared to all following points according to the

inequality:

Tf (pi) ≤ Tf (pc) , i ∈ [c+ 1, . . . , np] (D.5)

If this condition is satisfied by one or more points, pk ∈ P , then pc forms the lower bound

on the blocked region,

p∗j = pc (D.6)

while the upper bound is the farthest point in pk, that is,

p∗j+1 = max (pk) (D.7)

and, the blocked length is p∗j+1 − p∗j . The selected comparison point is then updated, pc =

pk+1. Otherwise, if no points satisfy Equation D.5, then the algorithm moves to the next

point on the perimeter, setting pc = pi+1. The process is repeated for the selected point,

pc, again applying Equation D.5 and updating according to Equations D.6 and D.7 if a

blocked region is found. Iteration terminates when the last point, pn, is reached. Figure

D.1 depicts the algorithm. Note again that there are two directions around the perimeter, so

this procedure is carried out twice, summing both p′ computed.

This basic formulation, though qualitatively useful, does not account for regions where

flow reaches two points on the perimeter at very nearly the same time. In actual processing,
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Initialize:

𝑖 = 0
𝑗 = 1
𝑝𝑐 = 𝑝𝑖

𝑝𝑘 = 𝑝𝑖 𝑇𝑓 𝑝𝑖 ≤ 𝑇𝑓 𝑝𝑐 , 𝑖 ∈ 𝑐 + 1,… , 𝑛 }

𝑝𝑗
∗ = 𝑝𝑐

𝑝𝑗+1
∗ = max 𝑝𝑘

𝑝𝑐 = 𝑝𝑖

𝑖 = 𝑖 + 1
𝑗 = 𝑗 + 2
𝑖 = 𝑘 + 1

𝑖 < 𝑛𝑝

𝑝′ =෍

𝑙

𝑝2𝑙
∗ − 𝑝2𝑙−1

∗ , 𝑙 = 1,2,… ,
𝑛𝑏
2

No
Yes

𝑘 ∈ 𝑖

𝑘 = ∅

Figure D.1: Algorithm for computing the blocked length, p′, for one segment.
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local variation in material properties may produce a nonsmooth flow front. Thus, while the

simulation may satisfy Tf (pi+1) > Tf (pi) for adjacent perimeter points, pi and pi+1, the ac-

tual process may not if Tf (pi+1)−Tf (pi) is sufficiently small. In addition, this formulation

can lead to a poorly shaped objective function with little differentiation between similar

designs.

D.1 Modified Mold Design Objective Function

An additional term, p′vel, was added to the objective to capture regions with similar time

to fill. A small difference in fill time between adjacent points, Tf (pi+1) − Tf (pi), yields

a correspondingly high apparent flow velocity along the perimeter, uperim. Thus, p′vel, was

formulated to capture regions where uperim is above a critical value, ucrit:

p′vel =
∑
s

(ps+1 − ps), uperim
s > ucrit, ps ∈ P , s ∈ [1, . . . , np], (D.8)

which is added to the previously computed blocked length

p′ =
∑
l

(
p∗2l − p∗2l−1

)
+ p′vel, l = 1, 2, ...,

m

2
(D.9)

The additional term penalizes designs where flow reaches adjacent perimeter points at

around the same time.

D.1.1 Perimeter Velocity

Flow velocity along the perimeter was approximated by a forward finite difference at each

point:

uperim
i ≈ pi+1 − pi

Tf (pi+1)− Tf (pi)
, i = 0, . . . , np − 1 (D.10)
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D.1.2 Critical Velocity

The velocity criterion, ucrit, was based on a solution of Darcy’s law for two-dimensional

radial flow [61]. Flow velocity, ur, a radial distance Req from the gate is given by:

ur =
KPgate

φpreµReq ln Req

Rgate

(D.11)

where Rgate and Pgate are the radius of the gate and injection pressure, respectively. Mate-

rial properties: permeability, K, porosity, φpre, and viscosity, µ, are those defined earlier in

the thesis. Here, Equation D.11 was generalized to arbitrary part geometries by computing

an equivalent radius given perimeter, ptotal,

Req =
1

2π
ptotal (D.12)

The velocity, ur, thus scales with part size, material properties, and gate pressure. Dividing

ur by a scaling parameter rp yields the critical value,

ucrit =
1

rp
ur (D.13)

As rp → 0, ucrit → ∞ and p′vel → 0, and the algorithm reverts to the unmodified, basic

formulation. Increasing rp increases the penalty on designs where the flow front arrives at

the perimeter around the same time.

D.1.3 Scaling Parameter Study

The effect of the scaling parameter, rp, was studied on tile geometries from Chapter 6. All

substrate, resin, and process parameters were maintained from that example. Results are

presented below for the nose tile and the outer ring tile.
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Nose Tile

The nose tile represents an extreme case because both the tile and the flow front are circular

(assuming isotropic permeability). Thus, for a centrally located gate, λgate = 0, the front

reaches every point on the perimeter at the same time and fobj,2 = 1. Any off center

position, λgate > 0, produces a flow front that arrives at the perimeter at a single point

and progresses monotonically with time yielding fobj,2 = 0. Logically, however, it is

obvious that small λgate are undesirable because the flow front will reach everywhere on

the perimeter at very nearly the same time.

Figure D.2 shows the design space, generated by a sweep across radial gate position,

λgate, for several values of rp. The unmodified objective function (rp = 0) demonstrates the

severity of the problem: fobj,2 equals 1 at λgate = 0 and then declines steeply to near zero

for λgate > 0. (The objective is not exactly zero due to small errors inherent in the numerical

approximation of the problem.) Identifying the optimal gate position is impossible because

all offcenter locations are effectively equivalent.

0 0.2 0.4 0.6 0.8 1

 gate

0

0.2

0.4

0.6

0.8

1

f  o
bj

,2

r
p
=0.00

r
p
=0.05

r
p
=0.10

r
p
=0.15

r
p
=0.20

r
p
=0.25

Figure D.2: Scaling of objective function with increasing rp

Increasing rp decreases the slope at λgate = 0, effectively spreading out the peak, and a

single optimum becomes clear at λgate = 0.99. However, there is a corresponding loss in
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fidelity at low values of λgate, which all possess the same objective value (fobj,2 = 1).

Outer Ring Tile

Figure D.3 shows the design space for the outer ring again for several values of rp. The

two-dimensional design space was generated by sweeps across both gate coordinates, λgate

and Γgate. Results appear somewhat analogous to those of the nose tile, extended to two

dimensions. For the unmodified objective, Figure D.3(a), function value decreases rapidly

as position shifts away from the center of the part (λgate = 0.5, Γgate = 0.5). Identifying

the best design is again difficult because several areas along the sides of the part are largely

equivalent (fobj,2 ≈ 0.05). As rp increases, objective function values tend to increase across

the space, smoothing out and expanding the peak. Like the nose tile example, there is a

corresponding loss in fidelity in those regions. Areas of minimum fobj,2 become smaller

and are localized to the corners of the part. Increasing rp beyond a certain point is counter-

productive, yielding a wide, poorly differentiated region in the center with high fobj,2 and

a steep gradient at the edges.

Selection of Scaling Parameter

A fixed scaling parameter, rp = 0.1, was selected based on these results. This value ap-

peared to provide sufficient differentiation in objective function across the design space

without overcompensating.

D.2 Mesh Generation

Sufficient perimeter resolution is required to accurately compute the objective function. In

this work, element size was specified by a characteristic length, lc, scaling with the length

of the perimeter, ptotal,

lc =
ptotal

nel

(D.14)
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Figure D.3: Scaling of objective function with increasing rp
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where nel specifies the desired number of elements on the perimeter. A second characteris-

tic length, describing element size near the gate, lc,gate, was set to

lc,gate =
lc
cel

, cel > 1 (D.15)

which clusters elements near the gate to capture rapid flow advancement in that region. A

fixed value of cel = 4 was used here. While other scaling is certainly possible, this quantity

yielded acceptable fidelity in this work. Thus, a single parameter, nel, controlled element

sizing and simulation accuracy. Selection of nel is discussed below after a brief discussion

of the mesh generation procedure.

D.2.1 Mesh Generation

Meshes were dynamically generated using built-in geometry functions. Commands refer-

enced here are described in the gmsh manual1. The perimeter of the part was generated

first followed by the gate, which was embedded into the part surface by,

Line { expression-list } In Surface { expression };

Two Field parameters specified characteristic element sizes across the part:

Field[1] = Attractor;

Field[1].EdgesList = {13,14,15,16};

Field[2] = Threshold;

Field[2].DistMin = R_gate;

Field[2].DistMax = 2*R_gate;

Field[2].IField = 1;

Field[2].LcMax = lc;

Field[2].LcMin = lc_gate;

1Gmsh Reference Manual, available at: http://gmsh.info/doc/texinfo/gmsh.html.
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Background Field = 2;

The first field, Field[1] specifies the edges corresponding to the gate. The second field,

Field[2], clusters elements near those edges using a Threshold operator. This spec-

ifies the element size near the gate, lc gate, and the nominal size elsewhere, lc. The

radial distance parameters, DistMin and DistMax, specify a region around the gate

where element size transitions from lc gate to lc. The function Background Field

selects Field[2] for subsequent mesh generation.

D.2.2 Mesh Parameter Study

The mesh parameter was varied to study convergence in the objective function for example

tile geometries from Chapter 6. Convergence was measured by the following criteria:

f jdiff =
1

nd

nd∑
i=1

|f i,jobj,2 − f
i,final
obj,2 | (D.16)

which computes the difference in objective function at a given iteration, j, compared to

its value at the final iteration and averaged across all points, nd, in the discretization of

the design space. Mesh resolution was varied over the range nel = [40,400] in increments

of 20. Figure D.4 depicts three stages of mesh refinement for the outer ring tile between

nel = 150 and nel = 250. In below results, the convergence criterion, fdiff , was compared

to the theoretical resolution in the objective function, which is the inverse of the number

of elements on the perimeter,
1

nel

. Simulation time, which was also recorded, reflects the

average time for one simulation at the given mesh resolution with the processor noted

previously2.

2A single 6-core Intel Xeon E5-1650 v4 processor
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Figure D.4: Mesh refinement for outer ring tile.

Nose Tile

Figure D.5 shows results for the nose tile with fdiff on the lefthand y-axis and simulation

time on the righthand y-axis. The design space was discretized into nd = 25 points spanning

the feasible range of λgate. The objective function converges relatively quickly between nel

= 40 and nel = 200, though it deviates somewhat from the theoretical resolution. Beyond

nel = 200, fdiff remains fairly constant, but simulation time increases significantly by over

an order of magnitude.
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Figure D.5: Convergence of the objective function for the nose tile.
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Figure D.6: Convergence of objective function for the outer ring tile.

Outer Ring Tile

Figure D.6 shows results for the outer ring tile. Here, the design space was discretized into

nd = 66 points (11 points spanning λgate and 6 points spanning Γgate). The convergence

criterion, fdiff , mirrors the theoretical resolution more closely, converging to a value of 10−2

around nel = 120. At nel = 200, fdiff = 0.006 with little change beyond that. Simulation

time again ramps up significantly at higher mesh resolutions.

D.2.3 Selection of Mesh Parameter

Based on these results, a mesh parameter of nel = 200 was selected for the current work.

In both examples, the convergence criterion, fdiff , changed little beyond this resolution, yet

simulation time increased dramatically. With nel = 200, a single mold filling simulation

using the current hardware required on the order of 101 seconds, which allowed solution

of the optimal gate location within a few minutes (using parallel operation). The selected

mesh sizing thus balances objective function resolution (<10−2) and computation time for

the current methodology.
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