
USING SAMPLE-BASED CONTINUATION TECHNIQUES TO EFFICIENTLY
COMPUTE SUBSPACE REACHABLE SETS AND PARETO SURFACES

A Thesis
Presented to

The Academic Faculty

By

Julian Brew

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology

December 2019

Copyright © Julian Brew 2019

USING SAMPLE-BASED CONTINUATION TECHNIQUES TO EFFICIENTLY
COMPUTE SUBSPACE REACHABLE SETS AND PARETO SURFACES

Approved by:

Dr. Marcus J. Holzinger, Advisor
Department of Aerospace Engineer-
ing Sciences
University of Colorado Boulder

Dr. E. Glenn Lightsey
School of Aerospace Engineering
Georgia Institute of Technology

Stefan Schuet
Research Engineer
NASA Ames Research Center

Dr. Panagiotis Tsiotras
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Jonathan Rogers
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: October 28, 2019

The important thing in science is not so much to obtain new facts as to discover new ways

of thinking about them.

Sir William Bragg

To my mom and dad, who taught me that I can do anything

ACKNOWLEDGEMENTS

First I would like to thank Disney. Disney movies have taught me many life lessons growing

up and these lessons continue to today. When I was tired and ready to give up this idea of

a Ph.D., remembering Hercules or The Princess and the Frog helped me understand that

hard work pays off if you persevere. When my code broke over and over, remembering

the mantra of Meet the Robinsons reminded me to “Keep Moving Forward”. Plus there’s

always my favorite movie of all time, A Goofy Movie, that reminds me that fortune favors

the bold.

I would also like to thank my trio of advisors: Marcus Holzinger, Glenn Lightsey, and

Stefan Schuet. All of you have helped guide me with research, graduate school, careers,

and life in general. Looking back to the beginning of my graduate school career, I know a

lot of the personal and academic growth is due to you all.

Of course, I would not have made it through all of the long nights in 209 doing homework,

writing papers, and doing random proofs about Lagrange interpolation without my fellow

members of the Holzinger research group and the SSDL Trolls. I appreciate the many

useful discussions about research problems, but also the much-needed distractions from

work like the Counts, Nerf wars, and long discussions about why the The Last Jedi is one

of the best Star Wars movies. You helped make graduate school a memorable, somewhat

tolerable experience for me.

Finally, this research was supported by the NASA Space Technology Research Fellowship

(NSTRF) Grant No. NNX16AM39H. This support made this entire journey possible and

I’m forever grateful. I would also like to thank Matthias Althoffand Niklas Kochdumper

for their assitance with the CORA toolbox.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . x

List of Figures . xi

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Thesis Statement . 2

1.3 Subspace Reachable Sets . 3

1.4 Parallelized Distributed Control of Extremal Solutions 5

1.5 Connections with Multi-objective Optimization 7

1.6 Summary of Contributions and Relevant Literature 9

Chapter 2: Using Continuation Methods to Compute Reachable Volume Pro-
jections . 12

2.1 Sampling Methods for Subspace Reachability 12

2.2 Unit Ball Constraints . 15

2.2.1 Norm Definitions and Differentiability Conditions 15

2.2.2 Affine Transformations of Unit Ball 19

2.2.3 Feasible Control Set . 20

vi

2.2.4 Maximal Inner Product on Unit Ball 21

2.3 Continuation Methods . 23

2.4 Backwards Reachability Methodology . 28

2.5 Unions of Reachable Volumes . 34

2.6 Accuracy Considerations . 35

2.7 Numerical Considerations . 36

2.8 Results . 39

2.8.1 Single DOF Double Integrator . 39

2.8.2 Zermelo’s Problem . 40

2.8.3 Orbital Relative Motion . 43

2.8.4 Six DOF Quadrotor Model . 50

2.9 Conclusions . 52

Chapter 3: Decentralized Techniques for Sampling of Subspace Reachable Sets . 53

3.1 Curvature-Based Sampling . 53

3.2 Distance-Based Sampling . 57

3.2.1 Distributed Control . 57

3.2.2 Spawning or Deleting Samples . 73

3.3 Results . 77

3.3.1 Search Angle Bisection using IQR 78

3.3.2 Potential Function Gradient Descent Redistribution 80

3.4 Conclusions . 81

vii

Chapter 4: Connections with Reachability Theory and Multi-objective Opti-
mization . 83

4.1 Reachability optimal control formulation 83

4.2 Multi-objective optimization Problem Formulation 86

4.3 Joint Reachability and Multi-objective Optimization Formulation - HJB PDE 89

4.3.1 Reduction of Joint Formulation to Minimum-Time Reachability . . 91

4.3.2 Reduction of Joint Formulation to Multi-objective Optimization . . 92

4.4 Solution Methods for Joint Reachability and Multi-objective Optimization
Formulation . 94

4.4.1 Solving Reachability Problems with Multi-objective Optimization . 95

4.4.2 Solving Multi-objective Optimization Problems with Reachability . 97

4.5 Joint Reachability and Multi-objective Optimization Formulation - Contin-
uation Solution Technique . 99

4.6 Results . 102

4.6.1 Hillermeier academic example . 102

4.6.2 Cislunar Space Problem Trajectory Optimization 104

4.7 Conclusions . 113

Chapter 5: Reachability Toolbox Comparison 115

Chapter 6: Conclusions . 129

Appendix A: Derivations . 133

A.1 Hamilton Jacobi Bellman PDE . 133

A.2 Minimum-time Reachability Optimal Control Problem First Order Neces-
sary Conditions of Optimality . 136

viii

A.3 Minimum-Time Optimal Control Policy for Control Affine Systems 140

Appendix B: Reproducing Results . 144

B.1 Viscous Damper Linear System . 144

B.2 Zermelos Problem - Union of Initial Condition Sets 147

B.3 Duffing Oscillator - Mesh Refinement . 153

B.4 Cislunar Problem - Reachability with Minimum Control Effort Cost 160

B.4.1 Problem Setup . 161

B.4.2 Create Nonlinear Dynamics Model Using Python Symbolic Toolbox 161

B.4.3 Perform Reachability Analysis . 165

Appendix C: SCoRe Documentation . 169

References . 286

ix

LIST OF TABLES

1.1 Overview of proposed contributions, existing literature and proposed pub-
lications . 11

C.1 Reachability Notation Table . 177

C.2 Vector Notation Table . 179

C.3 Time Notation Table . 179

x

LIST OF FIGURES

2.1 Subspace Reachability Visualization where R ⊂ Rn denotes the full-state
reachable volume andRs ⊂ Rs denotes the subspace reachable volume. . . 14

2.2 2-dimensional continuation method illustration 25

2.3 Pseudo-arclength Continuation Visualization 27

2.4 Illustration highlighting differences between forward and backward reach-
ability. The darker circular regions denote the user-specified boundary con-
dition. 30

2.5 Illustration of union of independent initial condition sets with union of re-
sulting reachable volumes . 34

2.6 Single DOF double integrator forward reachable set at times T = 0, 0.5, 1,
1.5, and 2 (after refinement steps) . 40

2.7 Single DOF double integrator point solution trajectories at T = 2 for for-
ward reachable set (after refinement steps) 41

2.8 Zermelo Problem Forward Reachable Set (FRS) Samples with correspond-
ing optimal trajectories (T = 1) for initial condition set given by g1(x0).
The red crosses denote the samples of the reachable set, green circles de-
note the corresponding initial condition set samples, and the gray lines
show the corresponding optimal trajectories. 42

2.9 Zermelo Problem Forward Reachable Set (FRS) Samples with correspond-
ing optimal trajectories (T = 1) for initial condition set given by g2(x0).
The red crosses denote the samples of the reachable set, green circles de-
note the corresponding initial condition set samples, and the gray lines
show the corresponding optimal trajectories. 43

xi

2.10 Zermelo Problem Forward Reachable Set (FRS) Samples (T = 1) for initial
condition set given by union of g1(x0) and g2(x0). The original reachable
set for g1(x0) is in blue, the original reachable set for g2(x0) is in green,
and the samples that comprise the union are in black. 44

2.11 Zermelo Problem Forward Reachable Set (FRS) Samples with correspond-
ing optimal trajectories (T = 1) for initial condition set given by union of
g1(x0) and g2(x0). The red crosses denote the samples of the reachable set,
green circles denote the corresponding initial condition set samples, and the
gray lines show the corresponding optimal trajectories. 44

2.12 x, y position subspace backwards reachable set for 3-DOF nonlinear rela-
tive Keplerian motion set at true anomaly, ν = [1

4
π, 1

2
π, 3

4
π, π] in rotating

Hill frame - GTO orbit . 46

2.13 Position subspace forward reachable set for 2-DOF nonlinear relative Kep-
lerian motion set at times T = [1

4
P, 1

2
P, 3

4
P, P] in rotating Hill frame - LEO

orbit . 48

2.14 Position subspace backwards reachable tube for 2-DOF nonlinear relative
Keplerian motion set at times T = [1

4
P, 1

2
P, 3

4
P, P] in rotating Hill frame -

GEO orbit . 49

2.15 x, y, z position subspace backwards reachable set for 6-DOF quadcopter
model after 5 seconds . 51

3.1 Two dimensional illustration of envelope operator and resulting curvature-
based sampling . 56

3.2 Illustration of Laplacian potential equilibirum condition 66

3.3 Visualization of the propagation of the graph G with deletion and insertion
of point solutions on the subspace reachable set boundary in Rs denoted by
points a and b, respectively . 74

3.4 Forward x3 subspace reachable set point solution trajectories at T = π for
6-dimensional nonlinear Duffing oscillator with IQR-based sample inser-
tion where black markers denote inserted samples 79

3.5 Point-wise edge distance cumulative distribution function for 6-dimensional
nonlinear Duffing oscillator forward x3 subspace reachable set before and
after mesh refinement process using IQR outlier bisection 79

xii

3.6 Forward x3 subspace reachable set sampling for Ts = Tf/2, Ts = Tf for 6-
dimensional nonlinear Duffing oscillator both before (left) and after (right)
sample redistribution . 81

3.7 Point-wise edge distance cumulative distribution function for 6-dimensional
nonlinear Duffing oscillator forward x3 subspace reachable set before and
after mesh refinement process using gradient descent for Ts = Tf/2, Ts = Tf 81

4.1 Example Pareto front with non-convex region causing gap in surface 97

4.2 Example 7.1 from Hillermeier generated from sampling design space and
from the SCoRe algorithm . 104

4.3 Minimum fuel and minimum-time reachability tradeoffs 107

4.4 Optimal trajectories at final time horizon in x, y, J1 space. 108

4.5 Optimal trajectories at final time horizon in x, J1 space. 109

4.6 Feasible zero-velocity surface contours denoting Jacobi constant value be-
fore and after 5 day period. Position subspace reachable set at 5 day horizon
is also shown. Nondimensional units are used. Moon to scale. 110

4.7 ∆V Contours for cislunar trajectory optimization problem. The contour
levels are -10, -20, -30, -40, -49 m/s. The desired position in the trajectory
optimization demonstration is also shown. 110

4.8 x, y, J1 subspace reachable sets over time horizon with black line display-
ing the desired position (x, y) =(2000 km , -2000 km) relative to L1 La-
grange point . 112

4.9 Minimum-∆V and minimum-time Pareto-optimal curve for the desired po-
sition (x, y) =(2000 km , -2000 km) relative to L1 Lagrange point 113

5.1 Reachable set comparison between the three different reachability algorithms118

5.2 Reachable set projection comparison between the three different reachabil-
ity algorithms . 119

5.3 Cumulative density functions for each state distance set dR(X) 121

xiii

5.4 Computation time and reachable set sample accuracy tradeoffs for each
method along with error bars denoting 5% and 95% percentiles. The low-
est, medium, and highest accuracy settings used in the comparison are de-
noted by •, �, and N, respectively. 122

5.5 Reachable set projection comparison between CORA and SCoRe reacha-
bility algorithms . 126

5.6 Computation time and reachable set sample accuracy tradeoffs for each
method along with error bars denoting 5% and 95% percentiles. The mark-
ers denoting the accuracy settings used in the comparison are denoted by •,
�, and N in the direction of increasing accuracy. 127

C.1 Example figures from forward reach set analysis 175

C.2 Forward reachable tube converted from reachable set 176

C.3 Additional particles added through bisection mesh refinement 176

xiv

SUMMARY

For a given continuous-time dynamical system with control input constraints and pre-

scribed state boundary conditions, one can compute the reachable set for a specified time

horizon. Forward reachable sets contain all states that can be reached using a feasible con-

trol policy at the specified time horizon. Alternatively, backwards reachable sets contain all

initial states that can reach the prescribed state boundary condition using a feasible control

policy at the specified time horizon. The computation of reachable sets has been applied to

problems such as vehicle collision avoidance, operational safety planning, system capabil-

ity demonstration, economic modeling, and weather forecasting.

While numerous methods have been developed to compute reachable sets, these methods

generally make sacrifices in accuracy and computational demand due to considerations

such as system dynamics, geometric representation of the sets, and dimensional scalabil-

ity. The most dimensionally scalable methods use geometric objects such as polytopes,

zonotopes, ellipsoids, and support functions with linear assumptions to compute approx-

imations of the reachable set. On the other hand, Hamilton-Jacobi-Bellman reachability

formulations are the most general in terms of system dynamics and geometric representa-

tion, but suffer from the curse of dimensionality and most are computationally intractable

for high-dimensional systems.

The first contribution of this thesis presents a novel method for computing forward/backwards

reachable sets/tubes for continuous time nonlinear dynamic systems by efficiently solving

for samples of the reachable set boundary using optimal control and continuation meth-

ods. This techinique is a compromise between the accuracy and system generality of the

Hamilton-Jacobi-Bellman methods with the speed and dimensional scalability of the ge-

ometric set-based methods. Furthermore, dimensionally-driven costs can be significantly

reduced by only computing projections of the reachable set onto user-specified state di-

xv

mensions.

As the reachable set boundaries are described using independent point solutions, the evo-

lution of these reachable sets over time results in sparse and dense collections of point so-

lutions. The second contribution of this thesis presents analytic results necessary to prove

distributed computation convergence, as well as necessary conditions for curvature- or uni-

form coverage-based sampling methods. For curvature-based sampling, support functions

are used to identify regions of the reachable set boundary with high curvature. For distance-

based sampling, the proposed approach uses distributed control methods by treating each

point solution as a decentralized agent and solving the surface coverage problem. Fur-

thermore, by judiciously spawning additional point solutions, it’s possible to increase the

sampling uniformity of the reachable set boundary.

The third contribution of this thesis draws connections between reachability theory and

multi-objective optimization. Both reachability and multi-objective optimization problems

search for surfaces in objective space satisfying the necessary conditions of optimality.

Furthermore, reachability surfaces and pareto-optimal surfaces are both sets of extremal

solutions that optimize some objective function. This suggests a connection between the

two fields with the potential of cross-fertilization of computational techniques and theory.

Numerical demonstrations of the discussed contributions are given. Also, a brief compar-

ison of the methods presented in this thesis with alternate reachability analysis software

toolboxes is provided.

xvi

CHAPTER 1

INTRODUCTION

1.1 Motivation

Reachable sets are volumes in state-space that can be reached given an integration con-

straint such as a time horizon and a control constraint. The computation of reachable sets

has been applied to problems such as vehicle collision avoidance, operational safety plan-

ning, and capability demonstration [1, 2, 3].

The canonical developments of reachability theory are derived from optimal control theory

[4, 5, 6]. In these formulations, computing the reachable set for a system involves comput-

ing solutions the Hamilton-Jacobi-Bellman partial differential equation (HJB PDE). The

zero level sets of the value function over time represent the boundary of the minimum time

reachable set [7, 8]. This solution approach has many parallels with computational fluid

dynamics (CFD) problems in which space and time are discretized into a grid and the gov-

erning Navier-Stokes partial differential equations are solved numerically [7, 9]. This type

of solution method is Eulerian because it requires gridding the state space, resulting in time

and memory requirements that scale exponentially with the state dimension. Because of

this, the computation of reachable sets using Eulerian methods are generally intractable for

state space dimensions greater than n = 4 due to the curse of dimensionality. An extension

of this technique involves computing the evolution of the projection of the overall level set

on a subspace of interest [10].

To reduce the computation burden incurred by these HJB methods, alternate techniques

have been developed to compute over/under-approximations for the reachable set [11, 12,

13, 14, 15]. These methods generally use pre-defined geometric objects such as polytopes,

1

zonotopes, ellipsoids, and support functions relying on linear dynamics or conservative

linear approximations of nonlinear dynamics [15, 16, 17, 18]. While these methods have

demonstrated superior state dimension scalability with reachable sets with hundreds of

states, many of them rely on approximating both the system dynamics and reachable set

description to user-specified precision [15, 16, 17, 18].

The methods presented in this thesis aim to be a compromise between the accuracy and

system generality of the HJB methods with the speed and dimensional scalability of the

geometric set-based methods. The presented technique can compute reachable sets for

Lipschitz continuous dynamic systems without approximations to the system dynamics

as performed in other set-based methods [11, 13, 12, 15, 18]. The set representation is

given by samples on the reachable set boundary and first-order surface tangent informa-

tion. By construction, these samples are exactly (within numerical integration precision)

on the convex-hull of the true reachable set as opposed to over/under-approximations given

by other methods [11, 13, 15, 17]. While the proposed apporach is approximative due

to numerical integration, the accuracy can be user-specified by adjusting the integration

error tolerances as well as by performing local root-finding onto the extremal surface de-

scribed by the necessary conditions of optimality. The methods presented in this thesis

are fundamentally different from HJB and set representation methods in that continuation

methods are utilized to gather local topology information on the reachable set boundary.

Furthermore, the presented method simultaneously computes the extremal trajectories and

corresponding optimal control signals that describe the reachable set boundary.

1.2 Thesis Statement

Sampled reachability solutions and Pareto-optimal sets can be tractably computed and dis-

tributed along surface manifolds using optimal control and continuation methods.

2

1.3 Subspace Reachable Sets

In many cases the end user is only interested in a subset of states in a reachability analysis

as opposed to the reachable set in the full state space dimension. Because of this, it is useful

to only compute the reachable set of the subspace that contains the states of interest. Thus,

only the computational cost of the subspace of interest is incurred as opposed to the com-

putational cost of the full description of the reachable set. Holzinger et al. demonstrated

application of the transversality conditions on sampled individual trajectories to allow sub-

space reachable set computation with significantly lower dimensionality-driven costs [19].

In addition, applying the necessary conditions of optimality, dynamics constraints, and ini-

tial condition constraints, a point solution of the subspace extremum surface may be used

to find nearby solutions. The field of numerical continuation investigates how solutions to

parameterized systems of equations change with respect to the above parameters. Numeri-

cal continuation methods have applications in the study of dynamical systems particularly

in chaotic system analysis, optimal control, parametric bifurcation, and in the search for

quasi-periodic invariant tori in the circular restricted three body problem [20, 21, 22]. Us-

ing this numerical continuation approach and an initial state that satisfies the constraints,

the computation of a point solution on the subspace extremum surface is reduced to an

initial value problem solvable through numerical integration. The required computation

under this proposed approach exponentially reduces from the problem dimension to the

subspace dimension (O(kn−1) → O(ks−1) where 1 ≤ s ≤ n). As a result, a large variety

of previously intractable reachability problems become computationally feasible.

The technique described in this thesis has a large overlap with the family of support func-

tions often used in reachability analysis [16, 23, 24, 25]. Support functions are a common

way of expressing convex sets and are commonly used in convex analysis as they can be

used to efficiently describe a large class of sets such as polytopes, zonotopes, and ellip-

soids [26, 16]. Furthermore, a support function representation has the advantage that set

3

operations such as Minkowksi sums, convex hulls, and linear maps can all be implemented

efficiently [26]. Instead of set operations, the methodology discussed in this thesis uses

optimal control and continuation methods to compute the support functions that represent

the reachable set. In this way, nonlinear dynamical systems can be analyzed, optimal tra-

jectories can be computed, and optimal control policies can be generated.

Reachability problems belong to two primary classes- forward and backwards - depending

on the time associated with the boundary condition on the system states. For forward

reachable sets (FRS), the state boundary condition specifies the states at the initial time

that are feasible or reachable. As time increases, the forward reachable set defines all states

starting from the boundary condition set that can be achieved at the specified time. For

backwards reachable sets (BRS), the state boundary condition specifies the states at the final

time that are feasible or reachable. As time decreases, the backwards reachable set defines

all initial states that can achieve the boundary condition set at the specified initial time.

If the boundary condition set at the final time is deemed unsafe, the backwards reachable

set contains unsafe initial states. Thus, backwards reachability analyses are often used

for safety assurance, fault detection, and collision avoidance problems [27, 28]. Closely

related concepts are reachable tubes, which represent the set of reachable states throughout

the entire specified time horizon. Geometrically, the reachable tubes are the union of the

reachable sets over the time horizon.

Previous work by Holzinger et al. focused on ellipsoidal and spherical constraints for initial

condition and control input, respectively [19, 29]. This contribution introduces a more

generalized formulation of these constraints based on affine transformations of unit balls of

normed vector spaces of the p-norm or F-norm type [30]. Along with additional generality,

these extensions allow for smooth and differentiable approximations to rectangular and box

constraints which are commonplace in system verification and reachability analyses.

In addition to using the unit-ball type initial condition set, this contribution introduces

4

initial condition sets created from the union of multiple initial condition sets. Intuitively,

the union of the initial condition sets results in the union of the resulting reachable volumes.

Furthermore, as each reachable volume is represented using samples, operations such as

intersections, convex hulls, and unions of reachable volumes can be performed relatively

easily.

Holzinger and Brew have derived numerical continuation methods based on parametrizing

the optimal solution curves as a function of reachability time horizon [19, 31]. The major

difficulty in this continuation method is when the Jacobian of the optimality curve with

respect to optimal solution approaches singularity or is singular. This signifies that there

may not be a unique, one-to-one mapping from the reachability time horizon to the opti-

mal reachability solution. One common approach to handle a number of cases where the

Jacobian is singular is to use pseudo-arclength continuation [20]. In this case, the optimal

solution curve is parametrized by arclength. This removes the singularity when the rank-

defiency of the Jacobian is, at most, one. This contribution describes how pseudo-arclength

continuation may be used to compute the optimal solution curves for reachability problems.

Contribution 1 : The formulation of the optimal control policy and continuation method

approach for forward and backwards subspace reachability computations using sampling

methods.

1.4 Parallelized Distributed Control of Extremal Solutions

When describing a continous surface using discrete samples, there are generally two criteria

used to generate samples. One criteria is based on local curvature of the surface. This case

is used frequently in computer aided geometric design and graphics fields when represent-

ing surfaces because it leads to more efficient reconstruction of the continuous surface from

limited points using interpolation [32, 33]. Also, it is desirable in many cases to effectively

describe significant features in the surface described by the curvature [33, 34]. Other crite-

5

ria for generating samples of a surface are based on the uniformity of distances between all

the samples. This case is used frequently for rendering and faithfully representing overall

surface geometry using a limited number of points [35, 36].

When using distance-based criteria between different samples and their neighboring sam-

ples, it is useful to describe this collection of interconnected reachability set samples us-

ing a graph. This takes advantage of the fact that samples only need local information

from neighboring samples to evaluate a uniformity metric. For computational purposes,

minimal communication links are desirable as this negatively impacts the parallelizability

and increases computational overhead [37]. Fortunately, distributed control using only lo-

cal information has been well studied [38, 39, 40]. Developed theory behind multi-agent

robotics problems based on Gabriel graphs and central Voronoi tessellations can be applied

to this problem to transform each reachability problem into a parallelized distributed con-

trol problem where each “agent” is a point solution of the reachability subspace problem

[40]. There is currently no common ground between distributed control and reachability

set computation.

In addition to the use of distributed control to adjust the position of the extremal point so-

lutions, point solutions may be added or removed from the graph. By prescribing lower

and upper bounds on distance metrics between point solutions, detecting sparse or dense

regions on the extremal surface can be achieved by identifying point solution pairs that

do not satisfy these bounds. As the reachable set evolves, it is then possible to spawn

new point solutions and potentially remove redundant point solutions. Either of these

changes may occur independently and will each result in a updated graph. Preliminary

work used interquartile range (IQR) outlier detection from univariate statistics to select the

upper threshold [29].

In addition to the type of sampling criteria used for the description of the reachable set

boundary, there is a tradeoff between number of samples and surface resolution. Because

6

the final reachable set shape and size is not known a priori, it’s sometimes difficult to spec-

ify a fixed number of particles to describe this reachable set boundary. In cases like this,

it is possible for the user to explicitly specify a desired spatial resolution for the reacha-

bility set as opposed to an implicit specification such as number of samples or facets. The

aforementioned technique of adding samples is very convenient in this situation. However,

depending on the problem, this could lead to a large increase in required computational

memory to compute these samples.

Each of the discussed methods for reachable set boundary exploration only requires the

optimal control problem state and costate from the point solution itself. As a result, each

numerical continuation method instance is computationally independent from the informa-

tion from other point solutions. This parallel aspect of the methodology makes available

computational techniques suited for parallel and/or distributed computing.

Contribution 2 : The development of distributed control policies to enforce uniform sub-

space reachable surface coverage while minimizing the required inter-agent communica-

tion.

1.5 Connections with Multi-objective Optimization

Multi-objective optimization problems are those in which there are a number of indepen-

dent objective functions that need to optimized over a set of design variables [41, 42, 43].

In many cases, one seeks to achieve a balance between the given objectives, such as cost

or performance. Multi-objective optimization methods are used in a wide range of applica-

tions, including engineering system design [44], financial asset allocation [45], spacecraft

maneuver design [46], and weather forecasting [47].

Many optimization problems in engineering and economics are inherently multi-objective

because there are often tradeoffs in metrics of interest. The result from this optimization

7

is the Pareto frontier, set of Pareto-optimal points, where it is impossible to change any

design variables to improve one objective without degrading another [41]. Once this Pareto

frontier is computed, the user can make evaluate tradeoffs between efficient solutions as

opposed to the full objective space.

Algorithms for computing Pareto frontiers can be loosely organized into the following

classes: iterative single-objective optimization, metaheuristic algorithms, and homotopy

methods. In iterative single-objective optimization, a single aggregate objective function is

formed using the individual objectives, usually parametrized by relative weights. Methods

within this class of algorithms include weighted Lp-metric method, ε-constraint method,

method of equality constraints, and the normal-boundary intersection method [48, 49, 50,

44]. Metaheuristic algorithms are generally stochastic methods that attempt to efficiently

explore the feasible design space to find near-optimal solutions. Common examples of

this class of methods include evolutionary algorithms, simulated annealing methods, and

particle swarm methods [51, 52, 53]. A final class of algorithms focus on homotopy or

continuation. These methods work by computing paths and surfaces in the feasible design

space that map to the Pareto-optimal set of points [54, 55, 56, 57].

Both reachability and multi-objective optimization problems search for extremal sets in

objective space. For reachability problems, the objective space is the state space for the

dynamic variables. Furthermore, both problems involve the search for solutions that satisfy

the first-order necessary conditions of optimality [4, 5, 58]. The curse of dimensionality

affects research in both fields, limiting applicability of many methods to low-dimension

and/or simplified objectives [59, 60, 61]. Moreover, continuation method solution ap-

proaches have been applied to both problems [56, 62, 63, 64, 65].

The interconnections between the theory of multi-objective optimization and control theory

have been stuided in the past, primarily in path planning and multi-objective optimal control

applications [66, 67]. Mitchell and Sastry solved multi-objective path planning problems

8

using the weighted sum approach of multi-objective optimization along with multiple so-

lutions of a parametrized HJB PDE [68]. Kumar extended this concept by augmenting the

dynamic state with integral constraints and solving a single, higher-dimensional HJB PDE

[69]. The aim of this contribution is to further investigate the analytic connections between

reachability and multi-objective optimization theory. This will be done by creating a joint

formulation of optimal control and multi-objective optimization using the generalized in-

dependent parameter (GIP) HJB PDE [70, 71]. Furthermore, it is shown that the first-order

necessary conditions of the joint formulation reduce to the first-order necessary conditions

of both Pareto-optimality and optimal control.

For the most part, reachability analysis and multi-objective optimization problems are con-

tained in different fields. Moreover, the analytical techniques and numerical algorithms to

solve these problems vary between the fields. It is the hope of this contribution to help

bridge the gap between the two fields. Unification of these separate fields can enable cross-

pollination of both theory and numerical methods.

Contribution 3 : The joint formulation between multi-objective optimization and reacha-

bility problems to allow for simultaneous computation of Pareto-optimal sets and reachable

sets.

1.6 Summary of Contributions and Relevant Literature

To summarize, the contributions of this work aim to develop efficient computational meth-

ods for reachability surfaces. The first contribution involves the use of parameterized op-

timal control and continuation methods to efficiently sample subspace reachable extremal

points. The second contribution builds upon the first by utilizing parallelization and dis-

tributed control of the extremal point solutions to efficiently compute and render the reach-

ability surface of interest. The third contribution draws connections between reachability

theory with multi-objective optimization by computing pareto-optimal surfaces using the

9

methodology described by the first two contributions. Table 1.1 summarizes the relevant

literature for each of the contributions identified.

10

Table 1.1: Overview of proposed contributions, existing literature and proposed publica-
tions

V
ar

ai
ya

 [4
]

H
ol

zi
ng

er
 a

nd
 S

ch
ee

re
s

[6
5]

H
ol

zi
ng

er
 a

nd
 S

ch
ee

re
s

[2
3]

O
ht

su
ka

 a
nd

 F
uj

ii
[2

5]

M
it

ch
el

l a
nd

 T
om

lin
 [1

0]

M
es

ba
hi

 a
nd

 E
ge

rs
te

dt
 [4

0]

B
at

al
in

 e
t.

 a
l.

[9
3]

Zo
m

ay
a

[3
7]

P
od

ur
i e

t.
 a

l.
[3

9]

H
ol

zi
ng

er
 e

t.
 a

l.
[7

0]

H
ill

er
m

ei
er

 [5
5]

D
as

ki
le

w
ic

z
[5

7]

[2
8]

 -
 S

F
M

 '1
7

[3
3]

 -
 I

A
C

 '1
8

[6
3]

 -
 (

Su
bm

it
te

d
to

 J
G

C
D

 '1
9)

(C
on

fe
re

nc
e:

 S
pr

 '2
0

)

[6
4]

 -
 (

Su
bm

it
te

d
to

 J
G

C
D

 '1
9)

(C
on

fe
re

nc
e:

 S
pr

 '2
0

)

(R
ea

dy
 t

o
Su

bm
it

 t
o

O
IE

 '1
9)

Representative Existing Literature (by reference index)

C
on

tr
ib

ut
io

n
1:

Sa

m
pl

in
g-

ba
se

d
su

bs
pa

ce
 r

ea
ch

ab
ili

ty
C

on
tr

ib
ut

io
n

2:

P
ar

al
le

liz
ed

 M
ul

ti
-a

ge
nt

 E
xp

lo
ra

ti
on

C
on

tr
ib

ut
io

n
3:

C

on
ne

ct
io

ns
 t

o
M

ul
ti

-o
bj

ec
ti

ve

O
pt

im
iz

at
io

n

My Publications

F
or

m
ul

at
io

n
of

 f
or

w
ar

d
an

d
ba

ck
w
ar

d
re

ac
ha

bl
e

se
t

an
d

re
ac

ha
bl
e

tu
be

 c
om

pu
ta

ti
on

s
us

in
g

sa
m

pl
in

g
m

et
ho

ds

Im
pl

em
en

te
d

nu
m

er
ic

al
 c

on
di

ti
on

in
g

m
et

ho
ds

 t
o

im
pr

ov
e

ac
cu

ra
cy

 o
f
co

nt
in

ua
ti
on

 m
et

ho
d

R
ea

sc
h

su
rf

ac
e

de
sc

ri
pt

io
n

im
pr

ov
em

en
t
us

in
g

ne
ig

hb
or

in
g

po
in

t-
w
is

e
di

st
an

ce
 m

et
ri

c

D
ev

el
op

m
en

t
of

 d
is

tr
ib

ut
ed

 c
on

tr
ol

 p
ol

ic
ie

s
to

 e
nf

or
ce

un

if
or

m
 s

ub
sp

ac
e

re
ac

ha
bl
e

su
rf

ac
e

co
ve

ra
ge

A
na

ly
ic

al
 c

on
ne

ct
io

ns
 b

et
w
ee

n
re

ac
ha

bi
lit

y
th

eo
ry

 a
nd

 m
ul

ti
-o

bj
ec

ti
ve

 o
pt

im
iz

at
io

n

F
or

m
ul

at
io

n
of

 c
on

ve
x

re
ac

h
se

t
us

in
g

op
ti
m

al

co
nt

ro
l

D
er

iv
at

io
n

of
 s

ub
sp

ac
e

re
ac

ha
bi

lit
y

us
in

g
sa

m
pl

in
g

m
et

ho
ds

D
er

iv
in

g
m

od
if
ie

d
H

JB
 P

D
E
 f
or

 o
ve

ra
pp

ro
xi

m
at

e
re

ac
h

se
t
pr

oj
ec

ti
on

s

F
or

m
ul

at
io

n
of

 o
pt

im
al

 c
on

tr
ol

 p
ro

bl
em

 s
ol

ut
io

n
th

ro
ug

h
co

nt
in

ua
ti
on

N
E
T
 g

ra
ph

s
fo

r
di

st
ri

bu
te

d
to

po
lo

gy
 c

on
tr

ol

H
om

ot
op

y
al

go
ri

th
m

 f
or

 s
ol

ut
io

n
of

m

ul
ti
ob

je
ct

iv
e

op
ti
m

iz
at

io
n

pr
ob

le
m

s

O
pt

im
al

 c
on

tr
ol

 p
ol

ic
y

an
d

op
ti
m

al
it
y

co
nd

it
io

ns
 f
or

re

ac
ha

bi
lit

y
w
it
h

el
lip

so
id

al
 i
ni

ti
al

 s
et

s

M
ul

ti
-a

ge
nt

 n
et

w
or

k
co

nt
ro

l

In
tr

od
uc

ti
on

 o
f
ge

ne
ra

liz
ed

 i
nd

ep
en

de
nt

pa

ra
m

et
er

 o
pt

im
al

 r
ea

ch
ab

ili
ty

C
on

ti
nu

at
io

n-
ba

se
d

al
go

ri
th

m
 t
ow

ar
ds

 u
ni

fo
rm

sa

m
pl

in
g

of
 p

ar
et

o
fr

on
ti
er

s

M
ul

ti
-r

ob
ot

 c
ov

er
ag

e
us

in
g

lo
ca

l d
is

ta
nc

e
m

et
ri

cs

P
ar

al
le
l a

nd
 d

is
tr

ib
ut

ed
 c

om
pu

ti
ng

 p
ri

nc
ip

le
s

11

CHAPTER 2

USING CONTINUATION METHODS TO COMPUTE REACHABLE VOLUME

PROJECTIONS

2.1 Sampling Methods for Subspace Reachability

An optimal reachability problem can be defined as a continuum of optimal control prob-

lems with initial conditions satisfying an inequality constraint on the initial value function

V (x, t0) ≤ 0. The optimal control problem is formally stated as

max
u∈U

[∫ tf

t0

L(x(τ),u(τ), τ)dτ + V (xf , tf)

]
s.t. ẋ = f(x,u, t)

g(x0, t0,xf , tf) = 0

(2.1)

where x ∈ Rn is the state, u ∈ Rm is the control input, t ∈ [t0, tf] is time, L : Rn × Rm ×

R→ R is the trajectory performance function, V : Rn×R→ R is the terminal performance

function, f : Rn×Rm×R→ Rn captures the system dynamics, g : Rn×R×Rn×R→ Rv

expresses boundary conditions, and U ⊆ Rm defines the set of admissible controls.

Commonly, minimum time reachability analyses are performed. In such case, the La-

grangian term may be set L(x,u, t) = 0 [72]. Often minimum time reachability sets are

determined by computing viscosity solutions of the HJB PDE where the zero-level sets of

V over time represent the boundary of the minimum time reachability set. This solution

approach requires space and time to be discretized into grids and the governing partial dif-

ferential equations solved numerically. While these methods find accurate approximations

to the reachable sets, the curse of dimensionality continues to hamper the computation of

12

the reachable sets as the required computational load typically scales exponentially with

the problems state dimension.

One method of avoiding the computational cost of the full state space reachable sets is to

only compute the reachable sets in terms of subspaces of the full state space. This is anal-

ogous to computing projections of the full state reachable set onto subspaces interest. The

methodology is to solve optimal control problems whose solutions compose the boundary

of the reachable set. This approach is explained by Holzinger and the highlights of the

approach are summarized here [19].

To avoid unnecessary computational cost by calculating the full state reachable set, the

reachability computation is performed on a subspace Rs of the full state space Rn (Rs ⊆

Rn). This can be performed by decomposing the full state into the subspace of interest and

residual subspace such that x = [xTs xTr]T . To compute maximal reachable sets, the optimal

control is derived to make the reachable set size as large as possible [73]. Therefore, to

compute points on the subspace reachability set after an amount of time, the final subspace

distance must be maximized in a direction of interest in the given subspace [19]. This

approach is analogous to the weighted Lp method in multi-objective optimization [43]. A

search direction in Rs can be described using d̂s = h(θ) where θ ∈ Rs−1 is a vector

of angular coordinates and h is the mapping from the angular coordinates to a cartesian

direction vector. For this work, hyperspherical coordinates are used to describe the unit

vector search directions.

It is then possible to construct the performance index for a point solution on the subspace

reachable set as
V (xf , tf ,θ) =

1

2
xTfG(θ)xf

G(θ) =

G̃s×s 0s×r

0r×s 0r×r

 = d̂s(θ)d̂Ts (θ)
(2.2)

Using this performance index in a reachability optimal control problem generates trajecto-

13

Rs
<latexit sha1_base64="gGKVtY6qCiyz0B385nz7Il48UPY=">AAAF6HicdZTNbhMxEMfd0kAJXy0cuVhElcqlyqZIcKxKkVBPIUrSqNkQeb3exO2uvVp7QxJ3nwFu0CvvwwPwNtjOqrTe1FKk2d/M3zOecRykMRWy2fy7sflgq/bw0fbj+pOnz56/2Nl92Rc8zzDpYR7zbBAgQWLKSE9SGZNBmhGUBDE5Cy4/Gv/ZjGSCctaVi5SMEjRhNKIYSY16fqfzVYx3Gs2Dpl2wanil0QDlao93t/74Icd5QpjEMRJi6DVTOVIokxTHpKj7uSApwpdoQobaZCghYqRstQXc0ySEEc/0j0lo6W2FQokQiyTQkQmSU+H6DFzrCxIns4w+jBRlaS4Jw6vEUR5DyaFpBQxpRrCMF9pAOKO6doinKENY6obV63swJJFuK0QwyBmeQh5BMeWZxLnUiRn5hnmSIBYq/7gYeiPlm5KCSDW8orjr/1ToGEVc3F/JuB6Qmd8aIdHCvtE7/GSlDLlcIwqNKiSxRD5xdcZ1stbVXW0paRyuq6RbnrFrTmLc7llKf/8eP2cmte1QkKjK9vO5bdHc5Xluee7yxcLyhcvT1PLU5bOZ5TOXdzo3ValOpZFCO6dI3kw2LIqxcILkVF9H5etDaZNI5G6yXNrMS5dnlE3+z18QnQXTDBdrem9C7wmH94ouEC6GLR0f6RutG2P+nCiGOvDWR8tVMZ4lK9lVw/OvxqoaggJhC9EBV45L0AkrrxGZS2U/9xveWydsMLAtGbg7t9uWt11+fm75uctPTy0/rcwttDyscD3L6kSLun4APfe5qxr91oF3eND68q5xdFw+hdvgNXgD9oEH3oMj8Bm0QQ9gQMF38Atc1y5qP2o/a9er0M2NUvMK3Fm13/8ANwQd4A==</latexit>

Rr
<latexit sha1_base64="GqRzvdGJv+STq27vAiSTWd6le5k=">AAAF6HicdZTNbhMxEMfd0kAJXy0cuVhElcqlyqZIcKxKkVBPIUrSqNkQeb3exO2uvbK9Icl2nwFu0CvvwwPwNtjOqrTe1FKk2d/M3zOecRykMZWq2fy7sflgq/bw0fbj+pOnz56/2Nl92Zc8E5j0MI+5GARIkpgy0lNUxWSQCoKSICZnweVH4z+bESEpZ121SMkoQRNGI4qR0qjndzpfxXin0Txo2gWrhlcaDVCu9nh3648fcpwlhCkcIymHXjNVoxwJRXFMirqfSZIifIkmZKhNhhIiR7mttoB7moQw4kL/mIKW3lbkKJFykQQ6MkFqKl2fgWt9QeJkVtGHUU5ZminC8CpxlMVQcWhaAUMqCFbxQhsIC6prh3iKBMJKN6xe34MhiXRbIYJBxvAU8gjKKRcKZ0onZuQb5kmCWJj7x8XQG+W+KSmI8oZXFHf9nwodkxMX91cyrgdk5rdGSLSwb/QOP1kpQ67WiEKjCkmskE9cnXGdrHV1V1sqGofrKumWZ+yakxi3e5bS37/Hz5lJbTsUJHll+/nctmju8iyzPHP5YmH5wuVpannq8tnM8pnLO52bqvJOpZFSO6dI3Uw2LIqxdILUVF/H3NeH0iZRyN1kubSZly4XlE3+z18SnQVTgYs1vTeh94TDe0UXCBfDlo6P9I3WjTF/ThRDHXjro+WqGBfJSnbV8PyrcV4NQYG0heiAK8cl6YSV14jMVW4/9xveWydsMLAtGbg7t9uWt11+fm75uctPTy0/rcwttDyscD3L6kSLun4APfe5qxr91oF3eND68q5xdFw+hdvgNXgD9oEH3oMj8Bm0QQ9gQMF38Atc1y5qP2o/a9er0M2NUvMK3Fm13/8AMYQd3w==</latexit>

R
<latexit sha1_base64="jNra4Ssvg3iVUU6Q4xyLPBM5b1s=">AAAF7nicdZTdbtMwFMe9scIoXxtccmNRTRo3U1OQ4HIaQ0K7KlPXVWuqynGc1ltiR7ZT2nl5DLiD3fIyPABvg+1GY3M6S5FOfuf8fY7PSRzlKZWq3f67tv5go/Hw0ebj5pOnz56/2Np+2Ze8EJicYJ5yMYiQJCll5ERRlZJBLgjKopScRhefrP90RoSknPXUIiejDE0YTShGyqBhmCE1xSjVx+V4q9Xea7sF60ZQGS1Qre54e+NPGHNcZIQpnCIph0E7VyONhKI4JWUzLCTJEb5AEzI0JkMZkSPtai7hjiExTLgwD1PQ0dsKjTIpF1lkIm2N0vdZuNIXZV5mlXwcacryQhGGl4mTIoWKQ9sQGFNBsEoXxkBYUFM7xFMkEFambc3mDoxJYpoLEYwKhqeQJ1BOuVC4UCYxI98wzzLEYh0elMNgpF1Lo0S3grK86/9cmhhNfNxfyrgZk53iCiExwr7Ve/xwqYy5WiGKrSomqUIh8XXWdbjS1VtuqWgar6qkV52xZ09i3f5ZKn//Hj9nNrXrUJTp2vbzuWvR3OdF4Xjh88XC8YXP89zx3OezmeMznx8f31Rl/gS/kdI4p0jdTDYuy7H0gtTUfI46NIcyJlHI3+Ty0mW+9LmgbPJ//pKYLJgKXK7ovQ29JxzeKzpHuBx2THxivmjTGPtzohSawFsvHV/FuMiWsqtWEF6NdT0ERdIVYgKuPJekE1Z9RmSutHvdbQVvvbDBwLVk4O/c7Tre9fnZmeNnPj86cvyoNrfY8bjGzSzrEy2b5gIM/OuubvQ7e8G7vc7X9639g+oq3ASvwRuwCwLwAeyDL6ALTgAGHHwHv8B1I2/8aPxsXC9D19cqzStwZzV+/wMCqiDL</latexit>

Rs
<latexit sha1_base64="D36tCn5SOKbk7p9vvoUjTQ8zV4o=">AAAF8HicdZTdbtMwFMe9scIoXxtccmNRTRo3U1OQ4HIaQ0K7KlPXVWuqynGc1iyxg+2UdlmeA+5gt7wLD8DbcOJGY3M6S5Gc3zl/n+NzbAdpzLVpt/+urd/baNx/sPmw+ejxk6fPtraf97XMFGUnVMZSDQKiWcwFOzHcxGyQKkaSIGanwfmH0n46Y0pzKXpmkbJRQiaCR5wSA2jkJ8RMKYnz42Ksx1ut9l7bDlyfeNWkharRHW9v/PFDSbOECUNjovXQa6dmlBNlOI1Z0fQzzVJCz8mEDWEqSML0KLdZF3gHSIgjqeATBlt6U5GTROtFEoBnmaV2bSVcaQsSJ7KJ3o9yLtLMMEGXgaMsxkbisiQ45IpREy9gQqjikDumU6IINVC4ZnMHhyyC8mKCg0zQKZYR1lOpDM0MBBbsG5VJQkSY+wfF0BvltqhBlLe8orht/1iAT85c3F/KJDSq7OMKIQNhv9Q7/HCpDKVZIQpLVchiQ3zm6krT4UpTb7mk4XG4KpNetcdeuZPS7O6lsvfvsEtRhrYVCpK8tvx8bks0d3mWWZ65fLGwfOHyNLU8dflsZvnM5cfH11nBXXALqcE4Jea6s2EB18VxMlM4jrkPm4IpM8Rd5OLCRr5wueJi8r//mkEUyhUtVtS+dL3DHd8p+kJoMeyAfwQnGgpTXk4SY3C88dNxVUKqZCm7bHn+5Tivu5BA20TA4dIxaT4R1TFic5Pb392W99pxGwxsSQbuyt2u5V2Xn51ZfubyoyPLj2p9Cy0Paxx6We9o0YQH0HOfu/qk39nz3ux1Pr9t7R9UT+EmeoleoV3koXdoH31CXXSCKPqKvqNf6KqhGj8aPxtXS9f1tUrzAt0ajd//AOEvIbE=</latexit>

Figure 2.1: Subspace Reachability Visualization where R ⊂ Rn denotes the full-state
reachable volume andRs ⊂ Rs denotes the subspace reachable volume.

ries that optimize extent along the search direction parametrized by θ. Thus, by varying θ

to efficiently sample points on a hypersphere in Rs, point solutions that lie on the subspace

reachable set boundary are computed by solving the optimal control problems.

It should be noted that these subspace reachable sets are projections of the full-state reach-

able sets onto the coordinate axes of the states of interest. Furthermore, because the per-

formance index in Eq. (2.2) is the squared distance along d̂s(θ), the point solutions corre-

sponding to Eq. (2.2) yield supporting hyperplanes with normal vector d̂s(θ) [43]. Con-

sequently, in this methodology the reachable set projections are convex hulls of the true

subspace reachable set. This is analogous to using support functions to describe convex

sets or reformulating the HJB PDE to account for unmodeled dimensions as additional

disturbances [10, 16]. This class of methods for computing projections of reachability

volumes are generally called projection methods.

This reachability optimal control problem is then

max
u∈U

1

2
xTfG(θ)xf

s.t. ẋ = f(x,u, t)

g(x0, t0) = 0

(2.3)

14

From optimal control theory, the first order necessary conditions of optimality can be de-

rived as [72]

ẋ =
∂H∗
∂p

T

ṗ = −∂H
∗

∂x

T

u∗ = argmax
u∈U

{H}

H∗ = pT f(x,u∗, t)

p0 = − ∂g

∂x0

T

(x0)λ

pf =
∂V

∂xf

T

(xf) = G(θ)xf

(2.4)

where λ ∈ R is the Lagrange multiplier corresponding to the initial condition constraint,

g(x0). To solve the reachability optimal control problem described in Eq. (2.3), trajectories

for the state and costate must be found to simultaneously satisfy the first order necessary

conditions of optimality given in Eq. (2.4). Because the state dynamics are assumed to be

at least Lipschitz continuous, the state and costate trajectories are uniquely determined by

their boundary condition groups (x0,p0, t0) or (xf ,pf , tf). However, due to the C1 initial

condtion set, x0 and p0 are related by the transversality conditions through the Lagrange

multiplier λ. This reduces the optimal control problem solution to finding (x0, λ) that

satisfy Eq. (2.4).

2.2 Unit Ball Constraints

2.2.1 Norm Definitions and Differentiability Conditions

In previous reachability approaches using continuation methods [19, 31], the initial condi-

tion set was specified using ellipsoids such as

g(x0, t0) = xT0Ex0 ≤ 1 (2.5)

15

where E ∈ S+
n×n > 0, is a symmetric positive definite shape matrix that defines the ellip-

soid and x0 = x(t0) is the initial state. Ellipsoidal sets provide continuous differentiability

of the value function with respect to the state at the initial time, ensuring the initial optimal

costate to be always defined. Additionally, ellipsoidal constraints are useful because they

can represent the set of states that exist within a level set of a Gaussian probability density

function. These probability ellipsoids can be generated from the error covariance output of

typical estimation algorithms such as minimum variance estimators or batch filters.

While many applications are well served by ellipsoidal initial constraints, others are not.

Box constraints of the form xi ∈ Xi ⊂ R, Xi = [xi,min, xi,max], i = 1, ..., n are an impor-

tant case. Geometrically, these constraints describe an n-dimensional rectangle. However,

as described in Section 2.3, reachability continuation methods must have constraint bound-

aries where the first and second derivatives (∂g
∂x0

, ∂
2g
∂x2

0
) are well-defined along the continu-

ation path. This is equivalent to enforcing a smooth constraint boundary with no gaps or

corners.

Smooth hypercube approximations can be generated by using the unit ball of the p-normed

vector space. The p-norm is defined as

‖x‖p =

[n∑
i=1

|xi|p
] 1

p

(2.6)

where p ≥ 1 for this to satisfy the triangle inequality and the definition of a norm. This

norm is widely used as it generalizes commonly used norms such as Manhattan/taxicab

norm when p = 1, maximum/infinity norm when p = ∞, and Euclidean when p = 2.

Under this norm and the normed vector space denoted by (Rn, ‖x‖p), a constraint region

may be specified as the closed unit ball defined as {x ∈ Rn : ‖x‖p ≤ 1}. When p =

2, this corresponds to a unit hypersphere in Rn. As p is increased, the unit hypersphere

continuously deforms to a unit hypercube as p→∞.

16

It’s then possible to define the p-norm unit ball initial condition set as

g(x0) = ‖x0‖p − 1 ≤ 0 (2.7)

which is parametrized by the scalar parameter p where 1 ≤ p < ∞. In order to use this

unit ball as a constraint region in this work, the first and second derivatives should be well-

defined for the continuation methods. Evaluating the first derivative of the p-norm leads to

∂‖x‖p
∂x

=
x ◦ |x|p−2

‖x‖p−1
p

=
sign(x) ◦ |x|p−1

‖x‖p−1
p

(2.8)

where ◦ denotes the Hadamard/element-wise product, |·| denotes the element-wise absolute

value, and sign(·) denotes the element-wise sign/signum operation.

For the case of p = 1, the gradient is not well-defined whenever a component of x is zero.

This corresponds to a corner in the initial condition set where there are multiple tangent

hyperplanes to the set at these points. One feasible choice for this scenario is to define

|0|0 = 1. In this case, the ith component of the gradient is zero whenever ith component of

the state is zero. This ensures continuity in the limit sense with respect to the state.

Additionally, for any value of p ≥ 1, the gradient is not defined at the origin. In this chapter,

singleton initial condition sets are not considered. As a result, this work focuses on initial

condition set regions which have non-zero volume.

The second derivative of the p-norm leads to

∂

∂xj

[
∂‖x‖p
∂xi

]
= (p− 1)

∂xi
∂xj

|xi|p−2

‖x‖p−1
p

+ (1− p)xi|xi|
p−2xj|xj|p−2

‖x‖2p−1
p

(2.9)

where i, j = 1, 2, . . . , n denote the first and second indices of the resultant matrix. Note

the ∂xi
∂xj

term is equivalent to the Kronecker delta δij used commonly in index and Einstein

summation notation. In matrix form, ∂xi
∂xj

, represents the n× n identity matrix, In×n. Also

17

note the second derivative is not well-defined whenever p < 2 and any component of x is

zero.

These results mirror the differentiabiltiy conditions outlined by Sundaresan [74]. Theorem

8 from this paper proves that if 1 ≤ p < ∞, p-norms are of class C∞ if p is an even

integer, class Cp−1 if p is an odd integer, and of class CE(p) if p is not an integer [74].

E(p) denotes the integral part of the positive real number p, equivalent to the floor(p). As

aforementioned, the numerical continuation methods require a constraint that is at least C2.

This results in a requirement for exact numerical continuation that p ≥ 2.

As discussed, the p-norm constraint region has differentiability issues near the origin. An

alternative norm may be used to avoid these issues. By removing the exponent 1/p from

the p-norm, an F-norm is achieved [30].

‖x‖F =
n∑
i=1

|xi|p (2.10)

The Lp spaces are F-spaces for all p ≥ 0. Please note the the F-norm does not denote

the Frobenius norm but instead it represents the corresponding metric for an F-space. The

closed unit ball for the vector space (Rn, ‖x‖p) and for the vector space (Rn, ‖x‖F) are

identical where ‖x‖F is defined in Eq.(2.10). Consequently, the p-norm unit ball set may

be replaced with the defined F-norm along with its first and second derivatives. Evaluating

both of these derivatives leads to

∂‖x‖F
∂x

= p x ◦ |x|p−2 = p sign(x) ◦ |x|p−1 (2.11)

∂2‖x‖F
∂x2

= p(p− 1) diag(|x|p−2) (2.12)

where diag(·) represents a diagonal matrix with main diagonal given as the argument.

18

Similarly to the p-norm, the F-norm shares the same differentiability conditions as a func-

tion of p. However, the derivatives are simpler to compute as there is no coupling between

components of the state in the F-norm. As a result, the ith component of the state only af-

fects derivatives with respect to that component. Furthermore, the F-norm has well-defined

derivatives at the origin. The following is another equivalent expression for the initial con-

dition set using the unit ball by F-norm as

g(x0) = ‖x0‖F − 1 ≤ 0 (2.13)

which is parametrized by the scalar parameter p where 1 ≤ p <∞.

To use numerical continuation for cases where p < 2, approximate methods must be used.

A simple method for closely approximating the first and second derivatives of the defined

norms are to use the relationship |x| =
√
x2. An approximate absolute value function can

then be defined as

|x| ≈ |x|s =
√
x2 + ε2 (2.14)

where ε ∈ R is a smoothing parameter that defines the accuracy of the approximation. As

ε → 0, |x|s → |x| and the accuracy of the approximation is improved. This smoothed

absolute value function ensures |x|y is well-defined when y < 0 and x = 0.

2.2.2 Affine Transformations of Unit Ball

The initial condition sets defined in Eq.(2.7) and Eq.(2.13) result in the set of states con-

tained within the unity level set of the norm, resulting in unit circles, unit spheres, unit

cubes, etc defined relative to the origin. However, it is possible to scale, rotate, and trans-

late these initial condition sets using an affine transformation. IfM ∈ Rn×n is the invertible

transformation matrix such that x̃ = M(x− xc), xc defines the center of the constraint re-

19

gion, and ‖x̃‖ ≤ 1, the initial condition sets and derivatives can be evaluated as

g(x0) = ‖x̃0‖ − 1 ≤ 0 (2.15)

∂g

∂x
(x0) = MT ∂‖x̃0‖

∂x̃
(2.16)

∂2g

∂x2
(x0) = MT ∂

2‖x̃0‖
∂x̃2

M (2.17)

where x̃0 = M(x0−xc). This allows for the representation of scaled, rotated, and translated

sets such as n-dimensional rectangles and ellipsoids. This type of transformation may be

applied to the unit ball of any normed vector space, including the p-norm and F-norm

previously discussed.

2.2.3 Feasible Control Set

In a similar way, the set of feasible control inputs in previous work is prescribed using

spherical sets such as

U = {u : uTu ≤ u2
m} (2.18)

where um ∈ R+ defines the maximum control input Euclidean norm. Ellipsoidal con-

trol input constraints were also represented by adjusting the system dynamics to include a

positive definite transformation matrix on the control input term.

The set of feasible controls may also be defined using the unit balls of the vector spaces

such as (Rm, ‖u‖p) and (Rm, ‖u‖F). This allows for non-ellipsoidal feasible control sets in

the reachability analysis.

Moreover, the feasible control set does not need to be centered around the origin or contain

the origin at all. This allows for minimum-time reachability analyses in which feasible

20

control set defines the allowable deviations from a nominal control input signal, uc(t) or

uc(x, t).

2.2.4 Maximal Inner Product on Unit Ball

For constraint sets on both states and control input, the problem of maximizing inner prod-

ucts over the unit balls arises. The optimization problem is stated as

max
x

yTx

s.t. ‖x‖p ≤ 1

(2.19)

The solution relies on the dual norm defined on a normed vector space (Rn, ‖x‖)

‖y‖∗ := sup{yTx : x ∈ Rn, ‖x‖ ≤ 1} (2.20)

which shows that maximal value of yTx is ‖y‖∗. For the p-norm, Hölder’s inequality shows

that the dual is the q-norm where 1
p

+ 1
q

= 1 [30]. So an equivalent problem for Eq. (2.19)

is to find the x such that yTx = ‖y‖q where q = p
p−1

.

This is accomplished by choosing

x∗ =
v

‖v‖p
v = sign(y) ◦ |y|q−1

(2.21)

Proof: Using this choice in x∗,

‖x∗‖p =

[n∑
i=1

∣∣∣∣ vi
‖v‖p

∣∣∣∣p] 1
p

=
1

‖v‖p

[n∑
i=1

|vi|p
] 1

p

= 1 (2.22)

which shows that x∗ lies on the boundary of the unit ball for the (Rm, ‖u‖p) vector space.

21

Furthermore,

‖v‖pp =
n∑
i=1

|vi|p =
n∑
i=1

|sign(yi)|yi|q−1|p =
n∑
i=1

||yi|q−1|p =
n∑
i=1

|yi|q = ‖y‖qq

yTv =
n∑
i=1

yivi =
n∑
i=1

yisign(yi)|yi|q−1 =
n∑
i=1

|yi|q = ‖y‖qq
(2.23)

where the relationship between q and p is used. Evaluating the inner product between y

and x∗ and using the results from Eq. (2.23),

yTx∗ =
n∑
i=1

yix
∗
i =

1

‖v‖p

n∑
i=1

yivi =
1

‖y‖
q
p
q

‖y‖qq = ‖y‖q−
q
p

q = ‖y‖q (2.24)

2

A corollary result comes from the form of x∗.

x∗ =
sign(y) ◦ |y|q−1

‖v‖p
=

sign(y) ◦ |y|q−1

‖y‖q−1
q

=
∂‖y‖q
∂y

(2.25)

which shows that the optimizing vector to Eq. (2.19) can be evaluated using the first deriva-

tive of the q-norm. Geometrically, x∗ is a normal vector to the ‖y‖q level set evaluated at

y. It should be noted that x∗ shares the same existence conditions as the conditions for C1

q-norm. Consequently when y = 0, p = 1, or p =∞, there is not a unique solution to the

maximal inner product problem.

The Lagrange multiplier corresponding to the optimization problem in Eq. (2.19) can be

found using the first order necessary condition of optimality for the constrained optimiza-

tion problem. In this case, the optimizing solution is known to lie on the boundary of the

constraint region, so an equality constraint can be used in Eq. (2.19). The resulting neces-

sary condition of optimality from the first variation of the optimization Lagrangian is given

22

by

0 = yi + λ
xi|xi|p−2

‖x‖p−1
p

= yi + λ
vi
‖v‖p

∣∣∣∣ vi
‖v‖p

∣∣∣∣p−2

= yi + λ
1

‖v‖p−1
p

vi|vi|p−2 = yi + λ
1

‖v‖p−1
p

yi

(2.26)

where λ denotes the Lagrange multiplier. Eq. (2.26) must hold for i = 1, 2, . . . , n and

arbitrary real, finite yi. Solving for the Lagrange multiplier,

λ = −‖v‖p−1
p = −‖y‖q (2.27)

As the closed unit balls for the p-norm and F-norm case are identical, it follows that the

x∗ that maximizes yTx subject to ‖x‖F ≤ 1 is the same as described in Eq. (2.21) and

Eq. (2.25). While the solution for x∗ is identical to the p-norm case, the corresponding

Lagrange multipliers are different. Using a similar approach to Eq. (2.26), the Lagrange

multiplier for the F-norm case is λ = −‖y‖q
p

. Additionally, any derivatives of x∗ with

respect to y are also different depending on which norm is being used to define the unit

ball.

2.3 Continuation Methods

The purpose of continuation methods is to solve a complex optimal control problem by

solving a simpler one and deforming the simple solution to the complex solution. This de-

formation is generally performed using a scalar continuation parameter which parametrizes

the optimal control problem [21]. The two-point boundary value problem described in

Eq. (2.4) is equivalent to the following root-finding problem

F[z(s), s] = 0 (2.28)

23

where s is the scalar continuation parameter and

F =

 ∂V
∂xf

T
(xf)− pf

g(x0)


z =

x0

λ


(2.29)

Thus, as the continuation parameter s changes, the solution to the corresponding optimal

control problem z changes. Because the necessary conditions described in F and the solu-

tion vector z depend on the continuation parameter the following differential equation must

hold
dF[z(s), s]

ds
= 0 (2.30)

as F = 0 along the optimal solution curve (z(s), s). Further the differential equation in

Eq. (2.30),
dF

ds
=
∂F

∂z

dz

ds
+
∂F

∂s
= 0 (2.31)

which results in the following initial-value problem in terms of the continuation parameter

dz

ds
= −

[
∂F

∂z

]−1
∂F

∂s
(2.32)

Eq. (2.32) represents how the optimal control problem solution changes as the continuation

parameter is varied. Therefore, if the solution of the optimal control problem (z(s0)) can

be computed, and the jacobian ∂F
∂z

is invertible throughout the entire solution curve z(s),

integrating Eq. (2.32) to s = sf will result in the optimal control problem solution (z(sf)).

The solution procedure to the overall optimal control problem is then reduced to an initial-

value problem which can be solved accurately with a number of numerical integration

methods.

24

Figure 2.2: 2-dimensional continuation method illustration

For time-based reachability problems, a useful choice in the continuation parameter is in

the terminal time horizon, tf = t0 + T . By using the time horizon as a continuation

parameter and integrating Eq. (2.32), the reachability optimal control problem solution for

Eq. (2.3) is solved for each time horizon. Consequently, the time-horizon evolution of a

sample of the reachable set boundary, parameterized by θ, is computed. By performing a

collection of these continuation method initial value problems, the time-horizon evolution

of samples of the reachable set boundary are computed.

At the initial time horizon T = 0, t0 = tf , x0 = xf , and p0 = pf . Finding the optimal

control problem solution is equivalent to solving the following constrained optimization

problem

max
x0

1

2
xT0G(θ)x0 =

1

2
(d̂s(θ)Tx0)2

s.t. g(x0) = ‖M(x0 − xc)‖p,F − 1 = 0

(2.33)

where M is the linear transformation matrix to the unit ball that describes the size and

shape of the initial condition set, xc is the center of the initial condition set, and either p-

norm or F-norm classes are used to define the normed unit ball. Note that this is a slightly

modified version of the optimization problem in Eq. (2.19) where y = d̂s and the objective

is quadratic in terms of the inner product. By restricting the domain to states such that

d̂Ts x > 0, the solution to this problem is the same as in Eq. (2.19). However, the Lagrange

25

multipliers differ in this squared inner product case.

q =
p

p− 1

x̃∗0 =
sign(d̂s) ◦ |d̂s|q−1

‖d̂s‖q−1
q

x∗0 = M−1x̃∗0 + xc

λ =


−‖d̂s‖2

q if p-norm used

−1
p
‖d̂s‖2

q if F-norm used

(2.34)

Once this initial value of z(T = 0) is computed, a continuation method integration shown

in Eq. (2.32) can be performed to get the optimal control solution over multiple time hori-

zons. An illustration of this concept for a single point solution is shown in Fig. 2.2. For

the reachability problem given in Eq. (2.3), Holzinger et al. has computed ∂F
∂z

and ∂F
∂T

in

the continuation method in terms of state transition matrices and optimal Hamiltonian dy-

namics [19]. Using this methodology, Holzinger et al. were able to compute 1-dimensional

subspace reachable set for a 6-dimensional nonlinear duffing oscillator system in 20 sec-

onds on a MacBook Pro 2.4GHz Intel Core 2 Duo processor with 4GB 667MHz DDR2

SDRAM [19].

Solving the differential equation described in Eq. (2.32) relies on the invertibility of the

Jacobian matrix ∂F
∂z

throughout the entire solution path. For many cases, this condition is

met by effectively using preconditioning to accurately solve jacobians that are numerically

near-singular. Furthermore, as each continuation method differential equation represents

the solution path for a single particle, it is always possible to spawn a nearby sample to

avoid the singularity.

However, it is possible to reparametrize the solution path in terms of arclength instead of

reachability time horizon, T , to alleviate some of the singularity issues. If σ denotes an

26

Figure 2.3: Pseudo-arclength Continuation Visualization

arclength parameter,

dF[z(s(σ)), s(σ)]

dσ
=
∂F

∂z

∂z

∂σ
+
∂F

∂T

∂T

∂σ
=

[
∂F
∂z

∂F
∂T

] ∂z
∂σ

∂T
∂σ


= Aϑ

= 0

(2.35)

where ‖ϑ‖2 = 1 [20]. In this version of continuation, the null space of the augmented Jaco-

bian, A, must be computed where A ∈ Rn+1×n+2. The null space of A is one-dimensional

iff either

1. ∂F
∂z

is non-singular or

2. dim[Null(∂F
∂z

)] = 1 and ∂F
∂T

/∈ Range(∂F
∂z

)

where Null(·) denotes the null space or kernel and Range(·) denotes the range or image.

For the usual case where the dim[Null(A)] = 1, there are exactly two unit vectors ϑ that

satisfy Eq. (2.35) corresponding to the two directions to travel along the solution curve. In

general, the initial value for ϑ should be chosen such that ∂T
∂σ

is the desired sign. From there,

one can use continuity to ensure the next iteration of ϑ has a positive inner product with

27

respect to its previous iteration. Alternatively, one can define another augmented matrix

Ā =

A
ϑT

 (2.36)

and determine which ϑ to use based on maintaining a consistent sign of det(Ā).

Eq. (2.35) with the initial condition of z(σ = 0) = z(T = 0) and T (σ = 0) = 0 defines

an initial value problem that may be numerically integrated from σ = 0 until the condition

T = Tf is satisfied.

Singular points in Rn+1 are points in which the dim[Null(A)] ¿ 1. These singular points

are commonly used to signal bifurcation points in the solution curve in which two or more

curves branch from a solution path. In the framework of the sample-based reachability

optimal control control problem in Eq. (2.3), these bifurcation points could signify the

development of concave regions of the reachable volume. While there are numerical tech-

niques for detecting these bifurcation points [20], these techniques are outside of the scope

of this thesis.

2.4 Backwards Reachability Methodology

It is convenient to define trajectories using flow functions as follows

x(t) = φx(t;x0,p0, t0)

p(t) = φp(t;x0,p0, t0)

(2.37)

where the semicolon is used to separate the independent parameter of time from the bound-

ary conditions that uniquely identify the trajectory based on the flow equations in Eq. (2.4).The

28

forward reachable set for a specified time horizon is then defined as

R(tf ;U, f , g, t0) = {xf ∈ Rn : ∀u(t) ∈ U, g(x0) ≤ 0,xf = φx(tf ;x0,p0(x0, λ), t0), t ∈ [t0, tf]}
(2.38)

Intuitively, the forward reachable set defines all the states in state space that can be achieved

by the state flow function starting from some initial condition set using admissible control

at the specified time, tf > t0. A point in state space is forwards reachable at time tf if it

belongs to the forwards reachable set for that time horizon,R(tf ;U, f , g, t0).

Backwards reachable sets can be defined in a similar fashion as Eq. (2.38)

R−(τf ;U, f , g, τ0) = {x0 ∈ Rn : ∀u(τ) ∈ U, g(xf) ≤ 0,x0 = φ̃x(τf ;xf ,pf (xf , λ), τ0), τ ∈ [τ0, τf]}
(2.39)

where τ = −t is defined for backwards reachable sets as a nonnegative and increasing

time parameter and φ̃x is a modified flow function from Eq. (2.37) in which time flows in

reverse. Said differently, the backwards reachable set defines all the initial states that can

achieve the terminal condition set using admissible control at the specified time horizon

τ . Likewise, a point in state space is backwards reachable at time τ if it belongs to the

backwards reachable set for that time horizon,R−(τf ;U, f , g, τ0).

The aforementioned methodology can be used to compute backwards reachable sets with a

few minor changes. The modified optimal control problem for the backwards reachability

case can be expressed as

max
u∈U

1

2
x(τ = τf)

TG(θ)x(τ = τf)

s.t. dx
dτ

=
◦
x = f̃(x,u, τ) = −f(x,u,−τ)

g(x(τ = τ0)) = 0

(2.40)

Furthermore, the optimal control Hamiltonian and resulting optimal control policy is mod-

29

Figure 2.4: Illustration highlighting differences between forward and backward reachabil-
ity. The darker circular regions denote the user-specified boundary condition.

30

ified as

H∗ = max
u∈U
{pT f̃(x,u, τ)} = min

u∈U
{pT f(x,u,−τ)} (2.41)

Because the boundary conditions on the state and costate variables are independent of time,

the continuation method outlined in Sec. 2.3 can be used to find the backwards reachability

optimal control problem solution from τ = 0 to τ = T > 0.

For many reachability problems, it is useful to know whether or not a state was reachable

at any time throughout the given time horizon. This differs from the previous reachable

set definitions that identify states that are reachable exactly at the specified time horizon.

This definition of the reachable set allows for states to be reachable at certain times and

unreachable at other times. This implies that this system is not small-time local controllable

(STLC). A system is STLC if for every state, the system can remain near that state for all

times and can reach nearby states in arbitrarily small amounts of time [75]. Intuitively, this

means there is no admissible control possible to cancel the system dynamics.

However, many important types of real-world dynamical systems are not STLC, resulting in

different interpretations of what it means for a state to be reachable. For example, in safety

analysis problems, it is useful to know whether or not a state was ever unsafe throughout the

given time horizon. In situations like these, once a state is labelled unsafe (reachable), then

that state cannot become safe (unreachable) at some later time. Visually, this means the

reachable set size never decreases as the time horizon increases. This modified reachable

set is often called the reachable tube.

The reachability optimal control Hamiltonian, defined as the inner product between the

costate and the optimal state dynamics, gives a measure of the local expansion or contrac-

tion of the reachable set. Therefore, to ensure the size of the reachable set never decreases

in this forward reachability case, the optimal control Hamiltonian must be constrained so

it is always nonnegative. This is a similar approach performed by Lygeros, Tomlin, and

31

Mitchell in computations of backwards reachable tubes using differential games [5, 1].

This modifies the classical forward reachability HJB PDE to

∂V

∂t
+ max

u∈U

[
0,H(x,u,p, t)

]
= 0

V (x, t0) = g(x)

(2.42)

and the corresponding forward reachable tube definition

Rt(tf ;U, f , g, t0) = {xf ∈ Rn : ∀u(t) ∈ U, g(x0) ≤ 0,xf = φx(t;x0,p0(x0, λ), t0),∀t ∈ [t0, tf]}
(2.43)

Similarly, the modified backwards reachability HJB PDE is given by

∂V

∂t
+ min

u∈U

[
0,H(x,u,p, t)

]
= 0

V (x, t0) = g(x)

(2.44)

and the corresponding backwards reachable tube definition

R−t (τf ;U, f , g, τ0) = {x0 ∈ Rn : ∀u(τ) ∈ U, g(xf) ≤ 0,x0 = φ̃x(τ ;xf ,pf (xf , λ), τ0),∀τ ∈ [τ0, τf]}
(2.45)

Intuitively, this reachable tube is the union of the the reachable sets up to the particular time

horizon as shown in Eq. (2.46) for the forward case. Likewise, the backwards reachable

tube defined in Eq. (2.45) is the union over time of the backwards reachable set defined in

Eq. (2.39)

Rt(tf ;U, f , g, t0) =
⋃

t̂∈[t0,tf]

R(t̂;U, f , g, t0) (2.46)

If a system is indeed STLC everywhere, then the reachable set and reachable tube are

identical.

As the reachable sets are computed using sampling methods, minor modifications need to

32

be made to compute reachable tubes as opposed to reachable sets. To enforce the sign

constraints on the optimal control Hamiltonian, the point solutions are frozen whenever

the optimal control Hamiltonian is the incorrect sign. This prevents point solutions from

decreasing the size of the reachable tube boundary. To freeze a point solution, one must

set the time horizon derivative to zero (dz/dT = 0). This is analogous to the freezing

approach performed by Mitchell et al. in the computation of backwards reachable tubes

using viscosity solutions to the modified HJB PDE in Eq. (2.44).

Once a point solution is frozen, it can unfreeze to resume the nominal continuation method

integration. For a point solution to unfreeze, it must simultaneously meet two criteria

1. Optimal Control Hamiltonian (H∗) is the correct sign

2. Performance index V must exceed or match the value at which the point solution was

frozen

The first of the criteria ensures the point solution is increasing the size of the reachable

tube while the second criteria ensures the point solution is an extremal point and lies on

the boundary of the reachable tube. To unfreeze a point solution, allow the continuation

method to resume using Eq. (2.32). However, the continuation method integration should

not begin from the frozen point solution but rather from the point solution from the undis-

turbed continuation method integrated point solution at that time horizon. This is because

the continuation method already computes the extremal point solutions at a given time

horizon. Algorithmically, the computation of the reachable tubes can be performed as a

post-processing step to the computation of the reachable sets. In this way, using this ap-

proach both reachable tubes and reachable sets are computed simulataneously.

33

Figure 2.5: Illustration of union of independent initial condition sets with union of resulting
reachable volumes

2.5 Unions of Reachable Volumes

As previously discussed, reachability continuation methods must have initial condition sets

that are at leastC2 everywhere along the boundary of the set. This suggests that a piecewise

definition of the initial condition set are appropriate for this type of analysis. However,

piecewise definitions of the initial condition set may be challenging for certain scenarios.

Another technique for solving reachability problems with piecewise defined initial condi-

tion sets is to use represent it using the union of multiple, independent initial condition

sets. Intuitively, the union of the individual independent initial condition sets results in the

union of the resulting reachable volumes. If each of the constituent sets are convex and C2,

separate sample-based reachability analyses can be performed then combined to achieve

the overall reachable volume. This concept is visualized in Fig. 2.5.

This allows for reachability analyses on non-convex initial condition sets. Furthermore,

there are no guarantees that the union of the constituent reachable volumes are convex as

34

the time horizon increases.

This concept can also be used to approximate a large class of initial condition sets using the

union of multiple convex and C2 sets. For example, one can approximate a square initial

condition set with a collection of ellipsoids or circles. While the normed unit ball approach

may be used instead to yield an approximation to the square initial set, the numerical con-

ditioning of the continuation method will be improved when using ellipsoids or circles to

approximate the set.

Numerically, one has to take care in reducing the number of redundant search directions

and reachability point solutions generated by this technique. This is because with every

independent initial condition set, a separate reachability analysis is performed. Using the

sample-based continuation reachability approach described in this chapter, one can restrict

the reachable set samples and search directions to be outward facing to help ensure redun-

dant reachability samples are not created.

2.6 Accuracy Considerations

When computing the numerical solutions to a continuation method problem, one can quan-

tify an error based on a distance metric from the solution path. In the reachability formu-

lation described in this chapter, the solution curves correspond to satisfaction of the first

order necessary conditions of optimality given in Eq. (2.29). By ensuring the first order

necessary conditions of optimality are satisfied in the reachability problem, local optimal

solutions are guaranteed. Furthermore, the amount of error in the optimal solution is pro-

portional to ‖F(z)‖.

By maintaining ‖F(z)‖ ≤ Fthres for every sample of the reachable volume, the overall

numerical error in the reachable volume calculation is bounded. This can be assured dur-

ing the numerical continuation method in two ways. The first is by performing accurate

35

numerical integration of the continuation method differential equations. Many numerical

differential equation solvers have user-specified error tolerances which tradeoff increased

accuracy with faster computations. The second way in which the reachability accuracy is

assured is with corrective Newton’s or Broyden’s-type steps whenever the solution error

‖F(z)‖ exceeds a user-specified threshold Fthres.

These corrective, error-reducing steps may also be quickly performed after the numerical

continuation is complete. For the scenarios in which only the terminal time reachable

volume is desired, this may lead to large computational improvements. In these cases, the

user may set ”loose” numerical tolerances throughout the numerical integration to avoid

too many intermediate function calls. Then after the numerical integration is performed, a

Newton’s or Broyden’s refinement process is then completed to reduce the overall error at

the desired reachability time horizon.

2.7 Numerical Considerations

There are two primary sources of error with the continuation methods outlined in Sec. 2.3:

error due to numerical integration and error due to numerical conditioning of the linearized

system in Eq. (2.32).

As the continuation method integration time horizon T increases, the point solutions exhibit

increasingly larger residuals when satisfying the first order necessary conditions of optimal-

ity in Eq. (2.29). In this work, an adaptive Runge-Kutta-Fehlberg numerical scheme is used

to integrate the state, costate, and state transition matrix flows as well as the optimal control

problem solution trajectories in the continuation method [76].

While this implementation is commonly used in practice and straightforward to imple-

ment, Runge-Kutta schemes are not symplectic. Symplectic integrators preserve the struc-

ture of Hamiltonian systems and thus very nearly preserve conserved quantities such as

36

total system energy. Using the transversality conditions in optimal control and first order

necessary conditions, one can show that the optimal control Hamiltonian is constant for

time-independent systems [72]. Therefore, symplectic integration schemes have benefits

for long-duration reachability problems. For the demonstration of the proposed method-

ologies of this thesis however, the embedded Runge-Kutta integration scheme is sufficient

at maintaining accuracy and satisfying the first order necessary conditions of optimality

over the given time horizons.

The continuation method solution dynamics shown in Eq. (2.32) is given by the solution

of a linear system of the form My = b where M is the Jacobian matrix of the optimality

constraints with respect to the optimal control problem solution. Depending on the con-

straint dynamics and scale between the coordinates of the optimal control problem solution

z, as T increases the numerical condition number of the M may increase arbitrarily. This

increase in condition number is a well-known problem often seen in numerical shooting or

multiple-shooting methodologies [77]. In numerical linear algebra, the condition number

of a matrix, denoted as κ(M), gives a measure of the sensitivity of the solution to the gen-

eral linear system My = b [78]. As κ(M) increases, the accuracy of the optimal control

solution trajectory may decrease. As a general rule of thumb, if the condition number κ(M)

is on the order of 10k then it is possible to lose up to k digits of accuracy in the solution to

a given linear system [78].

One method of reducing the error due to numerical conditioning of the continuation method

linear system is to construct preconditioner matrices. Given a linear system of the form

My = b, a scaled system can be constructed by pre- and post-multiplying the system

matrix by two square matrices, D1 and D2. By denoting the scaled matrix with M̂ a new

linear system can be solved,

M̂ ŷ = b̂ (2.47)

where M̂ = D1MD2, ŷ = D−1
2 y, and b̂ = D1b. By chosing D1 and D2 to reduce

37

the condition number of the linear system given in Eq. (2.47), the solution to the original

system can be computed on the better conditioned system.

Because computational speed is a major concern in the sampling methods discussed in this

chapter, the method for choosing the preconditioning matrices must be computationally

efficient. Additionally, as these methods should be used on general nonlinear dynamic

systems, there is no assumption made on the structure of the system matrix M such as

symmetry and positive-definiteness. Ruiz developed a useful preconditioning scheme for

computing diagonal matricesD1 andD2 [79]. This iterative matrix equilibriation algorithm

for computing the preconditioner matrices attempts to equilibriate the infinity norms of

both the row and columns of the matrix to one. Furthermore, the algorithm shows fast

linear convergence with an asymptotic rate of 1/2 and preserves the numerical structure of

the original system matrix [79]. As the norm of the rows and columns approach one, the

condition number also approaches one.

There are additional benefits of this preconditioner algorithm used in conjunction with the

continuation framework. From one time horizon T to the next, the M matrix is marginally

changing. Because the Ruiz algorithm is iterative, the initial values of D1 and D2 at the

current time horizon T may be set as the converged values of D1 and D2 at the previous

time horizon. This allows for fast convergence of the Ruiz algorithm as the initial values

are chosen to warm-start the iteration.

An additional benefit of this preconditioner scheme is its ability to better condition systems

with ill-conditioned dynamic system states. For example, describing the inertial position

and velocity of an object near geosynchronous orbit around Earth requires the position scale

(r ≈ 42164 km) to be approximately 4 orders of magnitude larger than the velocity scale

(v ≈ 3 km/s) when SI units are used. To better condition the dynamics, it is possible to scale

time and scale states such that the variations of the state coordinates are on the same order

of magnitude. This is equivalent to a change of units to a better numerically conditioned set.

38

For example, describing the inertial position and velocity of an object near geosynchronous

orbit around Earth requires the position scale (r ≈ 6.6 DU) to be approximately 1 order of

magnitude larger than the velocity scale (v ≈ 0.4 DU/TU) when Earth canonical units are

used [80]. By equilibriating both the rows and columns of the system matrix M , the Ruiz

algorithm helps alleviate problems due to ill-conditioned system dynamics.

2.8 Results

The following system demonstrations are provided to illustrate the computational approach

developed in this chapter.

2.8.1 Single DOF Double Integrator

A single degree of freedom (DOF) double integrator system is one of the most well-known

optimal control problems for minimum-time problems. The forward reachable set given

circular initial condition boundary conditions has a known, analytic solution. The dynamics

and initial condition set for this problem are given as

ẍ = u, |u| ≤ 1

V (x0, t0) =

x1,0

x2,0


T 1

2
0

0 1
2


x1,0

x2,0

− 1 ≤ 0

(2.48)

Figure 2.6 displays the forward reachable set for this system for a time horizon of 2 time

units. These regions represent the set of possible states at the final time as the time horizon

is increased from 0 to 2 time units. It should be noted that the forward reachable set in

this case contains point solutions with negative optimal control Hamiltonian values at early

time horizons. As a result, the reachable set shrinks in size in the top-left and bottom-right

regions of the reachable set at the earlier time horizons.

39

Figure 2.6: Single DOF double integrator forward reachable set at times T = 0, 0.5, 1, 1.5,
and 2 (after refinement steps)

To compute this reachable set, θ ∈ [0, 2π) is evenly sampled 60 times. For each θ, the cor-

responding search direction vector d̂s was computed and the continuation method outlined

in Eq. (2.32) without optimal control Hamiltonian constraints was performed to generate

point solutions on the forward reachable set. For this problem, the forward reachable set

was computed in about 7 seconds on a single-core of a MacBook Pro 2.3 GHz Intel Core

i5 processor with 8 GB 2133 MHz RAM.

2.8.2 Zermelo’s Problem

Zermelo’s problem is a classic optimal control problem that involves a ship on water trav-

eling through a region of wind or water currents. The wind or water current flow field as a

function of ship position is known and the ship has a known maximum speed. The problem

40

Figure 2.7: Single DOF double integrator point solution trajectories at T = 2 for forward
reachable set (after refinement steps)

is to control the steering angle of the ship to navigate. The Zermelo dynamics are given by

ẋ = Vmcos(θ) + wx(x, y)

ẏ = Vmsin(θ) + wy(x, y)

θ ∈ [0, 2π)

(2.49)

where Vm denotes the maximum velocity of the ship, θ represents the control variable

of steering angle relative to the fixed x-coordinate axis, and wx, wy denote the velocity

components of the wind/current flowfields.

The dynamics given above are nonlinear and are not affine in control. Even in this case, as

long as the flowfield is C2, there is an analytic, closed-form solution to the optimal steer-

ing law for the minimum-time problem from specified starting and ending locations [72].

This optimal steering law, called Zermelo’s equation, is an ordinary differential equation in

terms of the optimal steering angle and the directional derivatives of the flowfield.

41

To demonstrate the outlined reachability algorithm on this problem, the following ellip-

soidal initial condition constraint set is used and the following dynamics parameters are

chosen.
g1(x0) = 9(x0 + 1)2 + 100y2

0 ≤ 1

Vm = 1

wx = 1

wy = x2

(2.50)

Figure 2.8: Zermelo Problem Forward Reachable Set (FRS) Samples with corresponding
optimal trajectories (T = 1) for initial condition set given by g1(x0). The red crosses denote
the samples of the reachable set, green circles denote the corresponding initial condition
set samples, and the gray lines show the corresponding optimal trajectories.

Given a time horizon of 1 unit, the forward reachable set is computed using the techniques

outlined above. Figure 2.8 displays the forward reachable set samples for this system as

well as the corresponding extremal trajectories. To compute this reachable set, d̂s is uni-

formly sampled on the unit sphere 40 times. For each d̂s, the continuation method outlined

in Eq. (2.35) without optimal control Hamiltonian constraints was performed to generate

point solutions on the forward reachable set. For this problem, the forward reachable set

was computed in 1.3 seconds on a single-core of a MacBook Pro 2.3 GHz Intel Core i5

42

Figure 2.9: Zermelo Problem Forward Reachable Set (FRS) Samples with corresponding
optimal trajectories (T = 1) for initial condition set given by g2(x0). The red crosses denote
the samples of the reachable set, green circles denote the corresponding initial condition
set samples, and the gray lines show the corresponding optimal trajectories.

processor with 8 GB 2133 MHz RAM.

If instead the initial condition constraint were given by

g2(x0) = 100(x0 + 1)2 + 9y2
0 ≤ 1 (2.51)

the resulting forward reachable set is shown in Figure 2.9. This reachable set was computed

in 0.5 seconds for the same time horizon.

To compute the forward reachable set of the initial condition set created from g1(x0) ∪

g2(x0), the union of the corresponding forward reachable sets is computed. The results of

this are shown in Figure 2.10 and Figure 2.11.

2.8.3 Orbital Relative Motion

This approach of computing reachable volumes through sampling methods is demonstrated

on the case of objects in Keplerian orbit about the Earth. The exact nonlinear relative

43

Figure 2.10: Zermelo Problem Forward Reachable Set (FRS) Samples (T = 1) for initial
condition set given by union of g1(x0) and g2(x0). The original reachable set for g1(x0) is
in blue, the original reachable set for g2(x0) is in green, and the samples that comprise the
union are in black.

Figure 2.11: Zermelo Problem Forward Reachable Set (FRS) Samples with corresponding
optimal trajectories (T = 1) for initial condition set given by union of g1(x0) and g2(x0).
The red crosses denote the samples of the reachable set, green circles denote the corre-
sponding initial condition set samples, and the gray lines show the corresponding optimal
trajectories.

44

equations of motion for an object about a given arbitrary reference orbit xr(t) are

ẋ =



ẋ

ẏ

ż

ẍ

ÿ

z̈


=



ẋ

ẏ

ż

2ḟr
(
ẏ − y ṙr

rr

)
+ xḟ 2

r + µ
r2r
− µ

r3
(rr + x) + ux

−2ḟr
(
ẋ− x ṙr

rr

)
+ yḟ 2

r − µ
r3
y + uy

− µ
r3
z + uz


(2.52)

where the true anomaly rate (ḟr), reference radius (rr), and reference radius time deriva-

tive (ṙr) can be directly computed using Keplerian dynamics and the inertial radius of the

spacecraft is r, defined as r =
√

(rr + x)2 + y2 + z2 [80]. These equations of motion

represent the relative motion between an object and another reference object in a reference

orbit. The dynamics are expressed in a rotating Hill frame, where the radial axis (x) points

from the center of the Earth to the reference object and the along-track axis (y) is defined

as perpendicular to the radial vector and is positive in the direction of the reference orbit

velocity.

The discussed approach is demonstrated on the case of a spacecraft in an eccentric geosta-

tionary transfer orbit (GTO) with maximum thrust constraints. In this scenario, one wants

to know the set of feasible starting positions around a nominal GTO apoapsis point such

that a controlled spacecraft with maximum thrust constraints can converge to within 10

meters in position and 0.1 meters per second in velocity by the time it reaches the nominal

GTO periapsis point. This is useful information in designing a thruster system in terms

of thruster layout and capability when the nominal orbit is a GTO. This computation is

achieved by computing the position subspace backwards reachable set with the state con-

straint set defined at the GTO apoapsis point.

45

For this demonstration, the terminal condition set is given by

g(x0) = xT0Ex0 ≤ 1 (2.53)

where E = diag(10, 10, 10, 0.1, 0.1, 0.1) and the feasible control set as

‖ũ‖5 ≤ 1 (2.54)

where ui = 1e-6 ũi, i = 1, 2, 3. The nominal GTO orbit has a periapsis radius of 7000 km

and an apoapsis radius at GEO with 42164 km.

Figure 2.12: x, y position subspace backwards reachable set for 3-DOF nonlinear relative
Keplerian motion set at true anomaly, ν = [1

4
π, 1

2
π, 3

4
π, π] in rotating Hill frame - GTO

orbit

The results of this analysis are shown in Figure 2.12 which took 230 seconds to compute

on the previously mentioned Mac machine. Looking at these results, one can see that it is

much easier to get to the nominal periapsis state when the starting positions have a positive

correlation between the radial and along-track components. Otherwise, the orbital motion

disallows much of the position states with negative correlations with radial and along-track

components.

46

Furthermore, the computed backwards reachable set does not decrease in size as the time

horizon is increased. As a result, the backwards reachable tube, R−t , is identical to the

backwards reachable set, R−, for computed time horizons. This also suggests that once a

position state is backwards reachable, it remains backwards reachable for the remainder of

the selected time horizon.

Low-Thrust Position Reachability in Low Earth Orbit

The discussed approach is first demonstrated on the case of a spacecraft in circular Low

Earth orbit (LEO) with maximum thrust constraints where only planar motion is consid-

ered. The two-dimensional forward position subspace reachable set is then computed using

the outlined methodology. This kind of analysis is useful in determining the maneuverabil-

ity of a low-thrust spacecraft in LEO over a single orbit. This problem is also equivalent to

finding reachable positions for an uncontrolled spacecraft subject to unmodeled, external

disturbances of a particular magnitude.

As the reachable set for the two-dimensional subspace is explored with a one-dimensional

search (θ), this example demonstrates subspace reachability calculations with computations

O(k) as opposed to O(k4) or O(k3). Furthermore, this example demonstrates the capabil-

ity to compute the reachability set boundaries under nonlinear dynamics using sampling

methods.

The initial reachability set represented by V (x0, t0) is chosen to be defined by the ellip-

soidal constraint

V (x0, t0) =

d0

v0


T  1

r2d
I 02×2

02×2
1
r2v
I


d0

v0

− 1 ≤ 0 (2.55)

with rd set to 1 meter and rv set to 0.1 meters per second. The control has an upper bound

of um = 2e-5 m/s2, which is equivalent to a 500 kg spacecraft with a 0.01 N thruster. The

47

Figure 2.13: Position subspace forward reachable set for 2-DOF nonlinear relative Keple-
rian motion set at times T = [1

4
P, 1

2
P, 3

4
P, P] in rotating Hill frame - LEO orbit

orbital altitude is initially set at 400 km.

Figure 2.13 shows the set of reachable positions for a low-thrust spacecraft in LEO at given

fractions of an orbit. The initial number of θ point solutions is 60 and 60 additional points

solutions were spawned in the mesh refinement process taking 293 seconds to compute.

In this orbital regime, the control authority is relatively weak compared to the local dynam-

ics. As a result, the reachable set is primarily driven by the periodic dynamics as opposed

to the optimal control. Because this system is not STLC, there are certain states that are

reachable at one time and not reachable at subsequent times.

Unsafe Positions in Geosynchronous Orbit

This demonstration involves the computation of a position backwards reachable set for an

object in circular geosynchronous orbit (GEO) for a single orbit period. If the terminal

boundary condition set is considered unsafe, this backwards reachable set represents un-

safe initial conditions. This analysis then determines the set of unsafe initial positions that

can lead to the unsafe terminal set, making it useful for safety assurance in collision avoid-

48

Figure 2.14: Position subspace backwards reachable tube for 2-DOF nonlinear relative
Keplerian motion set at times T = [1

4
P, 1

2
P, 3

4
P, P] in rotating Hill frame - GEO orbit

ance scenarios. This problem is also equivalent to finding unsafe initial positions for an

uncontrolled spacecraft subject to worst-case unmodeled, external disturbances of a partic-

ular magnitude. Additionally, because states that are unsafe at one time horizon cannot be

made safe at a larger time horizon, the backwards reachable tube is computed.

The initial reachability set represented by V (x0, t0) is chosen to be defined by the ellip-

soidal constraint given in Eq. (2.55) with rd set to 50 meters and rv set to 1 meters per

second. This corresponds to approximately a 50 meter keep-out circle for the positions

with an entrance velocity of about 1 meter per second.

In this case, the maximum control input magnitude was selected to be the same order of

magnitude as the non-Keplerian orbital perturbations such as J2 effects and lunar gravita-

tional forces [80], um = 1e-5 m/s2. This represents the situation of a worst-case unmodeled

disturbance that attempts to drive the system state towards the unsafe region in state space.

Figure 2.14 shows the set of unsafe spacecraft initial positions that can be driven to the un-

safe set (representing a collision) by worst-case disturbances. The initial number of θ point

solutions is 60 and 48 additional points solutions were spawned in the mesh refinement

49

process taking 287 seconds to compute the backwards reachable tube. It should be noted

the backwards reachable tube in Figure 2.14 does not decrease in size as the time horizon

is increased. As a result, the backwards reachable set at time T1, R−t (T1), is completely

contained within the backwards reachable set at time T2,R−t (T2) given T2 ≥ T1.

2.8.4 Six DOF Quadrotor Model

Finally the proposed technique is demonstrated on a 6-DOF nonlinear quadrotor model

derived by Beard ([81], eq. (16)-(19)). This 12-dimensional model is commonly used as a

nonlinear dynamic system verification benchmark problem [82]. The benchmark problem

in literature is not recreated in this thesis because the benchmark exactly specifies the initial

Euler angles and Euler angle rates. Future work will extend the capabilities of the outlined

methodology defining optimality conditions for various initial condition sets of this type.

Furthermore, the benchmark problem definition includes closed loop PD feedback con-

trol for the height, roll, and pitch variables in a system verification framework while this

demonstration examines system capability driven by optimal control. For the sake of com-

parison with the benchmark problem results from other reachability algorithms, the chosen

parameters are the same as the benchmark and the current algorithm is implemented on

a single-core of a MacBook Pro 2.3 GHz Intel Core i5 processor with 8 GB 2133 MHz

RAM.

Using the notation given by Beard, the following parameter values are chosen: g = 9.81

[m/s2], R = 0.1 [m], l = 0.5 [m], Mrotor = 0.1 [kg], M = 1 [kg], and m = M + 4Mrotor.

For the 12-dimensional state vector, the first three states correspond to the inertial center of

mass position variables in the north, east, and up directions. The remaining states include

the body frame velocity, Euler angles from the vehicle to body frame, and body frame Euler

angle rates. The control inputs are torque inputs along the body axes of the quadrotor.

50

In this example, the following initial condition set and feasible control set is used.

g(x0) = xT0Ex0 ≤ 1 (2.56)

where E = diag(0.4 I6, 0.1 I6) and the feasible control set as

‖ũ‖10 ≤ 1 (2.57)

where ũi = 2e5 ui , i = 1, 2, 3.

Figure 2.15: x, y, z position subspace backwards reachable set for 6-DOF quadcopter
model after 5 seconds

The results of this analysis are shown in Figure 2.15 which took 41.3 seconds to compute

on the previously mentioned Mac machine with 32 samples. As the forward reachable set

for the 3-dimensional subspace is explored with a 2-dimensional search of θ, this example

demonstrates subspace reachability calculations with computations O(k2) as opposed to

O(k12) or O(k11).

51

2.9 Conclusions

This chapter demonstrates the capability to compute convex reachable sets for both forward

and backward time using sampling methods. Using continuation methods on the first-order

necessary conditions of optimality, the subspace reachability problem may be recast into

an initial value problem. Within numerical precision, these samples lie on the boundary of

the convex hull of the subspace reachable sets. To suppress the numerical integration error

in the continuation methods, the matrix equilibriation technique is described. Furthermore,

the introduction of Newton-type corrective steps ensure the overall necessary condition of

optimality constraint is sufficiently satisfied. With the inclusion of optimal control Hamil-

tonian constraints, reachable tubes are computed.

While previous continuation-based reachability techniques used ellipsoidal initial condi-

tion and feasible control sets, this concept was extended to capture affine transformations

of normed vector space unit balls. This chapter also showed that reachable volumes gen-

erated from unions of initial condition sets can be computed by performing unions on the

individual reachable volumes.

52

CHAPTER 3

DECENTRALIZED TECHNIQUES FOR SAMPLING OF SUBSPACE

REACHABLE SETS

3.1 Curvature-Based Sampling

In differential geometry, the Gauss map continuously maps a hypersurface M ∈ Rn to the

unit sphere S ∈ Sn−1 [83]. Said differently, the Gauss map maps a point on a surface to the

unit vector normal to the surface at that point.

With the current formulation, the inverse relationship is used (S →M) because the reach-

able set boundary is parametrized by the unit normals, d̂s(θ). As a result of using unit

normals to describe a hypersurface, a convex hull of the true hypersurface is guaranteed

[16, 83]. This also supports the discussion earlier that the reachable sets resulting from this

formulation are convex representations of full state reachable sets projected on the subspace

of interest [10].

Definition 1: Support Function

The support function is used commonly in convex geometry applications where it describes

a surface by the signed distance of its tangent planes to the origin. The support function

can be expressed as a function of the surface normal d̂ as

h(d̂) = sup{d̂ · x(d̂) : x ∈M}, d̂ ∈ S (3.1)

where M is a hypersurface/manifold embedded in Rn and Sn−1 denotes the unit hyper-

sphere.

53

Given the support function, a point on the surface may be decomposed as

x(d̂) = h(d̂)d̂ +∇Sh(d̂) (3.2)

where ∇S indicates the intrinsic gradient with respect to the unit sphere [84]. Finally, the

envelope operator may be defined as

E : C1(S,R)→ C(S,Rn) : h→ x (3.3)

which defines a mapping between the support functions and the corresponding surface.

A benefit of this surface representation is that geometric properties can be calculated when

the support function is known. For example, the Weingarten map or shape operator of this

surface is given by

W = −[HS(h) + hI]−1 (3.4)

where HS(h) is the hessian of h with respect to the unit sphere. Once this is computed,

the principal curvatures are related to the eigenvalues of HS(h) through κi = −(λi + h)−1.

Common curvature metrics include the mean curvature κ = 1
2
Tr[W] and the Gaussian

curvature K = det(W) [83, 84].

In Sampoli et al., the authors achieve curvature-dependent sampling by applying the enve-

lope operator to a set uniformly distributed points on the unit sphere [84]. This result is

expanded upon here.

Proposition 1: Curvature-dependent sampling from uniform sampling of unit sphere

and support function expression of manifold

Given an envelope operator E associated with hypersurface support function h(d) and unit

hypersphere Sn−1 embedded in Rn, if the sampling of N unit vectors from the unit hyper-

sphere d ∈ Sn−1 is equidistant such that ‖di−dj‖ = γ > 0 ∀i, j = 1...N, j ∈ N (i) where

54

N (i) denotes the set of neighboring samples to di, the resulting distribution of samples on

the manifold x ∈M ⊂ Rn is curvature-dependent where ‖xi − xj‖ ∝ ‖W (di)
−1‖.

Proof: From Eq. (3.2),

∂x

∂d
= h(d)In + d

∂h

∂d
(d) +

∂2h

∂d2
(d)

− ∂h

∂d
(d)dI− d

∂h

∂d
(d)− ddT

∂2h

∂d2
(d)

= h(d)In +
∂2h

∂d2
(d)− ddT

∂2h

∂d2
(d)

= h(d)In +HS(h(d))

= −W (d)−1

(3.5)

Performing a first order Taylor series approximation of x(d),

x(d + δd)− x(d) = δx ≈ ∂x

∂d
δd

= −W (d)−1δd

(3.6)

Consequently, for neighboring unit vector samples, di and dj , the following expression

holds
‖xj − xi‖ ≈ ‖ −W (di)

−1δd‖

≤ ‖W (di)
−1‖‖dj − di‖

(3.7)

2

The uniformly spaced samples on the unit sphere will map to dense clusters of samples in

high curvature regions, and more distributed samples in low curvature regions. As curvature

of a surface is related to how the unit normal vector changes locally, uniform unit sphere

samples cluster near high curvature areas and distribute near low curvature areas. This

concept is illustrated in Fig. 3.1 for the mapping between a unit circle and ellipse however

the results generalize to higher dimensions [84].

55

Figure 3.1: Two dimensional illustration of envelope operator and resulting curvature-based
sampling

Lemma 1: Subspace Reachability Support Function

In the case of the subspace reachability problem, the support function h can be defined as

h(d̂s) =

√
2V (d̂s),∀ d̂s ∈ Ss−1 (3.8)

Proof: From Eq. (2.2),

V (xf , d̂s, tf) =
1

2
xTfGxf

=
1

2
xTsf d̂sd̂

T
s xsf

(3.9)

Eq. (2.3) is equivalent to the following optimal control problem

sup
u∈U

d̂Ts xsf

s.t. ẋ = f(x,u, t)

g(x0, t0) = 0

(3.10)

because V and
√
V are both monotonically increasing with increasing V . In this new

optimal control problem, the state xsf still maximizes extent along d̂s while satisfying

dynamics and reachability constraints. Consequently, the support function for the subspace

56

reachability problem can be expressed as a function of d̂s as

h(d̂s) =

√
2V (d̂s),∀ d̂s ∈ Ss−1 (3.11)

where V (d̂s) is the optimal control performance index defined in Eq. (2.2).

2

With this result, a uniform distribution of initial search directions directly results in a

curvature-based sampling. For two- and three-dimensional subspace reachable set prob-

lems (d̂s ∈ S,S2), efficient analytical methods for computing a set of uniform samples

from on unit sphere are known [85]. These methods are used in the examples presented in

this chapter. Efficient methods are also available for higher dimensional problems [86, 85].

These methods provide computationally independent samples of the unit sphere which still

allows for parallelizability.

3.2 Distance-Based Sampling

As the reachable set time horizon increases, dense or sparse densities of point solutions

may form on the reachable set boundary. However, quick rendering of an implicit surface

benefits from uniform spacing between points [35, 36]. This section discusses two classes

of techniques that use distance metrics to distribute point solutions on the reachable set

boundary: one that changes the total number of samples and one that does not.

3.2.1 Distributed Control

Systems in which multiple independent agents share information with other networked

agents and perform cooperative tasks are called distributed networked multi-agent systems

[87]. In this framework, each agent is subject to local dynamics, has a communication

57

topology modeled using graph theory, and must execute a control policy in pursuit of the

network’s goals [88]. This communication network can be represented using an undirected

graph G(V , E) where G is defined with vertices V and edges E [40]. In this context, the

individual point solutions that sample the reachable set are vertices of the graph. The set of

edges of the graph are defined by connecting each particle with it’s nearest neighbors.

By treating each point solution as an agent in a distributed system, it is possible to adjust the

surface distribution by adjusting the individual locations of the point solutions to increase

the surface uniformity of the entire group. Furthermore, these agents do not necessarily

need information from every other agent, but rather only information from the neighboring

agents. Controlling multi-agent distributed networks is widely studied, with techniques

including potential fields, leader agents, and system-wide energy minimization [89, 90,

91]. Moreover, multi-agent distributed control has been applied to the problem of uniform

coverage of regions [92, 93].

If the time horizon is fixed, the reachable set boundary coverage problem may be recast as

a multi-agent distributed control problem.

Definition 2: Reachability Surface Mesh States

By concatenating each of the p point solutions into a single state, one can acquire a central-

ized, global graph state denoted by

x̃ =

[
xT1 xT2 . . . xTp

]T
(3.12)

where (̃·) denotes the concatenation of all the individual point solution quantities.

To quantify surface sampling density of a graph, a pseudo-potential energy function based

relative positions between neighboring particles is employed. The following sections dis-

cuss how the potential energy functions can be utilized to achieve more uniform surface

sampling.

58

Definition 3: Graph potential energy based on particle positions

In general, a suitable global potential energy is defined as

J =

p∑
i=1

∑
j∈Ni

Jij(xf,i − xf,j) (3.13)

where Ni denotes the set of neighboring particles to particle i and Jij denotes the pairwise

particle energy between particle i and particle j.

Due to the minimum total potential energy principle, particles subjected to conservative

forces will displace to a position that minimizes the global potential energy [94]. As a

result, by moving all the particles along the negative potential energy gradient, a potential

energy minimum is achieved. This natural phenomenon has been extensively studied as

it has many applications in fields like thermodynamics, structural energy minimization,

and computational chemistry and molecular dynamics [94, 95]. Moreover, there has been

extensive study of discretizing surfaces using samples via energy minimization [34, 35,

96]. This work uses a elastic potential energy function and is described below.

However, for the problem of acquiring uniform particle densities on a surface, there are

multiple potential energy functions that can be used. Potential functions that are contin-

uous and scale invariant with respect to inter-particle distance are better for this problem

[34]. In this chapter, the Laplacian cost function J defined in Eq. (3.14) is used [40] as a

pseudo-potential energy function, analogous to a Lyapunov function interpretations from

dynamical system stability [97]. In this formulation, the Laplacian cost is only defined

in the subspace of interest with respect to the reachability problem. This is because the

distribution of state components outside of the subspace of interest should not affect the

uniformity metric for samples of the subspace reachable set.

Definition 4: Subspace Laplacian cost function

59

The distance-based Laplacian cost is defined as

J =
∑
ij∈E

(xf,i − xf,j)
TQTQ(xf,i − xf,j)

=
∑
ij∈E

(xsf,i − xsf,j)
TQT

sQs(xsf,i − xsf,j)

=
∑
ij∈E

d(xf,i,xf,j)
2

Q =

[
Qs 0s×(n−s)

]
(3.14)

where Qs ∈ R+
s×s, is a user-specified symmetric positive definite matrix that appropriately

scales the coordinates of the state for the s components of the final subspace state xsf . This

allows the Laplacian cost function to be succintly expressed as

J = x̃Tf Lx̃f = x̃TsfLsx̃sf (3.15)

where L ∈ Rnp×np is the weighted Laplacian matrix [40].

Lij =


−QTQ if i ∈ Nj

QTQ deg(i) if i = j

0n otherwise

(3.16)

where deg(i) the number of neighbors for the ith point solution and Nj denotes the set of

neighbors of the jth point solution. The subspace counterpart of the Laplacian, Ls ∈ Rsp×sp,

is given by

Ls,ij =


−QT

sQs if i ∈ Nj

QT
sQs deg(i) if i = j

0n otherwise

(3.17)

The Laplacian cost function in Eq. (3.14) is equivalent to the elastic potential energy ex-

60

pression of a multi-particle spring-mass system where the connections are described the

graph structure. This approach of modeling interparticle interactions as elastic springs and

searching for minimum energy configurations is commonly utilized in molecular mechan-

ics [95]. Furthermore, the ‘spring stiffnesses’ in different coordinate directions would be

described using the Qs weighting matrix.

To study this system driven by the Laplacian cost function potential field, a study of the sys-

tem equilibirum (if it exists) is useful. First, we review concepts from analytical dynamics

to define the necessary and sufficient conditions for system equilibrium.

In analytical dynamics, a holonomic constraint is a relation between position variables r

which can be expressed as κ(r, t) = 0. Systems that include only holonomic constraints

are holonomic. If, in addition, the force field driving the system is derived from a scalar

potential function, the system is conservative. From analytical dynamics, generalized co-

ordinates are parameters that describe the configuration of the system. For holonomic

systems, there is an independent generalized coordinate for every degree of freedom of the

system with constraints on the motion included.

Proposition 2: Necessary and sufficient conditions for minimum potential energy of

conservative holonomic system[94]

Given a dynamic system of p interacting particles with states r ∈ Rnp driven by a scalar

conservative force field U(r) such that

ṙ = −dU
dr

T

with holonomic constraint κ(r, t) = 0, and with independent generalized coordinates q,

equivalent necessary conditions for the equilibrium of this system are given by

−dU
dri

T

· δri = 0, i = 1, 2, ..., p (3.18)

61

∂U

∂qi

T

= 0, i = 1, 2, ..., p (3.19)

where δri denotes an arbitrary virtual displacement of the ith particle and dU
dri

T denotes the

total conservative internal force on the ith particle from its neighboring particles. Further-

more, a sufficient condition for the system equilibrium is

∂2U

∂q2
i

(q∗i) > 0 where
∂U

∂qi

T

(q∗i) = 0, i = 1, 2, ..., p (3.20)

Proof: The principle of virtual work states that if a system is in static equilibirum, the

virtual work (δW) of the applied forces is zero for all possible virtual displacements (δr)

. Virtual displacements are feasible changes in position at a fixed time which makes them

a tangent vector to the constraint manifold. For the system of p particles without applied

external forces,

δW =

p∑
i=1

[p∑
j=1,j 6=i

Fij

]
· δri (3.21)

where Fij denotes the internal force between the ith and jth particles and δri indicates an

arbitrary virtual displacement of the ith particle. For the case of a force derived from a

potential field U and s− 1 independent generalized coordinates qj ,

δWi = −∂U
∂ri

T

· (∂ri
∂qi,1

δqi,1 + · · ·+ ∂ri
∂qi,s−1

δqi,s−1)

= − ∂U

∂qi,1
δqi,1 + · · ·+− ∂U

∂qi,s−1

δqi,s−1

(3.22)

As each term should independently vanish with arbitrary virtual displacements in Eq. (3.21)

and Eq. (3.22) using the principle of virtual work, the following equivalent static equili-

birum necessary conditions are found

−∂U
∂ri

T

· δri = 0, i = 1, 2, ..., p (3.23)

62

∂U

∂qi

T

= 0, i = 1, 2, ..., p (3.24)

Eq. (3.23) shows that particle i is in static equilibrium when the sum of the internal forces

acting on particle i are perpendicular to the possible virtual displacements. As the set of

all virtual displacements is the tangent space of the holonomic constraint manifold, the

sum of internal forces on particle i must be normal to the holonomic constraint manifold at

the location of particle i. Eq. (3.24) equivalently shows that static equilibrium is achieved

when the potential energy is stationary with respect to the generalized coordinates, qi. If,

in addition, the Hessian of the potential energy field is positive definite at q∗i

∂2U

∂q2
i

(q∗i) > 0 where
∂U

∂qi

T

(q∗i) = 0, i = 1, 2, ..., p

then the potential energy is minimized at the system configuration specified by q∗i , i =

1, 2, ..., p.

2

Using this classical mechanics results, we are now going to apply this to the problem of

finding minimum energy surface sampling.

Lemma 2: Uniform subspace point solution sampling in manifold tangent space

Given a dynamic system of p interacting particles with states x̃sf ∈ Rsp driven by the

Laplacian cost defined in Eq. (3.14) as a scalar potential function J(x̃sf) such that

dx̃sf
dt

= − dJ

dx̃f

T

with the constraint that xsf,i should lie on the reachable set boundary, then θ̃ may be used as

independent generalized coordinates and the dynamic system has a equilibrium condition

63

of

deg(i)[QT
sQsxsf,i]‖ =

∑
j∈Ni

[QT
sQsxsf,j]‖

[QT
sQsxsf,i]

∗
‖ =

1

deg(i)

∑
j∈Ni

[QT
sQsxsf,j]‖

where (·)‖ denotes the projection of a vector onto the tangent space to the surface at that

state, Txsf,i
M . This result shows that equilibrium condition for the subspace states is for

each weighted point solution to be the average of all of its weighted neighbors within

Txsf,i
M .

Proof: The pairwise gradient of the Laplacian cost with respect to the subspace states is

given as

∂Ji
∂xsf,j

T

= QT
sQs(xsf,i − xsf,j)

= QT
sQs‖xsf,i − xsf,j‖

(xsf,i − xsf,j)

‖xsf,i − xsf,j‖

which shows that the derived force from the Laplacian cost is central and radially symmet-

ric. As the Laplacian cost is defined in terms of relative position only, the force derived

from this scalar potential field is conservative as the work done by the force is path in-

dependent [94]. Furthermore, the Hessian of this Laplacian cost with respect to the final

subspace state is

∂2Ji
∂x2

sf,i

= QT
sQs > 0

Because the angle parameter and final subspace state share a one-to-one mapping, the Hes-

sian of the Laplacian cost with respect to the angle parameters is also positive definite.

The reachable set boundary at the current time horizon can be expressed as V̄ (xf , T) = 0

64

where V̄ denotes the value function from optimal control theory. This is because the zero

level sets of the value function over time represent the boundary of the minimum time

reachable set [7, 8]. Expressed in this manner, one can view the reachability level set as a

holonomic constraint for the final states. As a result, it is useful to treat this system of final

subspace states as a constrained, conservative holonomic system.

The holonomic constraint for the subspace reachable set boundary reduces the degrees

of freedom of the system by one. In this formulation, an appropriate set of generalized

coordinates is the θ ∈ Rs−1 parameters. As previously shown, these angular parameters

uniquely define a sample on the subspace reachable set.

As this subspace reachability system can be identified as a conservative holonomic dynamic

system, it is very useful to use results from Proposition 2. For the subspace reachable set

sampling problem, the necessary condition in Eq. (3.23) is equivalent to

∂J

∂xsf,i

T

=
∑
j∈Ni

QT
sQs(xsf,i − xsf,j) = βd̂s,i (3.25)

where β ∈ R and the search direction d̂s,i represents the subspace reachable surface unit

normal vector. By decomposing the final subspace states in components perpendicular and

within the tangent space to the surface at xsf,i, denoted by Txsf
M

∑
j∈Ni

[QT
sQsxsf,i]⊥ − [QT

sQsxsf,j]⊥ = βd̂s,i

∑
j∈Ni

[QT
sQsxsf,i]‖ − [QT

sQsxsf,j]‖ = 0

(3.26)

where (·)⊥ represents the projection of a vector along the surface normal d̂s and (·)‖ denotes

the remaining vector components that lie in the tangent space to the surface. From the

65

vector components that lie in Txsf,i
M ,

deg(i)[QT
sQsxsf,i]‖ =

∑
j∈Ni

[QT
sQsxsf,j]‖

[QT
sQsxsf,i]

∗
‖ =

1

deg(i)

∑
j∈Ni

[QT
sQsxsf,j]‖

(3.27)

This result shows that equilibrium condition for the subspace states is for each weighted

point solution to be the average of all of its weighted neighbors within Txsf,i
M . Expressed

differently, each sample on the surface is the center of mass of the distribution of its neigh-

boring particles in the local tangent plane. When this condition is applied to every point

solution in the subspace reachable set, the result is uniform subspace point solution sam-

pling in the tangent spaces of the surface.

2

Figure 3.2: Illustration of Laplacian potential equilibirum condition

This energy minimization technique described in Lemma 2 also mirrors heat diffusion de-

scribed by the heat equation. In this case, the continuous Laplacian operator is replaced by

the graph Laplacian from graph theory [40]. Intuitively, given an uneven initial distribution

of heat, the heat will diffuse and evenly spread across nodes as time progresses. The steady

state value of heat will then be the average of all the initial heat values at all the nodes. In

this application, the Laplacian cost quantifies the density of samples along a surface. In a

similar manner to the heat diffusing through a series of nodes to an uniform, equal heat, the

local and global density of particles will equalize to a uniform distribution.

66

In the field of structural mechanics, finite element methods use a similar concept. In finite

element methods, a continuous body is modeled using discrete, interconnected nodes. The

minimum total potential energy principle is used in many cases to solve for mechanical

properties at the nodes [98].

Because the point solution final states are constrained to lie on the subspace reachable set,

motion of the point solutions on this set boundary is also constrained to this surface. To

avoid techniques that require Newton-Raphson projections or nonlinear equation solving

[35, 34], the search directions d̂s(θ) that parametrize the reachable subspace sampling

are varied instead of the final states. As previously discussed, a sample of the subspace

reachable set boundary is acquired by solving the optimal control problem in Eq. (2.3)

parametrized by θ. Consequently, it is possible to adjust the mesh state through θ̃ to achieve

the uniform reachable set surface sampling.

To reach the minimum Laplacian cost given an initial non-uniform distribution of point

solutions, the following optimization problem needs to be solved

min
θ̃
J(θ̃) (3.28)

Definition 5: Trajectory Flow State

Define the trajectory flow state as the concatenation between point solution state and costate

along an optimal trajectory

y =

[
xT pT

]T
(3.29)

It is then possible to analytically express the variation in the Laplacian cost function with

changes in the search directions.

∂J

∂θ̃
=

∂J

∂ỹf

∂ỹf
∂ỹ0

∂ỹ0

∂z̃

∂z̃

∂θ̃
(3.30)

67

∂J

∂ỹf
= 2[x̃Tf L 01×np] (3.31)

∂ỹf
∂ỹ0 i

= Φy,i(T, t0) (3.32)

∂ỹ0

∂z̃ i
=

 In 0n×1

− ∂2g
∂x2

0
[01×n 1]zi − ∂g

∂x0

T

 (3.33)

∂z̃

∂θ̃ i
= −

[
∂Fi

∂zi

]−1
∂Fi

∂θi
(3.34)

where (·)i denotes the ith block matrix along the diagonal of the overall matrix. Since the

mapping from θ to yf is independent from one point solution to another, these matrices are

all block diagonal. The coupling between point solutions occurs through ∂J
∂ỹf

and partic-

ularly through the Laplacian matrix L. The Laplacian matrix captures the graph structure

by describing the neighbors of each point solution. However, because the Laplacian ma-

trix only captures the relationships between a point solution and its neighbors, only local

information from a point solution and its neighbors is required. This shows that the con-

struction of this global Laplacian cost function and its gradient is indeed decentralized. In

addition, Tsitsiklis et al. has shown that many asynchronous decentralized gradient op-

timization algorithms share convergence properties with their corresponding centralized

implementation [99].

With the Laplacian cost function and its gradient defined, there are a number of methods to

achieve a uniformally sampled surface boundary by solving Eq. (3.28).

Proposition 3: Continuous time gradient descent uniform coverage controller

One can form a continuous time dynamic system that describes the motion of the search

directions angles, θ̃. As aforementioned, it is possible to subject the particles to the negative

68

gradient flow of the potenial function in order to reach a minimum corresponding to a

uniform surface sampling. The resulting system is written as

˙̃θ =
dθ̃

dt̃
= ũ = −∂J

∂θ̃

T

(3.35)

where t̃ denotes the redistribution time, a separate independent variable used for the surface

coverage system. Furthermore, this system is asymptotically stable.

Additionally, to avoid recomputing the entire reachable set, the optimal initial conditions

can also be simultaneously updated using

dz̃

dt̃
=
∂z̃

∂θ̃

dθ̃

dt̃
(3.36)

Proof: To demonstrate stability, the Lyapunov function is defined as

V̄ (θ̃e) = J(θ̃e) (3.37)

where θ̃e = θ̃ − θ̃∗ and θ̃∗ is the minimizing mesh angle state. From Lemma 2,

∂2V̄

∂θ̃2
e

=
∂2J

∂θ̃2
e

= QT
sQs > 0

Consequently when considering feasible mesh state variations near the minimizer,

V̄ (θ̃e) = 0 iff θ̃e = 0

V̄ (θ̃e) > 0 iff θ̃e 6= 0

making the Laplacian cost potential energy a candidate Lyapunov function. Evaluating the

69

redistribution time derivative of V̄ for the system in Eq. (3.35),

dV̄

dt̃
=
dJ

dt̃
=
∂J

∂θ̃

dθ̃

dt̃
= −

∥∥∥∥∂J∂θ̃
∥∥∥∥2

< 0

Using Lyapunov theory provides the sufficient condition for an asymptotically stable sys-

tem that converges to the potential energy minimum given enough redistribution time, t̃.

2

This system in Eq. (3.35) and Eq. (3.36) may encounter numerical issues related with the

stiffness of the differential equation in Eq. (3.35) and the possible singularity of ∂F
∂z

. To help

alleviate the issues due to the singularity of the jacobian ∂F
∂z

, one can use a pseudo-arclength

equivalent to Eq. (3.35) and Eq. (3.36). Additionally, the negative gradient descent may

lead to slow convergence depending on the number and initial distribution of the particles.

Proposition 4: Discrete gradient-descent redistribution

As opposed to a continuous time dynamical system, one can form a gradient descent

method by iteratively updating the mesh angle state.

θ̃k+1 = θ̃k − γkDk
∂J

∂θ̃

∣∣∣∣
θ̃k

(3.38)

where γk is the step size and Dk is a positive definite symmetric matrix, both at iteration k

of an iterative descent algorithm [100, 43].

2

If the gradient descent algorithm is implemented as written in Eq. (3.38), the each point so-

lution sample of the subspace reachable set would have to be computed using the methodol-

ogy outlined in Chapter 2. With every θi, zi(T = 0) is recomputed and Eq. (2.32) is used to

propagate zi(T). This process can easily become tedious as all the samples of the subspace

reachable set are propagated over time, quickly increasing the required computational time

70

to achieve uniform surface coverage.

However, an alternate approach to implementing Eq. (3.38) relies on numerical continua-

tion. It is possible to fix the time horizon T and choose a directional parameter to explore

nearby extremal solutions on the reachable set boundary. By choosing the vector of an-

gular coordinates, θ, as the continuation parameter, the continuation in Eq. (2.32) may be

rewritten as
dz

dθ
= −

[
∂F

∂z

]−1
∂F

∂θ
(3.39)

The continuation method in Eq. (3.39) represents the differential change in the optimal

control problem solution given a change in d̂s(θ). The Jacobian matrix ∂F
∂z

is unchanged

from Eq. (2.32) but ∂F
∂θ

must be computed as follows

∂F

∂θ
=

 ∂

∂d̂s
(d̂sd̂

T
s xf)

01×n−1

 =

(d̂Ts xfIn + d̂sx
T
f)∂d̂s

∂θ

01×n−1

 (3.40)

where ∂d̂s

∂θ
shows the relationship between angular parameter and subspace unit vector. If

hyperspherical coordinates are used to parametrize d̂s, this term can be computed analyti-

cally.

To reparametrize Eq. (3.39) as a function of a scalar independent parameter η, it is possible

to use the following linear interpolation

θ(η) = θ0(1− η) + θfη, η ∈ [0, 1] (3.41)

where θ0 and θf denote the initial and final, target θ in the numerical condition. The

71

updated form for Eq. (3.39) is

dz

dη
= −

[
∂F

∂z

]−1
∂F

∂η

= −
[
∂F

∂z

]−1
∂F

∂θ

∂θ

∂η

= −
[
∂F

∂z

]−1
∂F

∂θ
(θf − θ0)

(3.42)

where η ∈ [0, 1]. In the case of the iterative gradient descent described in Eq. (3.38),

θ0 = θk and θf = θk+1.

As this is for an unconstrained nonlinear optimization problem, careful considerations must

be taken when choosing the descent direction (specified by Dk) and the step size. Choice

of descent direction could lead to very slow convergence. While a large step size may

not violate domain constraints for angular coordinates, these steps may disrupt the graph

communication structure by changing the nearest neighbors of particles. While there are

techniques to reevaluate the nearest neighbors of a collection of particles such as using k-d

trees [101], the aim of this work is to outline techniques that maintain the graph structure

throughout the optimization.

In order to ensure a sufficient decrease in the Laplacian cost without small step sizes, the

Wolfe conditions are often used [43, 100]. Combined, these conditions outline a range of

acceptable step sizes that seek to minimize the Laplacian cost along the descent direction.

Proposition 5: (Theorem 4.1 [102], Proof in paper), Asymptotic stability of line-search

descent algorithm with Wolfe Conditions

Consider a line search descent algorithm that terminates if ∂J
∂θ̃

T
= 0. If the search direction

is a descent direction, the step size satisfies both the Wolfe conditions, and the cost function

72

is analytic, then there exists a single point θ̃∗ such that

lim
k→∞

θ̃k = θ̃∗

where θ̃∗ is the stationary point of J so ∂J
∂θ̃

T
(θ̃∗) = 0 [102].

This result from Proposition 5 proves that the iterative descent algorithm in Eq. (3.38)

will asymptotically converge to the Laplacian cost minimum corresponding to the uniform

distribution of samples on the surface boundary. For faster convergence, one can use de-

scent directions techniques such as diagonally-scaled steepest descent, Newton’s method,

BFGS, and Quasi-Newton’s methods [43, 100, 34] as higher-order information is used or

approximated.

3.2.2 Spawning or Deleting Samples

One technique of equilibriating the distances between neighboring point solutions is to add

new or remove old point solutions in the graph.

Definition 6: Bounded point-wise distance threshold

For two neighboring point solutions, a point-wise distance metric can be defined using the

states on the reachable set boundary, d(xf (zi),xf (zj)) where zi denotes the optimal control

problem solution from Eq. (2.29) of the ith point solution. Feasible point-wise distances

between neighboring point solutions can be defined using lower and upper bounds on the

distance metric

0 ≤ dl ≤ d(xf (zi),xf (zj)) ≤ du (3.43)

where du− dl > 0. It is not required for d(xf (zi),xf (zj)) to be a metric, but the properties

of metrics may be useful for nearest-neighbor search applications.

By prescribing lower and upper bounds for this distance metric, detecting sparse or dense

73

Figure 3.3: Visualization of the propagation of the graph G with deletion and insertion of
point solutions on the subspace reachable set boundary in Rs denoted by points a and b,
respectively

regions on the extremal surface could be performed by identifying point solution pairs that

do not satisfy the given bounds. As the reachable set evolves in time, it is then possible

to spawn new point solutions when d(xf (zi),xf (zj)) > du and remove redundant point

solutions when d(xf (zi),xf (zj)) < dl. This process can be visualized using Fig.3.3 where

the point solution denoted by a was removed and the point solution denoted by b was

spawned. Either of these changes may occur independently and will each result in a updated

graph G.

While there are many methods of determining whether or not an edge connecting multiple

point solutions on the reachable set boundary is too large, this work examines the use of

univariate statistics. Because an approximate uniform distribution of point solutions is

sought, the ideal distribution of point-wise distances between neighboring point solutions

should have a small sample variance. One efficient method to reduce the sample variance

through the deletion of samples is by identifying outliers. After computing the point-wise

edge distance between each neighboring point solutions on the reachable set boundary, one

can attempt to identify outliers of the resulting distribution. Furthermore, only the outliers

corresponding to larger point-wise distances are considered for the creation of new point

solutions.

74

One fairly simple and robust method for labelling outliers drawn from an unknown proba-

bility distribution is the interquartile range (IQR) method [103]. For a univariate distribu-

tion, one can compute the Q1, Q2, and Q3 quartiles corresponding to different percentiles,

typically chosen as the 25th, 50th, and 75th percentiles, respectively. In general, qth per-

centiles are values in the distribution below which q% of the samples in the distribution

fall. The IQR value is defined as Q3 - Q1 and is a measure of the spread of the central

collection of samples in the distribution. By convention, a sample is labelled an outlier if it

is greater than Q3 + 1.5IQR or less than Q1 - 1.5IQR. IQR is a more robust measure of the

dispersion of data than the conventional measures of dispersion, such as sample variance,

as the latter is greatly influenced by outliers. If the underlying probability distribution is

normal, this outlier threshold corresponds to 2.698σ [103].

Once the point-wise distance outliers are detected, new point solutions can be spawned

from neighbors by bisecting their search directions. If the edge distance from point solution

i to point solution j was deemed too large, then a new bisecting search direction can be

computed

d̂s,new =
d̂s(θi) + d̂s(θj)

‖d̂s(θi) + d̂s(θj)‖

θnew = h−1(d̂s,new)

(3.44)

The transformation from search direction unit vector to the vector of angle coordinates in

Eq. (3.44) is not unique in that there can be an infinite number of θ vectors corresponding to

the same d̂s vector. As a result, operations between point solutions should be performed on

the search direction unit vectors as opposed the vector of angular coordinates, if possible.

Another technique for spawning particles relies on being able to choose new particles that

minimize the global potential function cost impact when they are spawned. Suppose there

is a pair of existing particles, denoted particle 1 and particle 2, with a relatively large

weighted distance between them in the subspace of interest. If a new particle, denoted by

particle γ, were to be spawned between them, the potential energy cost associated with this

75

new addition is given by

Jnew = (xsf,1 − xsf,γ)
TQT

sQs(xsf,1 − xsf,γ) + (xsf,2 − xsf,γ)
TQT

sQs(xsf,2 − xsf,γ)

(3.45)

In addition, suppose this new particle was parametrized as a spherical interpolation (slerp)

of the existing particles’ search directions such as

d̂s,γ =
sin[(1− γ)Ω]

sin Ω
d̂s,1 +

sin[γΩ]

sin Ω
d̂s,2 (3.46)

where γ ∈ [0, 1] and Ω denotes the angle between d̂s,1 and d̂s,2 [104]. Spherical interpola-

tion of this form parametrizes a hyperspherical arc between the given unit vectors.

The objective is now to minimize Jnew(γ) to minimize the global potential energy generated

by spawning this new particle. As there are four pieces of information available about this

Jnew(γ) curve, a cubic polynomial is created. The four pieces of information are described

below
Jnew(γ = 0) = (xsf,2 − xsf,1)TQT

sQs(xsf,2 − xsf,1) = J1,2

Jnew(γ = 1) = (xsf,1 − xsf,2)TQT
sQs(xsf,1 − xsf,2) = J1,2

dJnew
dγ

(γ = 0) =
∂Jnew

∂d̂s

∂d̂s
∂γ

∣∣∣∣∣
γ=0

= J
′

1

dJnew
dγ

(γ = 1) =
∂Jnew

∂d̂s

∂d̂s
∂γ

∣∣∣∣∣
γ=1

= J
′

2

(3.47)

With the four quantities computed, the minimum of the cubic polynomial is computed as

γ∗ =


1
2

if J ′1 = −J ′2
2J
′
1+J

′
2±
√
J
′2
1 +J

′
1J
′
2+J

′2
2

3(J
′
1+J

′
2)

otherwise
(3.48)

where γ∗ is enforced to be between 0 and 1.

Altogether, either the search vector bisection or the cubic minimization mesh refinement

76

process can be repeated any number of times to achieve a desired surface resolution or until

a specified number of maximum refinement iterations are completed.

It is possible to delete point solutions from the reachable set boundary that are sufficiently

close to neighbors. This procedure reduces the overall computational load required as very

close point solutions, with redundant information describing the boundary of the reachable

set, would not be propagated through the full continuation method. Similar logic using

the IQR method could be used to prune those point solutions from further propagation.

However, this case is not considered in this thesis.

3.3 Results

To demonstrate the subspace reachable surface sampling, this example examines the for-

ward subspace reachable set of a 3-DOF coupled Duffing oscillator. The nonlinear equa-

tions of motion are

m1ẍ1 = −k1,1x1 − k1,3x
3
1 − f1ẋ1

+k2,1(x2 − x1) + k2,3(x2 − x1)3 + f2(ẋ2 − ẋ1)

(3.49)

m2ẍ2 =

−k2,1(x2 − x1)− k2,3(x2 − x1)3 − f2(ẋ2 − ẋ1)

+k3,1(x3 − x2) + k3,3(x3 − x2)3 + f3(ẋ3 − ẋ2)

(3.50)

m3ẍ3 = −k3,1(x3 − x2)− k3,3(x3 − x2)3

−f3(ẋ3 − ẋ2) + u

(3.51)

where mi represent the masses, xi represent the positions, ẋi are the velocities, ki,1 repre-

sent the linear spring coefficients, ki,3 represent the cubic spring coefficients, fi represent

viscous friction coefficients, and u is forcing term acting only onm3 with a maximum force

77

of um. For this demonstration, the following parameters are chosen:

g(x0) = xT0 x0 − 1 = 0

m1 = m2 = m3 = 1 k1,1 = k2,1 = k3,1 = 1

k1,3 = k2,3 = k3,3 = 1/9 f1 = f2 = f3 = 1

um = 1, Tf = π

3.3.1 Search Angle Bisection using IQR

To compute the subspace reachable set, θ ∈ [0, 2π) is evenly sampled 30 times. For each

θ, the corresponding search direction vector d̂s was computed and the continuation method

outlined in Eq. (2.32) was performed to generate point solutions on the forward reachable

set. The point solutions are clustered towards the high-curvature regions of the reachable

set boundary.

After computing the forward reachable set described by these 30 point solutions, the cu-

mulative distribution function of edge distances between neighboring points are displayed

in Figure 3.5. If one desires a more uniform description of the reachable set boundary, it

is possible to achieve a more uniform distribution by spawning additional point solutions.

The IQR method identifies edges that would need bisecting point solutions spawned. After

the mesh refinement, the edge distance distribution is less multimodal and more uniform

than it was originally, resulting in a cumulative distribution function with a steeper slope.

The additional samples can be seen in Figure 3.4 denoted by the black markers. This com-

putation was completed in about 15 seconds on a single-core of a MacBook Pro 2.3 GHz

Intel Core i5 processor with 8 GB 2133 MHz RAM.

78

Figure 3.4: Forward x3 subspace reachable set point solution trajectories at T = π for
6-dimensional nonlinear Duffing oscillator with IQR-based sample insertion where black
markers denote inserted samples

Figure 3.5: Point-wise edge distance cumulative distribution function for 6-dimensional
nonlinear Duffing oscillator forward x3 subspace reachable set before and after mesh re-
finement process using IQR outlier bisection

79

3.3.2 Potential Function Gradient Descent Redistribution

As previously discussed, it is also possible to achieve more uniform surface sampling by re-

distributing the point solutions themselves using Lyapunov theory and energy minimization

concepts.

In this example, the overall reachablility time horizon is subdivided into subintervals de-

limited by the intermediate, redistribution times Ts. At these redistribution times, the time

evolution of the reachable set is frozen while the point solutions are redistributed by chang-

ing θ̃ using any of the techniques outlined above. In this demonstration, the chosen redis-

tribution times are Ts,1 = Tf/2 = π/2, Ts,2 = Tf = π.

For this demonstration, the Lyapunov controller is implemented and the results are shown.

For each of the following figures, each row of the plots correspond to the redistribution

results at each of the times Ts. Figure 3.6 displays the subspace reachable set point solutions

at each of the redistribution times. For the initial redistribution time Ts,0 = 0, the initial

sampling of the subspace reachable set is uniform because the initial condition constraint

surface is spherical. Figure 3.7 demonstrates the increase in surface sampling uniformity

by looking at the point-wise edge distance distributions before and after the redistributions

are performed.

In this example, the final distribution of point solutions on the reachable set is more uniform

than the curvature-based sampling. In Figure 3.6, there are cusps in the forward reachable

set boundary for this particular system. With these cusps, the reachable set boundary is not

C1 and the continuation method Jacobian ∂F
∂z

approaches singularity as a point solution ap-

proaches the cusps. When using the continuous time Lyapunov controller, the cusps in the

reachable set boundary lead to ill-conditioned, stiff ODEs. These generally require longer

computation time and suffer decreased solution accuracy. Because of this, the computation

took about 3 hours on a single-core of a MacBook Pro 2.3 GHz Intel Core i5 processor

80

Figure 3.6: Forward x3 subspace reachable set sampling for Ts = Tf/2, Ts = Tf for
6-dimensional nonlinear Duffing oscillator both before (left) and after (right) sample redis-
tribution

Figure 3.7: Point-wise edge distance cumulative distribution function for 6-dimensional
nonlinear Duffing oscillator forward x3 subspace reachable set before and after mesh re-
finement process using gradient descent for Ts = Tf/2, Ts = Tf

with 8 GB 2133 MHz RAM. While not implemented in this chapter, drastic speed im-

provements can be made by using gradient-based line search optimization techniques with

Wolfe conditions [100].

3.4 Conclusions

This chapter discusses the use of parameterized optimal control and continuation methods

to sample points on the convex hull of a subspace reachable set. Furthermore, by specify-

ing a uniform distribution of initial search directions, this chapter shows that the resulting

81

reachable set sampling clusters towards high curvature regions of the surface boundary.

Multiple techniques for updating the distribution of point solutions on the reachable set

boundary are discussed. When a particular reachable set resolution is specified, additional

point solutions can be spawned to fill in gaps in the surface boundary. Alternatively, when

computational memory is of significance, the number of point solutions may remain fixed.

In this case, multiple decentralized techniques are presented to update the distribution of

point solutions on the reachable set boundary.

A comparison with two other commonly referenced reachable set analysis tools was also

performed. It is shown that the presented methodology can provide accurate samples of

the reachable set boundary without incurring a large computational cost. While the tool-

box comparison shown here is not comprehensive, it highlights some advantages of the

presented methodology such as the computational efficiency of continuation-based reacha-

bility, the accuracy measures provided by the necessary conditions of optimality in optimal

control, and the use of dimensionally scalable support functions for representations of con-

vex sets.

82

CHAPTER 4

CONNECTIONS WITH REACHABILITY THEORY AND MULTI-OBJECTIVE

OPTIMIZATION

4.1 Reachability optimal control formulation

An optimal reachability problem can be defined as a continuum of optimal control problems

with prescribed initial conditions. The optimal control problem is formally stated as

max
u∈U
{J} = max

u∈U

[∫ tf

t0

L(x(τ),u(τ), τ)dτ + V (xf , tf)

]
s.t. ẋ = f(x,u, t)

g(x0) = 0

(4.1)

where x ∈ Rn is the state, u ∈ Rm is the control input, t ∈ [t0, tf] is time, L : Rn ×

Rm × R → R is the trajectory performance function, V : Rn × R → R is the terminal

performance function, f : Rn×Rm×R→ Rn captures the system dynamics, g : Rn → Rv

expresses initial conditions, and U ⊆ Rm defines the set of admissible controls. Inequality

constraints on the initial states can be formed by introducing slack variables [42]. However,

for reachability optimal control problems, an equality constraint is sufficient as it describes

the boundary of the reachable set.

To account for the static and dynamic constraints, the augmented performance index is

defined

J̃(u) =

∫ tf

t0

[
L(x(τ),u(τ), τ) + pT (f(x,u, τ)− ẋ)

]
dτ + V (xf , tf) + λTg(x0) (4.2)

83

where p ∈ Rn, the Lagrange multiplier for the state dynamics, is denoted as the costate

variable and λ ∈ Rv is a Lagrange multiplier for the initial condition constraint.

Define the optimal control Hamiltonian as

H∗(x,p,u, t) = max
u∈U

[L(x,u, t) + pT f(x,u, t)] (4.3)

From calculus of variations [105], the first-order necessary conditions of optimality are as

follows

ẋ =
∂H∗
∂p

T

(4.4a)

ṗ = −∂H
∗

∂x

T

(4.4b)

u = argmax
u∈U

{H} (4.4c)

pf =
∂V

∂xf

T

(4.4d)

p0 = − ∂g

∂x0

T

λ (4.4e)

g(x0) = 0 (4.4f)

From Eq. (4.4e), note that the initial costate p0 is solely a function of x0 and λ. Expressing

the terminal value of the state and costate trajectories using flow functions

xf = x(tf) = φx(tf ;x0,p0(x0,λ)) (4.5a)

pf = p(tf) = φp(tf ;x0,p0(x0,λ)) (4.5b)

84

These expressions can be used to simplify the necessary conditions of optimality to

φp(tf ;x0,p0

(
x0,λ

)
) =

∂V

∂xf

T(
φx(tf ;x0,p0

(
x0,λ

)
)

)
(4.6a)

g(x0) = 0 (4.6b)

where the free variables that need to be solved are x0 and λ.

The necessary conditions of optimality may also be written in the form of a root-finding

problem. By defining a function FOC : Rn+v → Rn+v where

FOC(x0,λ) =

 ∂V
∂xf

T
(
φx(tf ;x0,p0(x0,λ))

)
− φp(tf ;x0,p0(x0,λ))

g(x0)

 (4.7)

and z ∈ Rn+v denotes the optimal control problem solution vector defined as

zOC =

x0

λ

 (4.8)

the following simple form is attained

FOC(zOC) = 0 (4.9)

This optimal control problem defined in Eq. (4.1) can be converted to a minimum-time

reachability problem. In such case, the Lagrangian term may be set L(x,u, t) = 0 [5]. Let

the terminal performance function, V (xf , tf), be written as an inner product as

V (xf , tf) = d̂Ts xf (4.10)

where d̂s ∈ Sn is a search direction parameter and S denotes the unit hypersphere.

85

In this case, the first order conditions of optimality for the reachability problem are given

by

FOC(x0,λ; d̂s) =

d̂s − φp(tf ;x0,p0(x0,λ))

g(x0)

 = 0 (4.11)

Brew et al. has shown that solving Eq. (4.11) for a given value of d̂s is equivalent to

computing a sample of the reachable set boundary [63].

4.2 Multi-objective optimization Problem Formulation

Now we look at the necessary conditions for a multi-objective optimization problem. Let

design variables be denoted as d ∈ Rd. Design variables are independently chosen vari-

ables that are chosen by the user and affect the objective functions. The set of feasi-

ble design variables is given by D = {d ∈ Rd : hi(d) = 0 ∀ i = 1, . . . , w} where

h(d) = [h1(d), . . . , hw(d)]T denotes the set of equality constraints. Problems with in-

equality constraints can be put into this form with the inclusion of slack variables [42].

Without loss of generality, this work only considers equality constraints. The set D is

called the design space as it denotes the set of feasible design variables.

The objective functions are defined as

J =


Rd → Rp

d→ J(d) = [J1(d), . . . , Jp(d)]T
(4.12)

where the notation indicates that J is a mapping from Rd to Rp that maps a vector d to J(d)

and is a collection of individual objective functions. The set of feasible objective functions

is defined as Y = J[D] = {J(d) : x ∈ D} and is called the objective space. The functions

J and h are assumed twice continuously differentiable [55].

One of the fundamental results of multi-objective optimization came from Kuhn and Tucker

86

in the form of necessary conditions for Pareto optimality [58]. Given a multi-objective

optimization problem of the form

min
d

J(d)

s.t. h(d) = 0

(4.13)

Let d∗ be a Pareto optimal point of Eq. (4.13). Suppose that the set of vectors {∇hi(d) :

i = 1, . . . , w} is linearly independent. Then there exists vectors µ ∈ Rw and α ∈ Rp with

αi ≥ 0, i = 1, . . . , p and
∑
αi = 1 such that

p∑
i=1

αi∇Ji(d∗) +
w∑
j=1

µj∇hj(d∗) = 0 (4.14a)

hi(d
∗) = 0, i = 1, . . . , w (4.14b)

where α quantifies relative weights between objective functions and µ denotes the La-

grange multipliers for the equality constraint h [58]. The point d∗ is called a critical point

or a Karush-Kuhn-Tucker (KKT) point of the multi-objective problem given in Eq. (4.13).

Introducing the scalar-valued function

Jα(d) =

p∑
i=1

αiJi(d) = αTJ(d) (4.15)

the first order necessary conditions given in Eq. (4.14) are equivalent to claiming that d∗

is a KKT point to the single-objective optimization problem with the objective function

Jα(d).

These necessary conditions of optimality given in Eq. (4.14) can be rewritten as a system

of equations of the form

FMO(zMO) = 0 (4.16)

87

where

FMO =

∑p
i=1 αi∇Ji(d) +

∑w
j=1 µj∇hj(d)

h(d)

 , zMO =

d
µ

 (4.17)

Pareto optimality is defined when α ∈ Rp
+ such that αi > 0∀i = 1, . . . , p. This restricts

the Pareto frontier to lie in the strictly positive orthant in Rp. However, Yu introduced

the concept of Λ-extreme points to the multi-objective optimization problems as a more

general definition of Pareto optimality on the basis of a cone Λ [106, 107]. This allows for

α ∈ Rp\{0} and a concept of Pareto optimality over the entire objective space Rp.

A distinction needs to be made between the Pareto frontier and the feasible objective space,

Y = J[D]. The Pareto frontier is a subset of the objecitve space that lies in the strictly pos-

itive orthant in Rp and contains non-dominated points. Λ-extreme points and generalized

hyperplane methods allow the concept of Pareto dominance and optimality to extend to

more regions of the objective space.

The first-order necessary conditions of optimality presented in both Eq. (4.11) and Eq. (4.17)

share the same form. For the reachability optimal control problem, the initial states x0 =

x(t0) correspond to the design variables d as these are the free variables that need to

be determined to optimize the problem at hand. The initial states must also satisfy the

constraints given, making g(x0),λ equivalent to h(d),µ, respectively]. For minimum-

time reachability optimal control problems, the objective functions J are the final states

xf = x(tf) = φx(tf). Finally, these objectives are scalarized by an weighted sum as in

Eq. (4.10) and Eq. (4.15) making d̂s equivalent to α.

Rewriting the multi-objective optimization necessary condition in Eq. (4.14a) with the dis-

cussed equivalencies results in

∂xf
∂x0

T

d̂s +
∂g

∂x0

T

λ = 0 (4.18)

88

From the optimal control theory formulation in §4.1, Eq. (4.4e) is used to rewrite the multi-

objective necessary condition of optimality in Eq. (4.18) as

∂xf
∂x0

T

d̂s =
∂V

∂x0

= p0 (4.19)

From optimal control theory, a well-known result comes from the Hamilton-Jacobi-Bellman

partial differential equation (HJB PDE) [72, 105]

∂V

∂t
+ max

u∈U

[
L(x,u, t) +

∂V

∂x
f(x,u, t)

]
=
∂V

∂t
+ max

u∈U

[
H(x,

∂V

∂x
,u, t)

]
= 0 (4.20)

where V (x, t) denotes the value function. The value function describes the optimal cost-

to-go from the current state and time (x, t) where the cost is defined by the optimal control

problem in Eq. (4.1). The HJB PDE in Eq. (4.20) is a necessary condition of optimality

along all optimal trajectories. Furthermore, it can be shown that the costate is equiva-

lent to the gradient of this value function with respect to the state such that p = ∂V/∂x

[105]. Consequently, for the minimum-time reachability problem, Eq. (4.19) corresponds

to the necessary condition of optimality for the reachability optimal control problem. This

supports that the multi-objective and reachability optimal control formulations have equiv-

alent necessary conditions of optimality. With this, they are now combined into a single

formualtion.

4.3 Joint Reachability and Multi-objective Optimization Formulation - HJB PDE

The following section will introduce a joint formulation for simultaneously dealing with

multi-objective optimization and optimal control problems of the form Eq. (4.1) and Eq. (4.13).

Collect all decision variables within an augmented state

X = [xT JT dT]T (4.21)

89

with dynamical states x ∈ Rn, objective functions J ∈ Rp, design parameters d ∈ Rd, and

n+ p+ d = k (X ∈ Rk).

To generalize the problem and avoid explicit time-dependent formulations, the independent

parameter q is introduced. The generalized independent parameter (GIP) q is defined as

q = Q(X(t),u(t), t) =

∫ t

t0

l(X(τ),u(τ), τ)dτ (4.22)

where it is assumed the mapping Q between q ∈ [q0, qf] to t ∈ [t0, tf] is both one-to-one

and onto for the simplicity. Note that unique mapping between q and t is not required for the

formulation as shown by Holzinger et al. [70]. In this paper, it was shown that the mapping

Q is required to be either fully invertible or only left invertible [70]. The inclusion of this

generalized independent parameter q is a generalization of the the equivalency between the

Bolza and Mayer problems of optimal control theory [72, 108]. Moreover, this independent

parameter allows for problem-specific independent variables such as cost or fuel usage. If

time-dependent dynamics are desired, choose l(·) = 1 such that q = t.

The augmented state dynamics with respect to the GIP q can be written as

X
′
=
dX

dq
=

dX
dt

(X(q),u(q), q)
dq
dt

(X(q),u(q), q)
= F̃(X,u, q) (4.23)

Here the ·̃ notation indicates that a function uses q as the independent parameter either

through a natural parametrization or from a transformation such as Eq. (4.23). The com-

bined dynamics of X with respect to q are

dX

dq
=


dx
dq

dJ
dq

dd
dq

 =


f̃(X,u, q)

L̃(X,u, q)

S̃(X, q)

 (4.24)

Suppose the surface of extremal solutions is known such that g(X(q = q0)) = 0 =

90

V (X0, q0). Through an application analogous to minimum-time reachability theory [5,

1], the resulting set of extremal solutions to the unified formulation may now be written in

the form of a reachability problem, which is the solution to the Generalized Independent

Parameter (GIP) HJB PDE expressed in Eq. (4.25) [70].

∂V

∂q
+ max

u∈U

[
∂V

∂X

dX

dq

]
= 0 (4.25)

The zero-level sets V (X, q) = 0 implicitly define the extremal surface over X [5]. Ex-

panding Eq. (4.25) results in the following equation denoted as the joint GIP HJB PDE:

∂V

∂q
+ max

u∈U

[
∂V

∂x
f̃(X,u, q) +

∂V

∂J
L̃(X,u, q) +

∂V

∂d
S̃(X, q)

]
= 0 (4.26)

4.3.1 Reduction of Joint Formulation to Minimum-Time Reachability

The joint GIP HJB PDE reduces to the GIP-based optimal control problem when there are

no design variables and a single objective function defined as in Eq. (4.1). In this case, the

joint GIP HJB PDE reduces to

∂V

∂q
+ max

u∈U

[
L̃(x,u, q) +

∂V

∂x
f̃(x,u, q)

]
=
∂V

∂q
+ max

u∈U

[
H̃(x,

∂V

∂x
,u, q)

]
= 0 (4.27)

which is the classical HJB PDE derived from optimal control theory expressed with respect

to GIP [72, 109, 105].

Similar to traditional optimal control reachability, the minimum-time reachability problem

can be acquired from the classical GIP HJB PDE in Eq. (4.27). When the GIP mapping

function integrand is the objective function Lagrangian (l(x(t),u(t), t) = L(x(t),u(t), t))

andQ(x(t),u(t), t) is monotonic [71]. This case is discussed by Holzinger et al. as the def-

inition of the Generalized Metric Range Sets where the independent parameter q is equiva-

lent to the objective function itself [71, 70]. Considering this case without the inclusion of

91

design parameters, the joint GIP HJB PDE in Eq. (4.26) reduces to

∂V

∂q
+ 1 + max

u∈U

[
∂V

∂x
f̃(x,u, q)

]
= 0 (4.28)

As the 1 does not affect the optimal control policy, state dynamics, or costate dynamics,

Eq. (4.28) is equivalent to

∂V

∂q
+ max

u∈U

[
∂V

∂x
f̃(x,u, q)

]
= 0 (4.29)

which is the GIP minimum-time reachability problem. Given an initial extremal reach-

able set such that g(x(q = q0)) = 0 = V (x0, q0), the zero-level set of the V (x, q) can

be computed from Eq. (4.29) and corresponds to the boundary of the GIP reachable set.

Traditional minimum-time reachability is performed in the case when q = t.

4.3.2 Reduction of Joint Formulation to Multi-objective Optimization

In a similar manner, consider the traditional multi-objective optimization case where there

are no state dynamics and but there are objective functions and design variables. Homotopy,

in general, involves the deformation of one continuous function to another [110]. This field

is commonly used to solve difficult problems by solving a simpler ones and deforming the

simple solutions to the difficult solutions [111]. To allow for GIP-based dynamics for the

objective function, one may construct objective functions as the following linear homotopy

map [20, 112]

J(d, q) = (1− q)J0(d) + qJf (d) (4.30)

where q ∈ [0, 1], J0(d) denotes the initial objective function, and Jf (d) denotes the termi-

nal objective function. This homotopy map is chosen such that when q = 0, J(d) = J0(d)

and when q = 1, J(d) = Jf (d). The GIP serves the role of the homotopy/continuation

parameter in this problem formulation. To specify an initial condition on the joint GIP

92

HJB PDE, one should define J0(d) such that V (J0,d0, 0) = 0 is well-defined and known.

The terminal objective function Jf (d) should be set to the original, given set of objective

functions one wants to optimize. Using this linear homotopy map, the objective function

GIP dynamics are
dJ

dq
(d) = Jf (d)− J0(d) (4.31)

where the resulting, multi-objective optimization form of the joint GIP HJB PDE is given

as
∂V

∂q
+
∂V

∂J

dJ

dq
(d) +

∂V

∂d
S̃(J,d, q) = 0 (4.32)

Eq. (4.32) describes a GIP-based minimum-time reachability problem. However, in this

case, the reachable set is computed over X = [JTdT]T ∈ Rp+d representing the objective

space and feasible design space. Just as in the previous minimum-time reachability dis-

cussion, the zero-level sets of V (x, q) describe the boundary of the reachable set of (J,d).

As this set contains all possible values of objective functions and design parameters, the

projection onto the J-subspace in Rp results in the feasible objective function set.

The concept of Pareto-optimality and more generally Λ-extremity, directly depends on

the feasible objective function set. This is because the Pareto-optimal set, and by ex-

tension the Λ-extreme set, is always on the boundary of the feasible objective function

set [113]. Through post-processing of the boundary of the feasible objective function set,

these Pareto-optimal sets can be computed. If the feasible objective function set is convex,

then the boundary of this set is the Λ-extreme set and the Pareto-optimal set is an orthant

section of this set.

Feasibility constraints on the design parameters and objective functions should be consid-

ered when formulating the multi-objective optimization GIP HJB PDE in Eq. (4.32). One

method to account for constraints is by carefully formulating V (J0,d0, 0) = 0 as well as

the GIP dynamics for the design variables. Another technique is to add constraints to the

93

boundary conditions and/or the GIP Hamiltonian. This approach is common within the field

of Hamilton-Jacobi (HJ) reachability for problems related to reachable tube computation,

collision avoidance, target sets, system safety assurance, obstacle sets, and reach-avoid sets

[114, 28, 115, 73, 1, 29].

With the full, joint GIP HJB PDE given in Eq. (4.26), joint analyses of multi-objective

optimization, optimal control, and reachability problems are performed simulataneously.

Example applications come from the fields of trajectory optimization, multi-objective op-

timal control, generalized range set over multiple range metrics, and path-planning.

The cost of computing this type of analysis comes in the form of the larger augmented

state dimension. Typically, HJ-based methods do not scale well in terms of state dimen-

sion. However, advancements in HJ-reachability such as projective methods and system

decomposition techniques have helped alleviate the curse of dimensionality by reducing

the effective state dimension in the computations [10, 114, 60, 116]. However, for non-

linear systems the cost of these methods are still exponential in the effective state space

dimension and time.

4.4 Solution Methods for Joint Reachability and Multi-objective Optimization For-

mulation

Through the first-order necessary conditions of optimality and through the joint formula-

tion, this chapter has identified analytic connections between reachability and optimal con-

trol with multi-objective optimization. Both of these fields have a vast amount of research

in the development of numerical solution methods to solve these problems. If a problem

from the multi-objective optimization field may be cast into a reachability problem and

vice-versa, there is a potential to have cross-pollination of the numerical techniques used

to solve these problems. This section will give examples of how solution techniques and

algorithms of one field may be applied to problems of the other.

94

4.4.1 Solving Reachability Problems with Multi-objective Optimization

Consider the initial value problem for a dynamic system of the form

ẋ = f(x,u, t),x(t0) = x0,u ∈ U (4.33)

If the dynamic system has state dynamics that are Lipschitz continuous in the state and

continuous in time, then the Picard-Lindelöf theorem states the initial value problem has a

unique solution [97]. Under these conditions, one may explicitly write

xf = x(tf) =

∫ tf

t0

f(x(·),u(·), τ)dτ + x0 = φx(tf ;x0) (4.34)

where φx denotes the trajectory flow function for the dynamic states. In general, the

solution xf does not have an analytical form and must be numerically integrated using

Eq. (4.34). If the control policy u(·) is known through controller design or optimal control,

one may uniquely determine the final state xf given the initial state x0 and a propagation

time tf .

For minimum-time reachability problems, the optimal control policy can be determined

using Eq. (4.4c). Even so, the optimal control policy does not always have an analytic

solution. In cases like this, one must solved a constrained single-objective optimization

problem specified in Eq. (4.4c). However, for many dynamic systems including control

affine systems, analytic results for this optimal control policy can be computed [63, 117].

With this, minimum-time reachability problems can be put in the multi-objective optimiza-

tion framework described in §4.2 by defining the following objectives and design variables

95

J = xf = φx(tf ;x0,λ)

d = [xT0 ,λ
T]T

h = g

(4.35)

where φx(tf ;x0,λ) is typically computed through numerical integration of the initial value

problem. Subspace reachable sets may be computed by selectively reducing the dimension

of the objective function. This can be performed by defining the objective function to be

J = Sxf (4.36)

where S ∈ Rs×n, s ≤ n, and the rows of S correspond to rows of the identity matrix In×n

that belong to the subspace of interest.

The reachability multi-objective optimization problem is then formally stated as

max
d

J(d)

s.t. h(d) = 0

(4.37)

Once in this form, minimum-time reachability problems may be analyzed by using any

number of available multi-objective optimization techniques. Common solution techniques

include evolutionary algorithms, scalarization methods, normal boundary intersection, ε-

constraint methods, and homotopy-based algorithms [48, 49, 50, 44, 51, 52, 53, 54, 55,

56].

Many of these algorithms are performed over orthants of the objective space. To create a

reachable set, one must repeat the multi-objective optimization algorithm over all of the

orthants of interest. For example, in a two-dimensional reachability analysis, one must

perform a multi-objective optimization over the four quadrants of the state/objective space.

Another thing to consider is that many of these methods search for sets of non-dominated

96

Figure 4.1: Example Pareto front with non-convex region causing gap in surface

points within the objective function space based on Pareto dominance order. For convex

Pareto fronts, this is equivalent to the boundary of the feasible objective space. However,

depending on the degree of non-convexity and orientation of the feasible objective set,

there may be gaps in the Pareto front, as demonstrated in Figure 4.1. While the complete

description of the boundary of the reachable set is important in a reachability analysis,

Pareto dominance order restricts the extremal set when the curvature of the non-convex

regions is too large [118]. One technique to avoid this is by implementing different domi-

nance rules such as Λ-extremity or generalized hyperplanes [106, 107]. Another method of

dealing with this problem is in the numerical implementation, as many of the Pareto-based

algorithms compute these non-Pareto boundary points but subsequently disregard them.

4.4.2 Solving Multi-objective Optimization Problems with Reachability

To compute multi-objective optimization problems in a reachability framework, one can

first express the objective functions as a linear homotopy map such that

J(d, q) = (1− q)J0(d) + qJf (d)

dJ

dq
(d) = Jf (d)− J0(d)

(4.38)

97

where q ∈ [0, 1], J0(d) is decided by the user, and Jf (d) = J(d) represents the known/given

vector of objective functions. The design variable dynamics S̃(J,d, q) is also decided by

the user. These dynamics must be chosen such that the design variables remain within the

feasible design space for all values of q. This may lead to design variable dynamics of the

form of artificial potential functions or barrier certificates [119, 120].

Once these parameters are all defined, the multi-objective optimization problem may be

solved in a number of methods throughout reachability theory. For example, one may use

the joint GIP HJB PDE reiterated here

∂V

∂q
+
∂V

∂J

dJ

dq
(d) +

∂V

∂d
S̃(J,d, q) = 0

V (J0,d0, q0) = 0

(4.39)

Within the realm of HJ-reachability analyses, level set methods are common solution meth-

ods [7]. However, there are many of analytic and numerical techniques for solving first

order PDEs as the one in Eq. (4.39).

Other reachability analysis techniques require variable dynamics, limits on control inputs,

and variable initial condition sets. With these known, there are a large number of reacha-

bility tools and algorithms available that would solve for the extremal surface as a function

of q. The reachability problem can be stated as

max
d

0p×p Ip×d

0d×p 0d×d

X

s.t. g(X) = 0

X = [JT ,dT]T

(4.40)

where I denotes the identity matrix. In general, the main tradeoff with reachability algo-

rithms revolves around computational speed and solution accuracy. However, there have

98

been some recent developments in computational reachability that allow for efficient and

accurate computation of reachable sets [11, 12, 13, 121, 14, 122].

The resulting extremal set will depend on both the algorithm used and the internal assump-

tions of the algorithm. If the true extremal set is non-convex, the algorithms may return

the true boundary of the extremal set. Similar in the discussion of §4.4.1, the boundary of

the extremal set and the Pareto front are not guaranteed to be the same. As a result, if the

Pareto front is desired, post processing of the extremal sets may be performed to recover

the desired results.

4.5 Joint Reachability and Multi-objective Optimization Formulation - Continua-

tion Solution Technique

This next section presents an alternative solution technique on the joint system given by

Eq. (4.21) and Eq. (4.24) based on the principles of numerical continuation and homotopy.

The purpose of continuation methods is to solve a nonlinear system of equations by solving

a simpler one and deforming the simple solution to the more complex solution. This defor-

mation is generally performed using a scalar continuation parameter which parametrizes

the root-finding problem. Numerical continuation methods have seen many applications

in the study of dynamical systems particularly in chaotic system analysis and parametric

bifurcation as well as in modern application in the search for quasi-periodic invariant tori

in the circular restricted three body problem [20, 22, 123].

HJ-reachability problems are typically solved using an Eulerian-type approach because

they require gridding the state space resulting in time and memory requirements that scale

exponentially with the state dimension. On the other hand, Lagrangian methods do not

depend on the gridding of state space, allowing for computational feasible analyses of

high-dimensional systems.

99

Of the Lagrangian-type approaches, Brew et al. have presented continuation-based reacha-

bility methodologies that compute samples of the reachable set boundary convex hull [63,

64]. The algorithm is titled Sampled Continuation Reachability (SCoRe) method. This

sample-based method allows for the computation of subspace reachable sets, effectively

reducing the state dimension cost to the dimension of the subspace of interest. As this

approach uses the first-order necessary conditions of optimality for the reachability prob-

lem, guarantees of accuracy and optimality can be made. Furthermore, by construction, the

presented reachability algorithm is parallelizable.

Given the definitions of the joint state and its dynamics shown in Eq. (4.21) and Eq. (4.24),

the joint continuation reachability optimal control problem is defined as

sup
u∈U

d̂(θ)TXf

s.t. X
′
=
dX

dq
= F̃(X,u, q)

g(X0) = 0

(4.41)

where g ∈ Rv, d̂ = h(θ) ∈ Sn+p+d denotes a unit search direction, θ ∈ Rn+p+d−1 is a

vector of angular coordinates, S denotes the unit hypersphere, and h is the mapping from

the angular coordinates to a unit vector.

Using the results discussed in Section 4.1, the first-order necessary conditions of optimality

100

for Eq. (4.41) are

X′ =
∂H̃∗
∂P

T

(4.42a)

P
′
= −∂H̃

∗

∂X

T

(4.42b)

u = argmax
u∈U

{H̃} (4.42c)

Pf = d̂(θ) (4.42d)

P0 = − ∂g

∂X0

T

λ (4.42e)

g(X0) = 0 (4.42f)

where P ∈ Rn+p+d denotes the joint costate variable and λ ∈ Rv denotes the Lagrange

multiplier associated with the initial condition constraint. Assuming joint state dynam-

ics are Lipschitz continuous, the following system of equations represents the necessary

conditions

F(Z; d̂(θ)) = F(X0,λ; d̂(θ)) =

d̂(θ)− φP (tf ;X0,P0(X0,λ))

g(X0)

 = 0 (4.43a)

Z =

X0

λ

 (4.43b)

where Z ∈ Rn+v denotes the joint reachability optimal control problem solution vector.

For every sampled search unit vector d̂(θ), a single objective optimal control problem is

created. The solution to this optimal control problem results in a sample of the reachable set

boundary using the methods discussed in [63, 64]. For a given sample, when a component

of d̂ is zero, the corresponding component of Xf does not contribute to the reachability ob-

jective function. This is entirely analogous to the scalarized objective function in Eq. (4.15)

used in the KKT conditions. Similarly, the generated reachable set boundary samples do

101

not sample non-convex regions of the reachable set.

One of the advantages of continuation-based methods is that the continuation parameter

itself does not have to be time- or GIP-based. For example, Brew et al. proved that contin-

uation can be performed on the θ or d̂ variables. This is equivalent to locally exploring the

reachable set. A similar concept is thoroughly discussed by Hillermeier in his use of ho-

motopy methods for computing Pareto-frontiers in multi-objective optimization problems

[55]. This allows for the quantification of efficient tradeoffs on the extremum surface as

well as the sensitivity of these tradeoffs.

4.6 Results

4.6.1 Hillermeier academic example

In Hillermeier §7.1, an academic example of multi-objective optimization is given to demon-

strate the use of homotopy/continuation methods to compute a Pareto-frontier [55]. The

optimization problem of two objectives as given as

J =


R2 → R2

d→ J(d) = [J1(d), J2(d)]T
(4.44)

where
J1(d) = cos(a(d)) · b(d)

J2(d) = sin(a(d)) · b(d)

a(d) =
2π

360
[ac + a1 sin(2πd1) + a2 sin(2πd2)]

b(d) = 1 + c cos(2πd1)

(4.45)

The chosen values for this demonstration are ac = 45, a1 = 40, a2 = 25, and c = 0.5.

As this problem is periodic with period 1 in terms of d1 and d2, their feasible range is

102

unlimited.

For this problem, the linear homotopy map from Eq. (4.30) is created for the objective

function GIP dynamics. The initial and terminal homotopy objective functions are defined

as
J1,0(d) = 0

J2,0(d) = 0

J1,f (d) = cos(a(d)) · b(d)

J2,f (d) = sin(a(d)) · b(d)

(4.46)

The chosen GIP dynamics for the design variables are S̃(J,d, q) = 0. This choice is so the

feasible set of design variables is determined by the initial condition set.

To approximate the conditions specified above with a convex, smooth, and differentiable

set, the initial condition constraint is chosen as

g(X0) =

(
J1,0

ε

)2

+

(
J2,0

ε

)2

+

(
d1,0

0.5

)2

+

(
d2,0

0.5

)2

= 0 (4.47)

where ε << 1. With ε = 1e-3, the initial values of J when q = 0 are small. While 0.5 was

chosen as the maximum initial distance from the origin for the design variables, any value

greater than 0.5 results in the same results due to the periodicity of the objective functions.

To demonstrate the topics discussed in this chapter, the boundary of the feasible objective

function set will be sampled using the SCoRe reachability algorithm described in Section

4.5. The feasible objective function space, J(d ∈ D) was generated by making an fine grid

of values from d1, d2 ∈ [0, 1] and evaluating the objective functions. With 60 unit vectors

evenly spaced in the J subspace, the reachable set samples were computed. The results are

displayed in Figure 4.2. This computation was completed in 10.5 seconds on a single-core

of a MacBook Pro 2.3 GHz Intel Core i5 processor with 8 GB 2133 MHz RAM.

The samples computed by the SCoRe algorithm provide a convex representation of the

103

Figure 4.2: Example 7.1 from Hillermeier generated from sampling design space and from
the SCoRe algorithm

feasible objective function space. Because of the support function based construction of

the SCoRe algorithm, the non-convex region close to the origin of the objective function

space is not sufficiently sampled. This result is still a proof-of-concept for computing ex-

tremal objective function sets using a reachability algorithm and homotopy methods. Fur-

ther validation may be performed by computing the reachable set using an HJ-reachability

technique.

4.6.2 Cislunar Space Problem Trajectory Optimization

The joint extremal surfaces generated using the presented methodology provide the set of

extremal solutions for the given objective functions. As this formulation includes dynamic

states driven through optimal control, solutions to multi-objective optimal control problems

are found. Moreover, Pareto-efficient tradeoffs between the objective functions are found.

For instance, sample objetive functions for a multi-objective optimal control problem may

be a minimum L2 (or L1) control effort and minimum time. Using the continuation-based

methodologies discussed, the extremal solution surfaces describing tradeoffs between min-

104

imum control effort and minimum time state trajectories are found. Furthermore, the corre-

sponding optimal control policies for these Pareto-optimal solutions are computed as well.

This is demonstrated on the problem of a spacecraft in orbital motion affected by both the

Earth and the Moon. The non-dimensional nonlinear equations of motion for a body in the

plane of the Earth-moon system are described as

◦◦
x = 2

◦
y + x− (1− µ)

x− x1

ρ3
1

− µx− x2

ρ3
2

+ ūx

◦◦
y = −2

◦
x+

(
1− 1− µ

ρ3
1

− µ

ρ3
2

)
y + ūy

(4.48)

where (x, y) are normalized position components relative to the Earth-Moon rotating frame,

µ is the non-dimensional mass ratio, x1 = −µ, x2 = 1 − µ, ρi =
√

(x− xi)2 + y2 is the

non-dimensional relative distance, (ūx, ūy) denote non-dimensional acceleration control

input,and (
◦·) denotes derivatives with respect to the non-dimensional time variable, τ [80].

For detailed derivations of these dynamics, please refer to [80].

This example will analyze a multi-objective optimal control problem with minimum time

and minimum fuel objectives. In terms of the joint formulation, this results in the following

augmented state

X = [x y
◦
x
◦
y J1]T (4.49)

where the fuel usage cost is represented by J1 as

J1 = −
∫ τf

0

‖ū‖1dτ = −
∫ τf

0

|ūx|+ |ūy|dτ (4.50)

The true acceleration with respect to time as opposed to the non-dimensional time is com-

puted by rescaling the non-dimensional quantities

u = ω2r12ū (4.51)

105

where r12 = 384402 km and ω = 13.19 degrees per sidereal day for the Earth-Moon

system. This allows the total ∆V consumed in a given trajectory to be expressed as

∆V =

∫ tf

0

‖u‖1dt = ωr12

∫ τf

0

|ūx|+ |ūy|dτ = −ωr12J1 (4.52)

Lagrange points are points near two large astronomical bodies where a smaller object will

maintain its position relative to the larger bodies [80]. In terms of the dynamic system

given in Eq. (4.48), the Lagrange points correspond to equilibrium points. Earth-Moon

Lagrange points are desirable locations for spacecraft because of the favorable maneuver-

ability between the Earth and the Moon, the capability to collect lunar and space weather

observations from a fixed vantage point, and the possible location of refueling and servicing

space stations [124, 125, 126].

In the following scenario, a low-thrust spacecraft is placed near the first Lagrange point

of the Earth-Moon system, denoted by L1. The coordinates for this stationary point are

xL1 = 0.836915 and yL1 = 0. The spacecraft thrust magnitude limits are modeled after the

Lunar IceCube 6U CubeSat with maximum thrust of 0.8 mN for a spacecraft of a mass of

14 kg [127]. However, in this case a two-thruster configuration is invetigated where each

thruster is independently controlled and axis-aligned with the Earth-moon rotating frame.

The initial condition set for the augmented state in Eq. (4.49) is approximated using an

ellipsoid

g(X0) =

(
x− xL1

ε1

)2

+

(
y

ε1

)2

+

(◦
x

ε2

)2

+

(◦
y

ε2

)2

+

(
J1

ε2

)2

= 0 (4.53)

where ε1 = 1e− 3 and ε2 = 1e− 4. This provides a smooth, differentiable initial condition

set that represents a spacecraft placed near L1 with some insertion errors with independent

standard deviations given by ε1 and ε2.

106

Figure 4.3: Minimum fuel and minimum-time reachability tradeoffs

The problem at hand is to perform a 5-day maneuverability analysis for the spacecraft

in this scenario. This involves computing the 5-day reachable set of the spacecraft as a

function of the ∆V used. Additionally, one would like to determine efficient tradeoffs

between the reachable states and the ∆V cost it takes to achieve that state. To answer these

questions simulataneously, a subspace reachability analysis is performed on the x, y, J1

space. This reachability analysis is performed using the continuation methods described in

§4.5 with 600 particles. Because the J1 cost monotonically decreases with use of control

input, with search directions d̂s are sampled from the semisphere corresponding to J1 < 0.

This computation was completed in about 1200 seconds on a single-core of a MacBook

Pro 2.3 GHz Intel Core i5 processor with 8 GB 2133 MHz RAM.

The results for this analysis are displayed in Figures 4.3-4.5. Figure 4.3 displays the com-

puted subspace reachable set in the x, y, J1 subspace at the final time horizon of 5 days.

This represents the set of possible combinations of final positions as a function of J1 or

∆V cost. When there is no thrusting at all, the J1 cost is maximized, ∆V cost is min-

imized, and the spacecraft doesn’t move since L1 is an equilibrium point of the cislunar

107

system of Eq. (4.48). This location corresponds to the ”top” of this subspace reachable set,

denoted by the black circle. Intuitively, as the thruster provides more acceleration to this

system, the set of reachable final states also increases.

Figures 4.4 - 4.5 display the same results but displays the optimal state space trajectories

at the final time horizon of 5 days. In these views, the different levels of control effort or

∆V are given by horizontal planes. Figure 4.5 shows that optimal trajectories tend to begin

with a period of thrusting followed by a period of non-thrusting (coasting). These mirror

the classical results derived from primer vector theory which shows that the minimum-fuel

consumption optimal control policy is based on periods of coasting and thrusting [108].

Figure 4.4: Optimal trajectories at final time horizon in x, y, J1 space.

Without acceleration input from the thruster, it can be shown that a constant of motion,

called the Jacobi constant, exists for this problem [80]. For the planar system given in

Eq. (4.48), the Jacobi constant is expressed as

C = (x2 + y2) + 2
1− µ
ρ1

+ 2
µ

ρ2

− (
◦
x

2
+
◦
y

2
) (4.54)

The Jacobi constant is a relative energy measure that is used to study feasible trajectories

108

Figure 4.5: Optimal trajectories at final time horizon in x, J1 space.

of this system given initial conditions. The smaller C is, the more relative energy the

spacecraft has and vice-versa. For a given value of C determined by initial conditions and

no control input, a zero-velocity surface in x, y can be computed denoting the extremal

points on the trajectory for all time. Figure 4.6 displays the feasible zero-velocity surfaces

both before and after the reachability scenario. These contour values denote the range of

possible Jacobi constant values. Figure 4.6 also shows that the L2 Lagrange point becomes

is reachable after the 5 day time horizon.

Figure 4.7 displays the how the position subspace reachable set changes with J1 cost or

∆V usage. This type of analysis can also be used to infer solutions of two-point boundary

value problems that originate from trajectory optimization problems. Suppose there is a

desired position, denoted by xd = 2000km, yd = −2000km, that the spacecraft is tasked to

reach within the 5 day time horizon. Traditional trajectory optimization problems typically

require the specification of separate weights between the time cost and the control effort

cost. The corresponding single objective optimal control problem is then solved to generate

both the optimal control policy and state trajectory. However, if the tradeoffs between

minimum time and minimum control effort are desired, this process needs to be repeated

with varying weights between the two objectives, analogous to the discussed weighted sum

109

Figure 4.6: Feasible zero-velocity surface contours denoting Jacobi constant value before
and after 5 day period. Position subspace reachable set at 5 day horizon is also shown.
Nondimensional units are used. Moon to scale.

technique in optimization.

Figure 4.7: ∆V Contours for cislunar trajectory optimization problem. The contour levels
are -10, -20, -30, -40, -49 m/s. The desired position in the trajectory optimization demon-
stration is also shown.

This type of analysis may be performed using the joint reachability and multi-objective op-

timization formulation presented in this thesis. The benefit to an analysis in this formula-

110

tion is that the minimum-time and minimum control effort trajectories are computed for all

reachable states at the specified time horizon. The minimum-time solution is determined

by observing when the desired state first intersects with the reachable set. If the desired

state is instead within the interior of the reachable set at a particular time, there exists a

tradeoff between minimum-time and minimum control effort trajectories that terminate at

the desired location.

In this demonstration as control effort cost is one of the objectives, one can use the ex-

tremal set to provide minimum control effort trajectories for positions that are within the

position subspace reachable set. For a desired position within the position subspace reach-

able set, one may project this state onto the extremal set to get the minimum control ef-

fort required to reach the desired position. This process is demonstrated in Figure 4.8

where the x, y, J1 subspace reachable sets are shown as the time horizon increases. The

vertical blue line specifies the desired position of this trajectory optimization problem,

xd = 2000km, yd = −2000km. After one day has passed, it is not possible to achieve the

desired position because it lies outside of the reachable set. After about 2.3 days has passed,

the desired position first intersects with the reachable set, corresponding to the minimum

time solution. After this time horizon, the desired position remains within the reachable

set and the minimum control effort cost can be recovered by finding the intersection of the

desired position state with the extremal set.

This process can be repeated at different reachability time horizons in order to compute the

Pareto-optimal curve for minimum-time and minimum control effort, as shown in Figure

4.9. This type of solution not only provides the set of efficient tradeoffs between time and

control cost, it also provides the sensitivities between these two costs. For example, the

required ∆V substantially drops near the minimum time solution of about 2.3 days while

the required ∆V drops much less as the time horizon increases.

While this type of analysis is demonstrated using the desired position of xd = 2000km, yd =

111

(a) x, y, J1 subspace reachable set at 2 days

(b) x, y, J1 subspace reachable set at 3.5 days

(c) x, y, J1 subspace reachable set at 5 days

Figure 4.8: x, y, J1 subspace reachable sets over time horizon with black line displaying
the desired position (x, y) =(2000 km , -2000 km) relative to L1 Lagrange point

112

Figure 4.9: Minimum-∆V and minimum-time Pareto-optimal curve for the desired posi-
tion (x, y) =(2000 km , -2000 km) relative to L1 Lagrange point

−2000km, this can be repeated for any other desired position that becomes reachable within

this time horizon of 5 days. Moreover with to the joint formulation, more objective func-

tions and design variables may be added to this analysis to generate extremal sets and

efficient tradeoffs of more complex problems.

4.7 Conclusions

This chapter describes analytical relationships between optimal control, reachability, and

multi-objective optimization theory. The first-order necessary conditions of optimality are

presented for each problem type and the similarities constructs are discussed.

A joint reachability and multi-objective optimization formulation is presented that com-

bines dynamic states, objective functions, and design parameters into a single analysis

framework. Through the joint fomulation GIP HJB PDE, extremals sets can be computed

representing the simultaneous set of feasible objective functions, design variables and dy-

namic states. By simplifying the joint formulation GIP HJB PDE, it is shown that problems

113

specific to optimal control, reachability, and multi-objective optimization fields can be re-

covered.

The reachability problem is cast as a multi-objective optimization problem where the objec-

tive functions are replaced by the state trajectory flow functions and the design variables are

replaced by the initial states and/or the initial costates. A sample formulation is presented

and numerical solution methods within the multi-objective optimization field are discussed.

Additionally, using homotopy principles, the multi-objective optimization problem is cast

as a reachability problem by introducing homotopy maps. Numerical solution techniques

characteristic to reachability analyses are reviewed.

These concepts are first demonstrated on a classical, biccriterial multi-objective optimiza-

tion problem. Extremal points that sample the boundary of the feasible objective function

space are computed using the SCoRe algorithm. The second demonstration solves a multi-

objective optimal control problem of maneuverability of a spacecraft near the Earth-Moon

L1 Lagrange point. A further analysis of these results leads to methods for computing so-

lutions to two-point boundary value problems and multi-objective trajectory optimization

problems.

114

CHAPTER 5

REACHABILITY TOOLBOX COMPARISON

One of the most general techniques for computing reachable sets is by using the level

sets (LS). Mitchell created a toolbox in MATLAB to compute viscosity solutions of the

HJB PDE over state space using level set techniques [7]. This toolbox is commonly used

throughout the aerospace community due to its accurate results and system generality.

However, the computation time required with this toolbox increases drastically when the

subspace of interest is high dimensional (n > 4) and when there is a large state space scale.

Furthermore, because the overall analysis space requires a grid, the size of the reachable

set must be known a priori.

More recently, other reachability analyses methods have shown great computational effi-

ciency by computing reachable sets of hundreds of states. However, these methods gener-

ally rely on overapproximating the reachable set using conservative linear approximations

of the system dynamics. In this thesis, the CORA toolbox is used [13] as it is implemented

in MATLAB and is commonly used in high-dimensional reachability analyses [128, 82].

As previously discussed, the methods presented in this thesis share many similarities with

both of these families of reachability computation. This technique uses optimal control

and the accompanying necessary conditions of optimality to quantify and ensure accuracy.

Furthermore, by using a sample-based technique and support functions, samples of the

reachable set boundary can be efficiently computed, even if the state dimension is large.

Consequently, the methods presented in this thesis aim to be a compromise between the

accuracy and system generality of the HJB methods with the speed and dimensional scala-

bility of the geometric set-based methods.

115

To highlight some of the advantages of this technique, the following reachability analysis is

performed using the Level Set (LS) toolbox, CORA toolbox, and a Python implementation

of the presented methods. Our Python implementation will be denoted as Sampled Con-

tinuation Reachabbility (SCoRe) from this point on. As all of these implementations have

capabilities of specifying desired accuracy, the following reachability analysis is conducted

over multiple accuracy settings.

Dubin’s Car Model

The dynamic system of interest for this comparison is an extension of the classical Dubin’s

car model. This scenario is used because it is a nonlinear system, it is a commonly used

problem scenario in optimal control, and is three-dimensional. The dynamics model is

given by

ẋ = u1 sin(θ)

ẏ = u1 cos(θ)

θ̇ = u2

(5.1)

where ‖u‖2 ≤ 1 and the set of initial states is given by

100(x− xc)
T (x− xc) ≤ 1

where xTc = [0, 0, π/2] and the reachable set is computed after π/2 seconds.

To compute the reachable set using the LS toolbox, a 51 × 51 × 51 grid of states from -2

to 2 for x, y and -0.5 to 3.5 for θ. The desired range for the grid was found by trial-and-

error and finding a box region that completely contained the reachable set. The LS toolbox

allows the user to control the order of the approximations using simple accuracy settings of

`low', `medium', `high', and 'veryHigh'.

To compute the reachable set using the CORA toolbox, a zonotopic approximation to both

116

the feasible control set and the initial state set had to be generated. For the initial state

set, the zonotope representation of a truncated small rhombicosidodecahedron was used to

closely approximate a sphere [129] of the appropriate size. To approximate the feasible

control set, 30 unit circle vectors were used as the generators to the zonotope then scaled

to the appropriate size. The main parameters that affect the accuracy of the solution are the

options.maxError variable and the time step size.

For our python implementation, 160 samples are generated and a full three-dimensional

reachable set is computed. The accuracy is controlled by specifying the relative and abso-

lute integration tolerances for the continuation method differential equations. For simplic-

ity these values are set to the same value for every reachable set computation. Additionally,

the Newton’s method corrective steps are disabled to measure accuracy due to the numeri-

cal continuation method itself.

The truth model for the reachable set was generated by the LS toolbox with a 101× 101×

101 grid of states with the 'veryHigh' accuracy setting. This truth model reachable set

took 405 seconds to compute.

Figure 5.2 displays the results of projecting the computed reachable sets onto the different

subspaces. CORA-TS denotes the solution with large number of time steps and CORA-ME

denotes the solution with low value of options.maxError. The LS method accuracy

was set to 'veryHigh'. However, for the SCoRe method presented in this thesis, the

accuracy was set using the integration tolerances of 1e-3. As shown, the LS and Brew

methods produced similar results while the CORA results form overapproximations to the

reachable set.

The regions in Figure 5.2 are generated by connecting a line between the outermost samples

once they are projected onto a subspace. It should be noted that the true reachable set in

this example is non-convex. The SCoRe method still computes samples on the reachable

set that constitute its convex hull, by construction. Consequently, there are no guarantees

117

(a) Reachable set computation from
CORA toolbox with 1280 time steps and
options.maxError=1e20 accuracy setting

(b) Reachable set computation from
CORA toolbox with 50 time steps and
options.maxError=0.3

(c) Reachable set computation from LS toolbox
with veryHigh accuracy setting

(d) Reachable set computation from SCoRe tool-
box with 1e-3 accuracy setting

Figure 5.1: Reachable set comparison between the three different reachability algorithms

118

(a) Projection of reachable set on the x, y sub-
space

(b) Projection of reachable set on the x, θ sub-
space

(c) Projection of reachable set on the y, θ sub-
space

Figure 5.2: Reachable set projection comparison between the three different reachability
algorithms

119

that the subspace projection of the convex hull samples will sufficiently sample the true

reach set projection.

As previously discussed, the satisfaction of the first order necessary conditions of optimal-

ity can be used an accuracy metric for a reachable set computation. However, this requires

surface tangent or costate information to evaluate. The SCoRe method and the LS tool-

box both provide surface tangent and costate information but the CORA method does not

explicitly supply this information.

For a fair comparison, another acccuracy measure is used that solely uses sample infor-

mation. This alternate measure can be derived from the Euclidean distance between the

reachable set samples with the true reachable set model. Denote the projection distance of

a single sample point x to the truth reachable setR as

dR(x) = min
xproj
‖xproj − x‖2

s.t. xproj ∈ ∂R
(5.2)

This projection distance is used as a measure of accuracy since it quantifies deviations from

the true reachable set. When evaluated for every sample of the reachable set computation,

the following state distance set is created dR(X) = {dR(x) : x ∈ X} where X ⊂ Rn

denotes the set of samples for a particular reachable set computation. Figure 5.3 in shows

the results of the state distance set in cumulative density form.

Figure 5.3 shows that the samples from the SCoRe method are the most accurate compared

to the highest accuracy settings of the other two methods. This is because the presented

method computes point solutions that satisfy the necessary conditions of optimality with-

out making assumptions on the form of the reachable set, using approximations for the

nonlinear system dynamics. The CORA toolbox overapproximates the reachable set due to

approximations formed for the feasible control set, intial state set, nonlinear dynamics, and

set representation. The LS toolbox underapproximates the reachable set due to insufficient

120

Figure 5.3: Cumulative density functions for each state distance set dR(X)

grid density and the addition of viscosity terms in the propagation of the level sets.

For the next comparison, the accuracy settings of each method are varied in order to gather

information on computation time and accuracy tradeoffs. With each accuracy setting, the

average value of the state distance set dR(X) and the computation time is recorded. For

the Python implementation, the three accuracy settings are relative and absolute integration

tolerances of 1e-3, 1e-6, and 1e-9. For the LS toolbox, the accuracy settings are given by

`medium', `high', and 'veryHigh'. For the CORA toolbox, the accuracy settings

are given by adjusting the options.maxError value to 1.0, 0.5, and 0.3 and the number

of time steps to 5, 80, and 1280.

All of the computations were completed on a single-core of a MacBook Pro 2.3 GHz Intel

Core i5 processor with 8 GB 2133 MHz RAM. The LS and CORA toolboxes are both

implemented in MATLAB while the SCoRe method is implemented in Python.

The goal of any reachability analysis algorithm is to compute reachable volumes with low

error in little time. However, as with many examples in numerical computing, a tradeoff

exists between the accuracy of the algoritm and the time it takes to run the algorithm. Figure

121

Figure 5.4: Computation time and reachable set sample accuracy tradeoffs for each method
along with error bars denoting 5% and 95% percentiles. The lowest, medium, and highest
accuracy settings used in the comparison are denoted by •, �, and N, respectively.

5.4 shows each of the reachable set algorithms at the specified accuracy levels along with

error bars denoting 5% and 95% percentiles for the sample distances to the true reachable

set model. It should be noted that the error bars are also logarithmically scaled.

For this problem, the CORA toolbox struggled in terms of both computation time and

accuracy.

For this problem, the CORA toolbox is able to compute the reachable sets in the least

amount of time. However, in order to achieve a large improvement in the solution accuracy,

a large computational cost is incurred. This is mostly due to the overapproximate dynamics

and discretization of the initial state and feasible control set. In general, the CORA toolbox

performs well in analyses of dynamic systems with rectangular sets of initial state variation

and feasible control set. Furthermore, the CORA toolbox scales well with increasing state

dimension.

As expected, the LS toolbox outperformed the CORA toolbox in terms of accuracy. For the

LS toolbox, Figure 5.4 shows the overall tradeoff between required computation time and

122

desired accuracy - for improvements in the solution accuracy, the computational time will

be lengthened. Another method for improving the accuracy of the LS method is to refine

the state space grid. However, the increased computational load due to the grid refinement

scales exponentially. It should be noted that the LS toolbox does compute the full, non-

convex reachable set while the other methods do not capture the non-convex regions of the

reachable set.

The SCoRe algorithm performed the best in terms of sample accuracy, mirroring the re-

sults of Figure 5.3. Additionally, the computation times are on the same or less order of

magnitude as the “medium” accuracy settings of the other methods. However, this method

only computes samples that lie on the convex hull of the true reachable set. Consequently,

a convex representation of the true reachable set is computed as opposed to the non-convex

reachable set computed from the LS that better matches the actual shape of the reachable

set. The method doesn’t increase much in accuracy as the accuracy settings are varied

and the required computation time increases. This asymptotic error is mostly due to the

definition of the reachable set truth model using the LS toolbox and to numerical errors

associated with computing dR(X). This asymptotic error may be reduced by including the

corrective Newton’s steps in the presented method or by further refining the reachable set

truth model.

6-Dimensional Relative Motion Problem

The second problem scenario is given by the 6-dimensional reachability analysis of an

object in Keplerian orbit about the Earth. The exact nonlinear relative equations of motion

123

for an object about a given arbitrary reference orbit xr(t) are

ẋ =



ẋ

ẏ

ż

ẍ

ÿ

z̈


=



ẋ

ẏ

ż

2ḟr
(
ẏ − y ṙr

rr

)
+ xḟ 2

r + µ
r2r
− µ

r3
(rr + x) + ux

−2ḟr
(
ẋ− x ṙr

rr

)
+ yḟ 2

r − µ
r3
y + uy

− µ
r3
z + uz


(5.3)

where the true anomaly rate (ḟr), reference radius (rr), and reference radius time deriva-

tive (ṙr) can be directly computed using Keplerian dynamics and the inertial radius of the

spacecraft is r, defined as r =
√

(rr + x)2 + y2 + z2 [80]. These equations of motion

represent the relative motion between an object and another reference object in a reference

orbit. The dynamics are expressed in a rotating Hill frame, where the radial axis (x) points

from the center of the Earth to the reference object and the along-track axis (y) is defined

as perpendicular to the radial vector and is positive in the direction of the reference orbit

velocity.

The discussed approach is demonstrated on the case of a spacecraft in an eccentric geosta-

tionary transfer orbit (GTO) with maximum thrust constraints. For this demonstration, the

initial condition set is given by

g(x0) = xT0Ex0 ≤ 1 (5.4)

where E = diag(10, 10, 10, 0.1, 0.1, 0.1) and the feasible control set as

‖ũ‖5 ≤ 1 (5.5)

where ui = 1e-6 ũi, i = 1, 2, 3. The nominal GTO orbit has a periapsis radius of 7000

124

km and an apoapsis radius at GEO with 42164 km. In this demonstration, the position

subspace reachable set (x, y, z) at the apoapsis of the nominal orbit is computed using the

CORA and SCoRe algorithms.

While the full state space dimension for this problem is 6, the position subspace reachable

set is 3-dimensional. Due to the curse of dimensionality, this prevents a reachability analy-

sis from be conducted using the LS. A projective LS technique has been studied that allows

for subspace reachable sets to be evaluated [10] in the LS framework. Similar to the SCoRe

method, computing subspace reachable sets incur computational costs in the subspace of

interest as opposed to the full state space. At the time of the writing, the authors don’t have

an implementation of the projective LS method. Consequently, the LS method will not be

evaluated for this problem comparison.

The truth model for the reachable set was generated by the SCoRe algorithm with 162

particles and integration tolerances of 1e-9. To ensure the accuracy of this truth model,

Newton’s root-finding was performed on each particle individually to a convergence toler-

ance of ‖F(z)‖ ≤ 1e-9.

This problem scenario uses the same CORA algorithm parameters used for the Dubin’s car

model previously discussed. The variable that parametrizes the accuracy in this case for the

CORA algorithm is given by the number of time steps. The chosen values for the number

of time steps are 50, 100, 150, and 200.

Figure 5.5 displays the results of projecting the computed reachable sets onto the different

subspaces. The CORA reachable set is smaller in the x, y subspace than the truth. However,

the z-direction yielded accurate results. This is most likely due to the coupled nonlinear

dynamics of the x, y motion. The motion in the z component is lightly coupled with the

other two components.

Similarly to the previous Dubin’s car comparison, the accuracy settings of each method

are varied in order to gather information on computation time and accuracy tradeoffs. With

125

(a) Projection of reachable set on the x, y sub-
space

(b) Projection of reachable set on the x, z sub-
space

(c) Projection of reachable set on the y, z sub-
space

Figure 5.5: Reachable set projection comparison between CORA and SCoRe reachability
algorithms

126

each accuracy setting, the average value of the state distance set dR(X) and the computation

time is recorded. For the Python implementation, the three accuracy settings are relative

and absolute integration tolerances of 1e-3, 1e-6, and 1e-9. For the CORA toolbox, the

accuracy settings are given by adjusting the options.maxError value from 1e-4 to

0.4e-4 in 0.1e-4 increments.

Figure 5.6: Computation time and reachable set sample accuracy tradeoffs for each method
along with error bars denoting 5% and 95% percentiles. The markers denoting the accuracy
settings used in the comparison are denoted by •, �, and N in the direction of increasing
accuracy.

For this problem, the CORA toolbox produced reachable sets in a faster amount of time, but

the solution accuracies were orders of magnitude worse than the SCoRe solutions. Further-

more, the CORA toolbox computes the full 6-dimensional reachable set while the SCoRe

computes the 3-dimensional position subspace reachable set. The SCoRe algorithm gen-

erates accurate results but took comparatively longer than the CORA when computing the

position subspace reachable set. The required computation time for the SCoRe algorithm

doesn’t scale as well as the CORA method when considering the overall time horizon.

However, performance improvements can be made in the SCoRe algorithm by performing

corrective Newton’s steps throughout the continuation method. Further performance im-

127

provements can be achieved if this algorithm is implemented on a parallelized computing

platform.

This comparison between the SCoRe method alongside the LS and CORA toolboxes is by

no means comprehensive. There are many other dynamic systems, reachability analsysis

scenarios, and algorithm parameters that could lead to different results. Furthermore, this

comparison doesn’t explore all the available reachable set analysis methods. This compar-

ison is not meant to provide a conclusive result in terms of which algorithm to use in every

situation, it is meant to highlight some of the differences between the methods. For a given

reachability analysis, the choice of reachability algorithm depends heavily on the type of

dynamic system, restrictions on dynamic states and control input, desired accuracy of the

solution, and the computational requirements.

128

CHAPTER 6

CONCLUSIONS

The concept of reachability directly addresses issues in system level autonomy, system

safety verification, system fault detection, and system design. Once computed, reachable

volumes can be used to make guarantees of performance of a given dynamic system. Such

guarantees are critical because they allow one to confidently predict where the system state

may be in the future or what previous states may have generated the current one. Whether

the system is a near-Earth asteroid, fighter jet, chemical process, or a hurricane, predictions

from reachability analyses can help to better inform decision makers.

Numerous analytical, computational, and software tools have been developed within the

past decade to compute reachable sets, mainly for the task of continuous and hybrid sys-

tem verification analysis. The challenges in developing reachability algorithms include

generality of system dynamics, representation of reachable volumes, and computational

tractability. Generally, these algorithms make performance trade-offs between each of the

above stated challenges.

Chapter 2 provides fundamental results in the application of numerical continuation meth-

ods to reachability analyses. In this chapter, the formulation for using numerical continu-

ation methods to compute samples of forwards and backwards reachable sets and tubes is

defined. Numerical techniques to suppress error in the continuation method are introduced

including root-finding corrective steps, matrix equilibriation, and psuedo-arclength contin-

uation. While current methods are limited to ellipsoidal feasible control sets and initial

condition sets, Chapter 2 generalizes this concept to affine transformations of unit balls of

normed vector spaces. This allows for analytic minimum-time optimal control policies for

129

control affine systems. Unions of convex initial condition sets are also discussed in this

chapter, enabling the computation of reachable volumes from non-convex initial condition

sets. Importantly, this study extends the current state-of-the-art of reachability theory using

numerical continuation methods and lays the foundation for the remainder of the thesis.

Chapter 3 provides analytic results toward the distribution of samples along the reachable

set boundary as well as numerical methods to achieve the desired sampling uniformity or

spatial resolution. In this chapter, it is proven that curvature-based sampling occurs when

using support-function-based reachability objective functions and uniform sampling of unit

vector search directions. If uniform reachable surface coverage is desired, Chapter 3 out-

lines the necessary conditions for uniform sample coverage based on a decentralized graph

theory and analytical mechanics approach. Additional techniques for updating the distri-

bution of point solutions based on spawning new samples are also introduced. Overall, this

study develops numerical methods for achieving a desired surface sampling and introduces

the concept of numerical continuation along the reachable set boundary to locally explore

the extremal surface.

Chapter 4 explores analytical connections between reachability theory and multi-objective

optimization. In this chapter, a joint reachability and multi-objective optimization for-

mulation is presented. This allows for the computation of joint extremal sets containing

information of dynamic states, objective functions, and design parameters. Moreover, this

joint formulation generalizes to reproduce results from optimal control, reachability, and

multi-objective optimization problems. Demonstrations of the joint formulation include

the ability to cast reachability problems as multi-objective optimization problems and vice-

versa. Emphatically, the connections developed in Chapter 4 help bridge the gap between

the fields of multi-objective optimization and reachability. Moreover, unification of these

previously distinct areas enable cross-pollination of both theory and numerical methods.

Chapter 5 presents a numerical comparison between the implementation of the theory pre-

130

sented in this thesis with two commonly used reachability algorithms. In this chapter,

reachability solutions using the Sampled Continuation Reachability (SCoRe) algorithm,

Level Set Toolbox, and the CORA toolbox are compared when applied to the problems of

a classical Dubin’s car and a spacecraft in relative motion about a nominal orbit. The results

presented in this chapter highlight advantages of the SCoRe methods such as maintaining

a high level of accuracy with tractable computation times.

The problem of efficiently computing reachable volumes has been studied for decades and

much work remains in order to generate accurate results that can be used to make time-

critical decisions. The work in this thesis contributes to this problem by introducing com-

putational techniques based on numerical continuation to the reachability field. Moreover,

through the described connections between multi-objective optimization theory, a large

number of analytic and numerical references are introduced to the reachability field. The

demonstrations presented in this thesis show promise for the use of numerical continuation

in the development of computationally efficient algorithms in reachability applications.

131

Appendices

132

APPENDIX A

DERIVATIONS

A.1 Hamilton Jacobi Bellman PDE

The Optimal Control Problem is formally stated as

opt
u∈U

[∫ tf

t0

L(x(τ),u(τ), τ)dτ + V (xf , tf)

]
ẋ = f(x,u, t)

h(x, t) ≤ 0

g(x0, t0,xf , tf) = 0

(A.1)

where x ∈ Rn is the state, u ∈ Rm is the control input, t ∈ [t0, tf] is time, L : Rn ×Rm ×

R→ R is the trajectory Lagrangian, V : Rn×R→ R is the terminal performance function,

f : Rn×Rm×R→ Rn captures the system differential equations, h : Rn×R→ Rq defines

trajectory inequality constraints, g : Rn×R×Rn×R→ Rv expresses boundary conditions,

U ⊆ Rm defines the set of admissible controls, and the ‘opt’ argument is understood to

denote an arbitrary optimization depending on the application, i.e. ‘sup’, ‘inf’, ‘min’, or

‘max’. In addition, for reachability problems in general there are no trajectory inequality

constraints placed on the state. Inequality constraints may be considered using the inclusion

of slack variables or by augmenting the optimal control objective function with penalty

functions.

The performance index in Eq. (A.1) can be restated in the Dynamic Programming form as

V (x0, t0) = opt
u∈U

[∫ tf

t0

L(x(τ),u(τ), τ)dτ + V (xf , tf)

]
(A.2)

133

More generally, this is the Principle of Optimality expressed as

V (x(t), t) = opt
u∈U

[∫ t+∆t

t

L(x(τ),u(τ), τ)dτ + V (x(t+ ∆t), t+ ∆t)

]
(A.3)

which relates the current optimal cost-to-go (V (x, t)) with the optimal cost-to-go at a future

time (V (x(t+∆t), t+∆t)). Each term in Eq. (A.3) is now expanded using a Taylor series.

x(t+ ∆t) = x(t) + f(x,u, t)∆t+ o(∆t) (A.4)

V (x(t+ ∆t), t+ ∆t) = V (x(t), t) +
∂V

∂x
(x(t), t)[x(t+ ∆t)− x(t)]∆t+

∂V

∂t
(x(t), t)∆t+ o(∆t)

= V (x(t), t) +
∂V

∂x
(x(t), t)f(x,u, t)∆t+

∂V

∂t
(x(t), t)∆t+ o(∆t)

(A.5)

∫ t+∆t

t

L(x(τ),u(τ), τ)dτ = L(x(τ),u(τ), τ)∆t+ o(∆t) (A.6)

Substituting these results back into the Principle of Optimality generates

V (x(t), t) = opt
u∈U

[
L(x(τ),u(τ), τ)∆t+V (x(t), t)+

∂V

∂x
(x(t), t)f(x,u, t)∆t+

∂V

∂t
(x(t), t)∆t+o(∆t)

]
(A.7)

Observing that V (x(t), t) and ∂V
∂t

(x(t), t)∆t do not depend on u yields

−∂V
∂t

(x(t), t)∆t = opt
u∈U

[
L(x(τ),u(τ), τ)∆t+

∂V

∂x
(x(t), t)f(x,u, t)∆t+o(∆t)

]
(A.8)

Dividing by ∆t and letting ∆t → 0 yields the traditional Hamilton-Jacobi-Bellman PDE

134

as follows

−∂V
∂t

(x(t), t) = opt
u∈U

[
L(x,u, t) +

∂V

∂x
(x(t), t)f(x,u, t)

]
(A.9)

Traditionally, the HamiltonianH(x,u,p, t) is defined as

H(x,u,p, t) = L(x,u, t) + pTf(x,u, t) (A.10)

where p is the costate variable corresponding to the state x in the original OCP. Addi-

tionally, because the costate p represents the cost sensitivity to state perturbations on the

optimal trajectory[109],

pT =
∂V

∂x
(x(t), t) (A.11)

which allows the HJB PDE to be rewritten as

−∂V
∂t

(x, t) = opt
u∈U

[
H(x,u,

∂V

∂x

T

, t)

]
(A.12)

The HJB PDE provides a necessary and sufficient condition for local optimality if the value

function is C1. As a result, a value function V (x, t) that solves the HJB PDE describes a

hypersurface of optimal cost in the feasible range of x during the solution interval [t0, tf]

[109]. Since V is defined for all t in the solution interval and x, V (x, t) represents the

optimal cost-to-go from an arbitrary point (x, t) on the trajectory x(t). In general, the

value function solution is not smooth (C1). Thus, viscosity solutions of the HJB PDE are

often obtained numerically.

To solve the HJB PDE, a boundary condition on the value function is specified. For reacha-

bility problems, this generally comes in the form of V (x0, t0) whose zero-level set defines

the initial reachability set boundary. Using the HJB PDE framework, the reachability set at

135

any point in time is then defined as

R(t;V (x0, t0)) = {x|V (x, t) ≤ 0} (A.13)

where V (x, t) is the solution to the HJB PDE.

A.2 Minimum-time Reachability Optimal Control Problem First Order Necessary

Conditions of Optimality

The minimum-time reachability optimal control problem (OCP) has the form of

sup
u∈U

J(u) = V (xf , tf)

subject to: ẋ = f(x,u, t)

g(x0, t0) = 0

(A.14)

in which the continuum of solutions to this OCP will define the reachability set at a partic-

ular time horizon. At this point in deriving the necessary conditions, the control constraints

are ignored. Calculus of variations cannot easily incorporate control constraints but the first

order necessary conditions are more simply identified using this approach. Incorporating

control constraints will be addressed afterward. After augmenting the initial manifold and

dynamics constraints to the total cost using Lagrange multipliers,

sup
u
J̃(u) =

∫ tf

t0

pT (f(x,u, τ)− ẋ)dτ + V (xf , tf) + λTg(x0, t0) (A.15)

Introducing the functional variations on u → u + εν where ε is a small scalar and ν

represents an arbitrary functional variation on the control input trajectory, the resulting

variation of the state trajectory is given as x→ x+ εη + o(ε). This result comes from the

assumption the dynamics are Lipschitz in x and piece-wise continuous in t. A perturbed

136

cost can then be expressed as

J̃(u+εν) =

∫ tf

t0

pT [f(x+εη,u+εν, τ)−(ẋ+εη̇)]dτ+V (xf+εηf , tf)+λ
Tg(x0+εη0, t0)+o(ε)

(A.16)

Expanding each term in a Taylor series expansion results in

J̃(u+ εν) =

∫ tf

t0

pT [f(x,u, τ) +
∂f

∂x
εη +

∂f

∂u
εν − (ẋ+ εη̇)]dτ

+V (xf , tf) +
∂V

∂xf
εηf + λT (g(x0, t0) +

∂g

∂x0

εη0) + o(ε)

(A.17)

The first order necessary condition of optimality states the first variation of the cost, tradi-

tionally expressed as a Gateaux derivative, vanishes along the optimal trajectory

δJ̃(u;ν) ≡ lim
ε→0

J̃(u+ εν)− J̃(u)

ε
= 0

δJ̃(u;ν) = lim
ε→0

1

ε

[∫ tf

t0

pT [
∂f

∂x
εη +

∂f

∂u
εν − εη̇]dτ +

∂V

∂xf
εηf + λT

∂g

∂x0

εη0) + o(ε)

]
=

∫ tf

t0

pT [
∂f

∂x
η +

∂f

∂u
ν − η̇]dτ +

∂V

∂xf
ηf + λT

∂g

∂x0

η0

(A.18)

Using integration by parts

∫ tf

t0

pT η̇dτ = pTf ηf − pT0 η0 −
∫ tf

t0

ṗTηdτ (A.19)

The Gateaux derivative then reduces to

δJ̃(u;ν) =

∫ tf

t0

[
pT
∂f

∂x
+ ṗT

]
η dτ +

∫ tf

t0

[
pT
∂f

∂u

]
ν dτ +

[∂V
∂xf

− pTf
]
ηf +

[
λT

∂g

∂x0

+ pT0
]
η0

(A.20)

For the first variation of the cost to vanish, each individual term must vanish. Because

137

the initial or terminal state (x0,xf) are not fully specified, the corresponding functional

variations (η0,ηf) are free. Similarly, there are no control or state constraints along the tra-

jectory so the functional variations η,ν are also free. For each term to vanish for arbitrary

variations, the bracketed terms must vanish. As a result, the first order necessary conditions

of optimality are given by

ṗ = −∂f
∂x

T

(x,u, t) p

pf =
∂V

∂xf

T

(xf , tf)

p0 = − ∂g

∂x0

T

(x0, t0)λ

g(x0, t0) = 0

(A.21)

along with the optimal control u∗ defined by

pT
∂f

∂u∗
= 0 (A.22)

where p is the costate variable for the state x and λ is the Lagrange multiplier for the state

boundary constraint g(x0, t0) = 0. To solve the OCP given in Eq. (A.14), trajectories for

the state and costate must be found to simultaneously satisfy Eq. (A.21) under the optimal

control policy defined by Eq. (A.22). Because the state dynamics are assumed to be at

least Lipschitz continuous, the state and costate trajectories are uniquely determined by

their boundary condition groups (x0,p0, t0) or (xf ,pf , tf). It is convenient to define the

trajectories of the state and costate using trajectory or flow functions as follows

x(t) = φx(t;x0,p0, t0)

p(t) = φp(t;x0,p0, t0)

(A.23)

This notation denotes that given an initial condition group, the resulting trajectory can be

138

evaluated at any time t. Rewriting the transversality conditions in Eq. (A.21) in terms of

these flow functions yields

pf = φp(tf ;x0,−
∂g

∂x0

T

(x0, t0)λ, t0) =
∂V

∂xf

T

(φx(tf ;x0,−
∂g

∂x0

T

(x0, t0)λ, t0), tf)

g(φx(t0;x0,−
∂g

∂x0

T

(x0, t0), t0)λ, t0) = 0

(A.24)

This reduces the solution to the OCP to finding (x0,λ) that simultaneously satisfy Eq.

(A.24) under the optimal control policy defined by Eq. (A.22).

With the traditionally defined Hamiltonian in this problem,

H(x,u,p, t) = pTf(x,u, t) (A.25)

the state and costate dynamics can be rewritten as

ṗ = −∂H
∂x

T

(A.26a)

ẋ =
∂H
∂p

T

(A.26b)

along with the optimal control u∗ defined by

∂H
∂u∗

= 0 (A.27)

Eq. (A.26) reveals the state and costate form a Hamiltonian system characteristic of the

traditional definition in dynamical systems theory. For the OCP with unconstrained con-

trol input, the solution to Eq. (A.21) and Eq. (A.22) give the optimal trajectories for the

state, costate, and control. However, control input constraints are common and cannot be

completely addressed with Eq. (A.22). To address control constraints, the Pontryagin Max-

139

imum Principle in Eq. (A.28) is used to generalize the optimal control policy expressed in

Eq. (A.27)

u∗ = argmax
u∈U

{H} (A.28)

which generalizes the generation of the optimal control policy along a trajectory to point-

wise optimizations of the Hamiltonian.

A.3 Minimum-Time Optimal Control Policy for Control Affine Systems

Section 2.2.3 discusses the use of feasible control sets that are defined using affine trans-

formations of unit balls of the p-norm and F-norm vector spaces. This allows for non-

ellipsoidal feasible control sets in a given reachability analysis. Moreover, the feasible

control set does not need to be centered around the origin or contain the origin at all. This

allows for minimum-time reachability analyses in which feasible control set defines the

allowable deviations from a nominal control input signal, uc(t) or uc(x, t).

From Section 2.2.4, the following optimization problem is presented.

max
x

yTx

s.t. ‖x‖p ≤ 1

(A.29)

which has the following analytic solution

x∗ =
sign(y) ◦ |y|q−1

‖y‖q−1
q

=
∂‖y‖q
∂y

(A.30)

where q = p
p−1

, ◦ denotes the Hadamard/element-wise product, | · | denotes the element-

wise absolute value, and sign(·) denotes the element-wise sign/signum operation.

As shown in Section 2.2.2, normed unit balls, ‖x̃‖ ≤ 1, can be defined using the affine

140

transformation x̃ = M(x − xc), where xc defines the center of the feasible set and M ∈

Rn×n is an invertible transformation matrix. An equivalent definition of the feasible set is

given by X = {x ∈ Rn : x = M−1x̃ + xc, ‖x̃‖ ≤ 1}.

For the minimum-time optimal control problem, Pontryagin’s maximum principle states

the optimal control input comes in the form

u∗ = argmax
u∈U

{H} = argmax
u∈U

{pT f(x,u, t)} (A.31)

In general, there is not a closed form solution to the above problem. However, many

problems and dynamic systems in engineering have the following form with an analytic

solution for the optimal control. One prominent example of this is given by control affine

dynamic systems.

Given a continuous-time control affine nonlinear dynamic system of the form

ẋ = f1(x, t) + f2(x, t)u (A.32)

In the case where the control input constraint is of the transformed p-norm type such that

u = M−1ũ + uc

‖ũ‖p ≤ 1

(A.33)

141

as described above, the Pontryagin’s maximum principle comes in the form

u∗ = argmax
u∈U

pT [f1(x, t) + f2(x, t)u]

= argmax
u∈U

pT f2(x, t)u

= argmax
‖ũ‖p≤1

pT f2(x, t)
[
M−1ũ + uc

]
= argmax
‖ũ‖p≤1

pT f2(x, t)M−1ũ

(A.34)

The maximum principle in Eq. (A.34) is equivalent to the optimization problem in Eq. (A.29)

where y = M−T fT2 (x, t))p. Consequently, the analytic solution for the optimal control

policy for control affine systems is given by

ũ∗ =
sign(y) ◦ |y|q−1

‖y‖q−1
q

=
∂‖y‖q
∂y

u∗ = M−1ũ∗ + uc

(A.35)

where y = M−T fT2 (x, t))p and q = p
p−1

.

Note that this form has a well-defined solution for 1 < p <∞. This corresponds to having

a smooth, continuously differentiable boundary for the feasible set. Outside of this range,

solutions exist but may not be unique in terms of y.

For the case of p = 1,

|ũ∗i | =


sign(yi) if i = a

0 otherwise

u∗ = M−1ũ∗ + uc

(A.36)

where a is the index of y where |yi| is the largest.

142

As p→∞ the optimal control solution approaches

ũ∗ = sign(y)

u∗ = M−1ũ∗ + uc

(A.37)

For the special case of p = 2 corresponding to spherical/circular feasible sets,

ũ∗ =
y

‖y‖2

u∗ = M−1ũ∗ + uc

(A.38)

143

APPENDIX B

REPRODUCING RESULTS

B.1 Viscous Damper Linear System

In this example, we will look at the case of an object subject to linear damping on its

velocity.

B.1.1 Problem Setup

ẍ = −µẋ+ u, ẋ =

0 1

0 −µ

x +

0

1

u (B.1)

With control input constraints given by

|u| ≤ 1 (B.2)

and initial condition constraint given by

g(x0, t0) = ‖Mx‖8 − 1 ≤ 0

M =


√

1
2

1

0
√

1
10

 (B.3)

B.1.2 Imports

144

import numpy as np

from dynSystems import LTIDynamics

from constraints import Constraint

from reach import Reachability

from plotting import plotReachTrajectories,

↪→plotReachVolume, plotReachHistories1D, plotReachGrowth

B.1.3 Create Dynamic System Object

mu = 1.0

A = np.array([[0,1],[0.0, -mu]])

B = np.array([[0.0],[1]])

um = 1.0

LTI = LTIDynamics(A,B,uLimit=um)

B.1.4 Create Initial Condition Constraint

E = np.diag([0.5,0.1])

IC = Constraint.fromShapeMatrix(E,p=8)

B.1.5 Create Reachability Object and Initialize Particles

R = Reachability(LTI,IC)

R.initializeReach(subspaceDim=2,

↪→uniformSamplingRate=60)

145

B.1.6 Compute Forward Reachable Set over Time Horizon

timeSteps = 50

t0 = 0.0

tf = 2.0

Tvec = np.linspace(t0, tf, timeSteps)

R_FRS.computeReach(Tvec)

B.1.7 Compute Trajectories

R_FRS.

↪→computeCurrentStateTrajectories(numTimeSteps=timeSteps)

R_FRS.computeFinalStateHistories()

B.1.8 Convert to Forward Reachable Tube

R_FRT = R_FRS.convertReachSetToTube(returnNew=True)

B.1.9 Compute Backward Reachable Set over Time Horizon

timeSteps = 50

t0 = 0.0

tf = -2.0 # equivalent to t0 = 2.0, tf = 0.0

Tvec = np.linspace(t0, tf, timeSteps)

R_BRS.computeReach(Tvec)

146

B.1.10 Compute Trajectories

R_BRS.

↪→computeCurrentStateTrajectories(numTimeSteps=timeSteps)

R_BRS.computeFinalStateHistories()

B.1.11 Convert to Backward Reachable Tube

R_BRT = R_BRS.convertReachSetToTube(returnNew=True)

B.1.12 Plot results

fh1 = plotReachGrowth(R_FRS.particles)

fh2 = plotReachGrowth(R_FRT.particles)

fh3 = plotReachGrowth(R_BRS.particles)

fh4 = plotReachGrowth(R_BRT.particles)

B.2 Zermelos Problem - Union of Initial Condition Sets

In this example, we will look an instance of the union of multiple independent initial con-

dition sets applied to the Zermelos problem.

147

B.2.1 Problem Setup

ẋ = Vmcos(θ) + wx(x, y)

ẏ = Vmsin(θ) + wy(x, y)

Vm = 1

wx = 1

wy = x2

(B.4)

With control input constraints given by

θ ∈ [0, 2π) (B.5)

and initial condition constraints are given by

g1(x0) = 9(x0 + 1)2 + 100y2
0 ≤ 1

g2(x0) = 100(x0 + 1)2 + 9y2
0 ≤ 1

(B.6)

B.2.2 Create Nonlinear Dynamics Model Using Python Symbolic Toolbox

Imports

from sympy import symbols, Matrix, simplify, eye,

↪→sin, cos, zeros, flatten, atan2

from sympy.utilities.autowrap import autowrap

from utilities import cpickleSave

from utilities import sympyNorm, sympyAbsApprox,

↪→sympySignApprox

import numpy as np

148

Define Variables, State, and Costate

(x1, x2) = symbols('x1, x2',real = True) # State

↪→variables

(p1, p2) = symbols('p1, p2',real = True) # Costates

↪→variables

(t, ts) = symbols('t, ts',real = True) # Time

↪→variables

N = 2 # size of state and costate

m = 1 # size of control input

Define state and costate vector

x = Matrix([x1,x2])

Define costate vector

p = Matrix([p1, p2])

Define state transition matrix

Phisize = 4*(N**2)

Phi_vars = symbols('Phi:'+str(4*(N**2)))

Phi_mat = Matrix(2*N,2*N,Phi_vars)

Define Optimal control

Define optimal control policy (if it's

↪→analytically possible)

u = atan2(ts*p2,ts*p1) # analytic uStar

149

Define State Dynamics

Define state dynamics

wx = 1.0 # x-direction wind function as a function

↪→of x,y coordinates

wy = x1**2.0 # y-direction wind function as a

↪→function of x,y coordinates

V = 1.0

xd = Matrix([V*cos(u) + wx, V*sin(u) + wy])

f = xd

From this point, one can use the Symbolic Toolbox derivation template provided in the

SCoRe toolbox to generate callable Python functions that represent the state, costate, and

trajectory flow state transition matrix dynamics.

B.2.3 Perform Reachability Analysis

Imports

import numpy as np

from dynSystems import SympyDynamicsSmooth

from constraints import Constraint

from reach import Reachability

from plotting import plotReachTrajectories,

↪→plotReachVolume, plotReachHistories1D, plotReachGrowth,

↪→plotUnion, plotIntersection

150

Create Dynamic System Object

Sym = SympyDynamicsSmooth(n=2,fname='zermelo.modname

↪→')

Create Initial Condition Constraints

IC1 = Constraint.fromLimits(np.array([1.0/3.0,0.1]),

↪→p=2,xc=np.array([-1.0,0.0]))

IC2 = Constraint.fromLimits(np.array([0.1,1.0/3.0]),

↪→p=2,xc=np.array([-1.0,0.0]))

Create Reachability Objects and Initialize Particles

R = Reachability(Sym,IC1,jsonLoadFileName='zermelo_

↪→p1.json')

R2 = Reachability(Sym,IC2,jsonLoadFileName='zermelo_

↪→p1.json')

R.initializeReach(subspaceDim=2,

↪→uniformSamplingRate=40)

R2.initializeReach(subspaceDim=2,

↪→uniformSamplingRate=40)

151

Compute Forward Reachable Sets over Time Horizon

timeSteps = 50

t0 = 0.0

tf = 1.0

Tvec = np.linspace(t0,tf,timeSteps)

R.computeReach(Tvec,contMethodOption=2,

↪→newtonsCorrectionBool=True)

R.computeCurrentStateTrajectories(numTimeSteps=50)

R.computeFinalStateHistories()

R_T = R.convertReachSetToTube()

R2.computeReach(Tvec,contMethodOption=2,

↪→newtonsCorrectionBool=True)

R2.computeCurrentStateTrajectories(numTimeSteps=50)

R2.computeFinalStateHistories()

R2_T = R2.convertReachSetToTube()

Plot results

fh1 = plotReachTrajectories(R.particles)

fh2 = plotReachVolume(R.particles)

fh3 = plotReachGrowth(R.particles,numSnaps=9)

fh4 = plotReachTrajectories(R_T.particles)

fh5 = plotReachVolume(R_T.particles)

fh6 = plotReachGrowth(R_T.particles,numSnaps=9)

(continues on next page)

152

(continued from previous page)

fh7 = plotReachTrajectories(R2.particles)

fh8 = plotReachVolume(R2.particles)

fh9 = plotReachGrowth(R2.particles,numSnaps=9)

fh10 = plotReachTrajectories(R2_T.particles)

fh11 = plotReachVolume(R2_T.particles)

fh12 = plotReachGrowth(R2_T.particles,numSnaps=9)

fh13, unionParticles = plotUnion(R,R2)

fh14, intersectParticles = plotIntersection(R,R2)

fh15 = plotReachTrajectories(unionParticles)

fh16 = plotReachVolume(unionParticles)

fh17 = plotReachGrowth(unionParticles,numSnaps=9)

B.3 Duffing Oscillator - Mesh Refinement

In this example, we will look an instance of the performing a refinement of the distribution

of particles that constitute the boundary of the reachable set.

B.3.1 Problem Setup

m1ẍ1 = −k1,1x1 − k1,3x
3
1 − f1ẋ1

+k2,1(x2 − x1) + k2,3(x2 − x1)3 + f2(ẋ2 − ẋ1)

(B.7)

153

m2ẍ2 =

−k2,1(x2 − x1)− k2,3(x2 − x1)3 − f2(ẋ2 − ẋ1)

+k3,1(x3 − x2) + k3,3(x3 − x2)3 + f3(ẋ3 − ẋ2)

(B.8)

m3ẍ3 = −k3,1(x3 − x2)− k3,3(x3 − x2)3

−f3(ẋ3 − ẋ2) + u

(B.9)

m1 = m2 = m3 = 1 k1,1 = k2,1 = k3,1 = 1

k1,3 = k2,3 = k3,3 = 1/9 f1 = f2 = f3 = 1

um = 1, Tf = π

(B.10)

With control input constraints given by

|u| ≤ 1 (B.11)

and initial condition constraints are given by

g(x0) = xT0 x0 − 1 = 0 (B.12)

B.3.2 Create Nonlinear Dynamics Model Using Python Symbolic Toolbox

Imports

from sympy import symbols, Matrix, simplify, eye,

↪→zeros, flatten

from sympy.utilities.autowrap import autowrap

from utilities import cpickleSave

(continues on next page)

154

(continued from previous page)

from utilities import sympyNorm, sympyAbsApprox,

↪→sympySignApprox

Define Variables, State, and Costate

Define all variables required for dynamics and

↪→include assumptions

(x1, x2, x3, x1d ,x2d, x3d) = symbols('x1, x2, x3,

↪→x1d ,x2d, x3d',real = True)

(p1, p2, p3, p1d ,p2d, p3d) = symbols('p1, p2, p3,

↪→p1d ,p2d, p3d',real = True)

(t, ts) = symbols('t, ts',real = True) # Time

↪→variables

N = 6 # size of state and costate

m = 1 # size of control input

Define state and costate vector (Matrix with

↪→single list input returns a column vector)

x = Matrix([x3,x3d,x1,x2,x1d,x2d])

Define costate vector

p = Matrix([p3,p3d,p1,p2,p1d,p2d])

Define state transition matrix

Phisize = 4*(N**2)

Phi_vars = symbols('Phi:'+str(4*(N**2)))

Phi_mat = Matrix(2*N,2*N,Phi_vars)

155

Define Optimal control

Define optimal control policy (if it's

↪→analytically possible)

uLimit = [1.] # max possible input in each control

↪→dimension

Minv = eye(m) # initialize inv(M) matrix

for i in range(m):

Minv[i,i] = uLimit[i] # place uLimit along diagonal

B = Matrix([[0],[1],[0],[0],[0],[0]])

y = Minv.T*B.T*p

pNorm = 2.0 # for second option, pNorm is always

↪→equal to 2

s = 0.0

s2 = sympyNorm(y)**2.0

for i in range(m):

s += sympyAbsApprox(y[i],scalar=True)**(pNorm/

↪→(pNorm-1.0))

uTilde = zeros(m,1)

for i in range(m):

uTilde[i] = sympySignApprox(y[i],

↪→scalar=True)*sympyAbsApprox(y[i],scalar=True)**(1.0/

↪→(pNorm-1.0))/(s**(1.0/pNorm))

u = ts*simplify(Minv*uTilde) # smooth approximation

↪→of uStar/optimal control (no need for switch)

u2 = ts*simplify(Minv*y/sympyNorm(y)) # analytic

↪→uStar for p=2 only (need for switch when s2==0)
(continues on next page)

156

(continued from previous page)

Define State Dynamics

m1 = m2 = m3 = 1.0

k11 = k21 = k31 = 1.0

k13 = k23 = k33 = 1.0/9.0

f1 = f2 = f3 = 1.0

Define state dynamics

x21 = x2 - x1

x32 = x3 - x2

x21d = x2d - x1d

x32d = x3d - x2d

x1dd = 1/m1*(-k11*x1 - k13*x1**3.0 - f1*x1d

+ k21*x21 + k23*x21**3.0 + f2*x21d)

x2dd = 1/m2*(-k21*x21 - k23*x21**3.0 - f2*x21d

+k31*x32 + k33*x32**3.0 + f3*x32d)

x3dd = 1/m3*(-k31*x32 - k33*x32**3.0 - f3*x32d)

xd = Matrix([x3d,x3dd,x1d,x2d,x1dd,x2dd])

f = xd + B*u

f2 = xd + B*u2

From this point, one can use the Symbolic Toolbox derivation template provided in the

SCoRe toolbox to generate callable Python functions that represent the state, costate, and

157

trajectory flow state transition matrix dynamics.

B.3.3 Perform Reachability Analysis

Imports

import numpy as np

from dynSystems import SympyDynamicsSmooth,

↪→SympyDynamicsSwitch

from constraints import Constraint

from reach import Reachability

from plotting import plotReachTrajectories,

↪→plotReachVolume, plotReachHistories1D, plotReachGrowth,

↪→plotRedistributionCDFs

from copy import deepcopy

Create Dynamic System Object

Sym1 = SympyDynamicsSmooth(n=6,fname='duffing_x3_

↪→option1.modname')

Sym2 = SympyDynamicsSwitch(n=6,fname='duffing_x3_

↪→option2.modname')

Create Initial Condition Constraints

158

IC = Constraint(M=np.eye(6),p=2)

Create Reachability Objects and Initialize Particles

R2 = Reachability(Sym2,IC)

R2.initializeReach(subspaceDim=2,

↪→uniformSamplingRate=30)

Compute Forward Reachable Sets over Time Horizon

timeSteps = 50

t0 = 0.0

tf = np.pi

Tvec = np.linspace(t0,tf,timeSteps)

R2.computeReach(Tvec,contMethodOption=2)

R2.

↪→computeCurrentStateTrajectories(numTimeSteps=timeSteps)

R2.computeFinalStateHistories()

Perform Cubic Minimization Mesh Refinement

R2_cubic = deepcopy(R2)

R2.meshRefinement(method='bisect',cost='J',q1=25,

↪→q3=65,maxRefinements=3)

(continues on next page)

159

(continued from previous page)

R2_cubic.meshRefinement(method='cubic',cost='J',

↪→q1=25,q3=65,maxRefinements=3)

Plot results

Plot results!

plotReachTrajectories(R2.particles,projDim=[1,2],

↪→addedPtInds=list(range(R2.origNumParticles,R2.

↪→numParticles)))

plotReachVolume(R2.particles,projDim=[1,2])

plotRedistributionCDFs(R2.meshRefinementBeforeAfter,

↪→idealPlotBool=True,columnBool=False)

plotReachTrajectories(R2_cubic.particles,projDim=[1,

↪→2],addedPtInds=list(range(R2_cubic.origNumParticles,R2_

↪→cubic.numParticles)))

plotReachVolume(R2_cubic.particles,projDim=[1,2])

plotRedistributionCDFs(R2_cubic.

↪→meshRefinementBeforeAfter,idealPlotBool=True,

↪→columnBool=False)

B.4 Cislunar Problem - Reachability with Minimum Control Effort Cost

In this example, we will look an instance of the performing Reachability analyses on sys-

tems where one of the variables corresponds to an optimal control objective function.

160

B.4.1 Problem Setup

X = [x y
◦
x
◦
y J1]T

◦◦
x = 2

◦
y + x− (1− µ)

x− x1

ρ3
1

− µx− x2

ρ3
2

+ ūx

◦◦
y = −2

◦
x+

(
1− 1− µ

ρ3
1

− µ

ρ3
2

)
y + ūy

J1 = −
∫ τf

0

‖ū‖1dτ = −
∫ τf

0

|ūx|+ |ūy|dτ

(B.13)

With control input constraints given by

|ux| ≤ 5.714e− 5 m/s2

|uy| ≤ 5.714e− 5 m/s2
(B.14)

and initial condition constraints are given by

g(X0) =

(
x− xL1

ε1

)2

+

(
y

ε1

)2

+

(◦
x

ε2

)2

+

(◦
y

ε2

)2

+

(
J1

ε2

)2

= 0

ε1 = 1e− 3

ε2 = 1e− 4

(B.15)

B.4.2 Create Nonlinear Dynamics Model Using Python Symbolic Toolbox

Imports

from sympy import symbols, Matrix, simplify, eye,

↪→sin, cos, zeros, flatten, pi, sqrt

from sympy.utilities.autowrap import autowrap

from utilities import cpickleSave

from utilities import sympyNorm, sympyAbsApprox,

↪→sympySignApprox, sympySatApprox (continues on next page)

161

(continued from previous page)

Define Variables, State, and Costate

Define all variables required for dynamics and

↪→include assumptions

(J1, x1, x2, x1d, x2d) = symbols('J1, x1, x2, x1d,

↪→x2d',real = True) # State variables

(pJ1, px1, px2, px1d, px2d) = symbols('pJ1, px1,

↪→px2, px1d, px2d',real = True) # Costates variables

(t, ts) = symbols('t, ts',real = True) # Time

↪→variables

N = 5 # size of state and costate

m = 2 # size of control input

Define state and costate vector (Matrix with

↪→single list input returns a column vector)

x = Matrix([J1, x1, x2, x1d, x2d])

Define costate vector

p = Matrix([pJ1, px1, px2, px1d, px2d])

Define state transition matrix

Phisize = 4*(N**2)

Phi_vars = symbols('Phi:'+str(4*(N**2)))

Phi_mat = Matrix(2*N,2*N,Phi_vars)

(continues on next page)

162

(continued from previous page)

Define problem parameters

Tmax = (0.8e-3)/14 # m/s2, max thrust [Lunar

↪→Icecube from Bosanac paper, 14kg and 0.8mN thrust]

r12 = 384402e3 # m, distance between m1 and m2

G = 6.67430e-11 # m3/kg/s2, Newton's gravity

↪→constant

m1 = 5.97237e24 # kg, mass of the bigger body

m2 = 7.342e22 # kg, mass of smaller body

controlScale = (r12**2)/(G*(m1+m2)) # conversion

↪→from SI to dimensionless units

Tmax = Tmax*controlScale # dimensionless max thrust

mu = 1/(81.3 + 1) # normalized mass ratio for CR3BP

↪→- Moon Earth

x1_ = -mu

x2_ = 1-mu

rho1 = sqrt((x1-x1_)**2 + x2**2)

rho2 = sqrt((x1-x2_)**2 + x2**2)

Lagrange points x-coordinates

L1 = 0.836915

L2 = 1.15568

L3 = -1.00506

163

Define Optimal control

Define optimal control policy (if it's

↪→analytically possible)

uLimit = [Tmax,Tmax] # max possible input in each

↪→control dimension

u = zeros(m,1)

u2 = zeros(m,1)

B = Matrix([[0,0],[0,0],[0,0],[1,0],[0,1]])

y = B.T*p

u_L1_sum = 0

for i in range(m):

y2 = y[i]

u2[i] = uLimit[i]/2*(sympySignApprox(y2 - pJ1,

↪→epsil=1.0e-5,scalar=True) + sympySignApprox(y2 + pJ1,

↪→epsil=1.0e-5,scalar=True))

u_L1_sum += sympyAbsApprox(u2[i],scalar=True)

Define State Dynamics

x1dd = 2*x2d + x1 - (1-mu)*(x1-x1_)/(rho1**3) -

↪→mu*(x1-x2_)/(rho2**3)

x2dd = -2*x1d + (1 - (1-mu)/(rho1**3) - - mu/

↪→(rho2**3))*x2

Jd_L1 = Matrix([-u_L1_sum])

(continues on next page)

164

(continued from previous page)

xd_L1 = Jd_L1.col_join(Matrix([x1d,x2d,x1dd,x2dd]))

f = xd_L1 + B*u2

From this point, one can use the Symbolic Toolbox derivation template provided in the

SCoRe toolbox to generate callable Python functions that represent the state, costate, and

trajectory flow state transition matrix dynamics.

B.4.3 Perform Reachability Analysis

Imports

import numpy as np

from dynSystems import SympyDynamicsSmooth,

↪→SympyDynamicsSwitch

from constraints import Constraint

from reach import Reachability

from plotting import plotReachTrajectories,

↪→plotReachVolume, plotReachHistories1D, plotReachGrowth

Create Dynamic System Object

Sym2 = SympyDynamicsSmooth(n=5,fname='cislunar2_

↪→option2.modname')

165

Create Initial Condition Constraints

L1 = 0.836915

xc = np.zeros(5)

xc[1] = L1

IC = Constraint.fromLimits(np.array([0.0001,0.001,0.

↪→001,0.0001,0.0001]),xc=xc,p=2)

Create Reachability Objects and Initialize Particles

R = Reachability(Sym2,IC)

R.initializeReach(subspaceDim=3,

↪→uniformSamplingRate=30)

Compute Forward Reachable Sets over Time Horizon

timeSteps = 50

t0 = 0.0

numDays = 5 # number of days to propagate

tf = (2.0*np.pi/27.322)*numDays

Tvec = np.linspace(t0,tf,timeSteps)

R.computeReach(Tvec,contMethodOption=1,

↪→printProgress=True,newtonsCorrectionBool=True)

R.computeCurrentStateTrajectories(numTimeSteps=30)

R.computeFinalStateHistories()

166

Plot results

w = 2.6653296644361014e-06 # angular velocity of EM

↪→system in rad/s

r12 = 384402000.0 # distance from Earth to moon in

↪→meters

r12_km = r12/1000 # distance from Earth to moon in

↪→kilometers

nonDim2SI2 = w*r12 # converts J_1 to deltaV in m/s

Plot results!

fh1 = plotReachTrajectories(R.particles,projDim=[2,

↪→3,1],axisEqualBool=False,sc=[r12_km,r12_km,nonDim2SI2],

↪→axesLabels=['x [km]','y [km]','J_1 [m/s]'])

fh2 = plotReachTrajectories(R.particles,projDim=[3,

↪→1],axisEqualBool=False,sc=[r12_km,nonDim2SI2],axesLabels=[

↪→'y [km]','J_1 [m/s]'])

fh3 = plotReachTrajectories(R.particles,projDim=[2,

↪→1],axisEqualBool=False,sc=[r12_km,nonDim2SI2],axesLabels=[

↪→'x [km]','J_1 [m/s]'])

fh4 = plotReachVolume(R.particles,projDim=[2,3,1],

↪→axisEqualBool=False,sc=[r12_km,r12_km,nonDim2SI2],

↪→axesLabels=['x [km]','y [km]','J_1 [m/s]'])

fh5 = plotReachVolume(R.particles,projDim=[2,3],

↪→axisEqualBool=False,sc=[r12_km,r12_km],axesLabels=['x

↪→[km]','y [km]'])

(continues on next page)

167

(continued from previous page)

fh6 = plotReachHistories1D(R.particles,projDim=1,

↪→shadedTrajBool=True,particleHistBool=True,sc=nonDim2SI2,

↪→axesLabels=['T','J_1 [m/s]'])

Save/Export Results

vArr1, pArr1 = R.vertices('xf_T',True)

vArr2, pArr2 = R.vertices('x',True)

vArr3, pArr3 = R.vertices_over_T(True)

from scipy.io import savemat

savemat('cislunarWayMoreParticles5_over_T_Again.mat

↪→', {

'vArr1': vArr1,

'pArr1': pArr1,

'vArr2': vArr2,

'pArr2': pArr2,

'vArr3': vArr3,

'pArr3': pArr3,

'Tvec': R.Tvec,

})

168

APPENDIX C

SCORE DOCUMENTATION

C.1 Reachability Toolbox Tutorial

C.1.1 Introduction

This tutorial walks through the process of performing a reachability analysis on a dynamic

system.

A typical reachability analysis could involve computing forwards/backwards reachable

sets/tubes for a given dynamic system under control and initial condition constraints.

In general, the steps to perform a reachability analysis using this toolbox are

1. Import necessary modules, functions, variables, etc.

2. Create dynamics object

3. Create initial condition constraint object

4. Create reachability object and initialize particles

5. Compute reachability

6. Compute trajectories

7. Plot results

8. Further Analysis

9. Save data

169

C.1.2 Example Scenario

In this tutorial, we will look at the classic double integrator dynamic system given by

ẍ = u, ẋ =

0 1

0 0

x +

0

1

u, |u| ≤ 1 (C.1)

With control input constraints given by

|u| ≤ 1 (C.2)

and initial condition constraint given by

V (x0, t0) =

x1,0

x2,0


T 1

2
0

0 1
2


x1,0

x2,0

− 1 ≤ 0 (C.3)

Imports

To create a reachability object requires a dynamics object and an initial condition constraint

object. Lets start by importing the Constraint object, dynamic system object, Reachability

object, and plotting functions:

import numpy as np

from dynSystems import LTIDynamics

from constraints import Constraint

from reach import Reachability

from plotting import plotReachTrajectories, plotReachVolume,

↪→ plotReachHistories1D, plotReachGrowth

170

Create Dynamic System Object

In this case, the dynamic system is linear time-invariant (LTI). A LTIDynamics object con-

structor is provided. All we must provide are the constant A, B matrices as numpy arrays

and the limitations on the control input. Because the control input is a scalar in this exam-

ple, the control input constraint may be specified by providing a scalar value (or list with

single scalar entry) in the uLimit argument:

A = np.array([[0.0 ,1.0], [0.0, 0.0]])

B = np.array([[0.0], [1.0]])

LTI = LTIDynamics(A,B,uLimit=1.0)

This dynamic system object is the interface for the reachability object. The dynamic system

object should contain methods for computing state dynamics, costate dynamics, optimal

control, and also for propagating dynamics given initial conditions.

Create Initial Condition Constraint

The initial conditions are constrained by an ellipsoidal-type constraint. The Constraint

class has a constructor for ellipsoidal constraints where the center and shape matrix are

specified:

E = np.diag([0.5, 0.5])

IC = Constraint.fromShapeMatrix(E,p = 2)

This constraint object is used by the reachability object (among others) to evaluate and

compute properties related to points that lie on the boundary of or within the specified

constraint.

171

Create Reachability Object and Initialize Particles

Now that a initial condition constraint and dynamic system have been defined, we can now

create a reachability object:

R = Reachability(LTI,IC)

The Reachability object represents a single reachability analysis. This object interfaces

with both the dynamics object for particle flow propagation and initial condition constraint

for evaluating constraint functions.

One can now populate the initial condition constraint with a specified number of particles

by the following We can also specify the number of dimensions for the state space subspace

that we are going to perform the reachability analysis over:

R.initializeReach(subspaceDim=2, numParticlesPerDim=50)

This creates 50 particle objects that sample the boundary of the initial condition constraint.

These particles also contain graph information of its nearest neighbors.

Compute Reachability over Time Horizon

Now we are ready to use the particles and reachability object to compute how these reach-

able set samples evolve with respect to time horizon. In order to do so, we must create

an array of time horizons to compute the flow of particles over. The time horizon array

must be monotonically increasing or decreasing. If the time horizon array is increasing,

a forward reachability analysis is performed and vice versa for a backwards reachability

analysis:

172

timeSteps = 30

t0 = 0.0

tf = 2.0

Tvec = np.linspace(t0, tf, timeSteps)

R.computeReach(Tvec)

This uses numerical continuation methods to evolve the optimal trajectory initial conditions

over time horizon for each particle.

Compute Trajectories

Once the optimal initial conditions are computed, a simple propagation of particle trajec-

tories is required to plot and perform analysis on the reachable set. This can be performed

using the following lines of code:

R.computeCurrentStateTrajectories(numTimeSteps=timeSteps)

R.computeFinalStateHistories()

Plot results

There are a large number of visualizing 2D and 3D reachability results provided. Examples

of a few are shown here:

fh1 = plotReachTrajectories(R.particles)

fh2 = plotReach(R.particles)

fh3 = plotReachGrowth(R.particles)

fh4 = plotReachTrajectories1D(R.particles, projDim=1,

↪→shadedTrajBool=True, particleTrajBool=True) (continues on next page)

173

(continued from previous page)

fh5 = plotReachTrajectories1D(R.particles, projDim=2,

↪→shadedTrajBool=True, particleTrajBool=True)

174

Figure C.1: Example figures from forward reach set analysis

Further Analysis

Once a reachable set is computed, there are a number of operations that can be performed

for further analysis. For example, one can convert the computed reach set to a reach tube

using the following:

R2 = R.convertReachSetToTube(returnNew=True)

fh6 = plotReachGrowth(R2.particles)

If desired, one may also add additional particles for more uniform around low curvature

regions of the reachable set boundary:

175

Figure C.2: Forward reachable tube converted from reachable set

R.meshRefinement(method='bisect',q1=25,q3=55,

↪→maxRefinements=4)

fh7 = plotReachTrajectories(R.particles,

↪→addedPtInds=list(range(R.origNumParticles,R.

↪→numParticles)))

Figure C.3: Additional particles added through bisection mesh refinement

Save Data

If you want to save the figures resulting from your reachability analysis, you can do so

176

using:

R.saveFigures([fh1, fh2, fh3, fh4, fh5, fh7], saveFilename=

↪→'doubleIntegrator_FRS')

R2.saveFigures([fh6], saveFilename='doubleIntegrator_FRT')

The easiest way to save the entire reachability analysis is to use the dill module:

import dill

saveFilename = 'doubleIntegrator_session.pkl'

dill.dump_session(saveFilename)

This saves the entire python workspace for later use. To load the saved file:

import dill

dill.load_session('doubleIntegrator_session.pkl')

C.2 Notation

Commonly used notation or nomenclature is defined below. There are a few instances

where certain terms are used in multiple ways. The hope is that context should be enough

to distinguish the meaning of the term.

C.2.1 Reachability terms

Table C.1: Reachability Notation Table

177

Name Description

Reachable Set

or RS

Volume of state space representing all achievable states exactly at the

given time horizon T originating from the initial condition volume

Reachable

Tube or RT

Volume of state space representing all achievable states up to the given

time horizon T originating from the initial condition volume

Forward

Reachable

Volume

Reachable volume of state space where t0 < tf. In this case, the reach-

able volume must originate from the initial condition set and change

as t goes from t0 to tf

Backwards

Reachable

Volume

Reachable volume of state space where tf < t0. In this case, the reach-

able volume must terminate at the initial condition set and change as t

goes from tf to t0

Subspace

Reachable

Volume

Volume of subspace of state space representing all achievable sub-

space states at or up to the given time horizon T originating from the

initial condition volume. This is equivalent to projection of the full

state space reachable volume.

Subspace of in-

terest

Subspace of state space that one wants to compute reachable vol-

umes in. This can also be equivalent to the full state space if desired.

PLEASE NOTE, the subspace has to be from the first few components

of the state for this software. In other words, if you want to compute

reachability with respect to a particular component of the state vector,

you should rearrange the state, dynamics, initial condition constraint,

etc. so the important state components/subspace is listed first in the

state vector.

subspaceDim Number of dimensions in the subspace of state space to perform the

reachability analysis

Performance

Metric or V

The objective function in the optimal control problem definition. This

is usually defined using inner products with the final state and a unit

vector search direction

Particle or

Sample

A sample of the reachable volume boundary. Each particle cor-

responds to the solution to a single optimal control problem

(parametrized by a unit vector search direction)

178

C.2.2 Vector terms

Table C.2: Vector Notation Table

Name Description

N or n State space dimension

M or m Control input dimension

x or x State space vector

p or p Costate vector

y or y Trajectory flow state vector, y = [x, p]

Phi Trajectory flow state transition matrix (STM), STM for y

Y or Y Augmented trajectory flow state vector, Y = [x, p, vec(Phi)]

lam or l Lagrange multiplier for initial condition constraint

z Optimal initial solution, z = [x0, lam]

ds Unit vector search direction in optimal control problem definition

th Hyperspherical coordinate representation of ds

C.2.3 Time notation

Table C.3: Time Notation Table

179

Name Description

T Time horizon for system to evolve

t Time where t goes between t0 and tf

Initial time Time where the state space constraint volume is known/specified. This

is the time where the possible/feasible states are known/specified

Final/Terminal

time

Desired time when reachable volume should be computed.

f Quantity at end of time integration/propagation and at final time, e.g.

xf = x(tf)

0 Quantity at beginning of time integration/propagation and at initial

time, e.g. x0 = x(t0)

T Quantity at/given specified time horizon T, e.g. x0 T = x0(T) = x(t0;T)

Trajectory How a quantity changes over time t

History How a quantity changes over time horizon T

C.3 Optimal Control Overview

Optimal control review is listed here

For a majority of this software, the reachability optimal control problem is defined as

max
u∈U

V (xf , tf)s.t. ẋ = f(x,u, t)g(x0, t0,xf , tf) = 0 (C.4)

where V (xf , tf) denotes the performance metric or objective function for the optimal con-

trol problem, U denotes the control input constraint, and g(x0, t0) denotes the initial con-

dition constraint.

180

The optimal control input can be computed using Pontryagins maximum principle as

u∗ = argmax
u∈U

pT f(x,u, t) (C.5)

where p denotes the optimal control costate/adjoint vector.

In general, there is not a closed form solution to the above problem. However, many

problems and dynamic systems in engineering have the following form with an analytic

solution for the optimal control.

C.3.1 Control Affine Dynamics

Given a continuous-time control affine nonlinear dynamic system of the form

ẋ = f1(x, t) + f2(x, t)u (C.6)

In the case where the control input constraint is of the scaled p-norm type such that

u = M−1ũ‖ũ‖p ≤ 1 (C.7)

as described in the Constraint Class . The analytic solution for the optimal control for

values of p > 1 is then given by

c = M−T fT2 (x, t))ps =
∑
i

|ci|
p

p−1 ũ∗i =
sign(ci)|ci|

1
p−1

s
1
p

u∗ = M−1ũ∗ (C.8)

For the special case of p = 2 ,

ũ∗ =
c

‖c |2
u∗ = M−1ũ∗ (C.9)

181

As p→∞ the optimal control solution approaches

ũ∗ = sign(c)u∗ = M−1ũ∗ (C.10)

C.4 Reachability Class

The Reachability class contains most of the typical functions and variables required for a

reachability analysis.

To create a reachability object you need to define a initial condition constraint object and

a dynamics object. Refer to these pages of the documentation for typical functions within

these classes.

The primary attributes inside the reachability class related to particles/samples are:

• self.particles - List of particle objects. Each index of this particle list corresponds to

the ID number of the particle.

• self.neighborsLedger - List of unique edges in mesh/graph/network. Every index of

this list contains the list [pi ID, pj ID] where pi ID and pj ID correspond to the par-

ticle ID numbers (index of particles list). This is useful when performing iterations

over every pair of particles.

• self.neighborsList - List of neighborhoods per particle. Every ith index of this list

contains the list ([pi Neighbor ID1, pi Neighbor ID2, pi Neighbor ID3,]) of parti-

cle ID numbers of the neighbors of particle i.

• self.numParticles - Current number of particles in the mesh/graph for this reachability

analysis.

The other important attributes inside the reachability class:

• self.squaredCost - Boolean on whether or not to use the squared inner product per-

182

formance metric as optimal control objective function or the inner product

• self.subspaceDim - This specifies the dimension of the subspace of interest in the

reachability analysis. This essentially defines the dimension that the particles are

sampled in.

C.5 Particle Class

The particle class contains functions and attributes to particles in the reachability analysis.

These particles should be samples to the reachable volume at particular time horizons.

Every particle is defined by the unit vector search direction ds that defines which direction

in state space the particle should optimize reachability over. Another quantity that is closely

tied to this search direction is the angular coordinate vector defined using hyperspherical

coordinates that also represent the search direction.

The particles attempt to sample the subspace reachable volume. The particles still operate

over the full dimensional state space, but the optimal control objective/performance metric

is defined over the subspace of state space that is specified (by Reachability.subspaceDim).

If the subspace of interest is m -dimensional, then the first m states in the state space vector

should be the subspace of interest. By construction of the reachability algorithm, the first

reachability analysis is always performed on the first elements of the state space vector.

For the particle class, there is a difference between time horizon T and time t. For a spec-

ified time horizon, T, it is possible to calculate a trajectory (e.g. x(t)) from t = t0 to t =

T. This is because reachability volumes are functions of time horizon while the individual

particle trajectories are functions of time t.

Each particle object implicitly have an integer ID based on its index in Reachability.particles

list. Particle objects also have neighbors. Neighbors are initially defined by distribution on

183

https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates
https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates

the unit hypersphere. As particles are spawned and updated, neighbors are defined using

Euclidean distance from other particles.

The primary attributes inside the particle class are:

• ds, th - ds is the unit vector search direction for optimal control performance metric

and support function. th is the hyperspherical coordinate representation of ds

• x, p, y - State x, costate p, and flow state y‘=[‘x, p] at the current time horizon, T

• z - Optimal initial solution vector z = [x0 , lam] where x0 is optimal initial state (at

initial time, t0) that satisfies the initial conditon constraint and lam is the correspond-

ing lagrange multiplier to the initial condition constraint

• dFdz - Jacobian of necessary condition of optimality function F with respect to z

• dFdT - Jacobian of necessary condition of optimality function F with respect to time

horizon T

• xf T, pf T, z T - Final state and costate (at end of time interval) and optimal initial

solution as a function of time horizon. numTimeHorizonSteps corresponds to the

number of time horizon T values

• x t, p t - State and costate trajectories from initial time t0 to the current time horizon

T. numTimeSteps corresponds to the number of time interval values t at current time

horizon T

• y t T - Array that stores all the state/costate trajectories over time interval (t) given

different time horizon values, T

C.6 Constraint Class

This class represents p-norm constraints and provides functions for evaluating useful quani-

ties related to the constraint.

184

https://en.wikipedia.org/wiki/Lp_space#The_p-norm_in_finite_dimensions

These types of constraints occur often in defining both initial condition and control input

constraint regions. In theory, as p approaches infinity, the maximum norm is achieved

and as p approaches 1, the taxicab/Manhattan norm is achieved. However, both of these

values for p result in constraint boundaries that are not continuously differentiable which

is required for this reachability algorithm. Fortunately, these values of p can be closely

approximated with large (> 5) or small (< 1.5) values of p which remain continuously

differentiable.

In addition to specifying the value of p to use for the p-norm constraint, there are three

methods for defining a constraint size and orientation:

1. M - Transformation matrix from ellipsoid to sphere

2. E - Ellipsoid shape matrix

3. limits - Limits along each axes (symmetric about center)

For M, x̃ = Mx where ‖x̃‖p ≤ 1,M > 0 , and M−1 describes transformation matrix from

sphere to ellipsoid

MT matrix should have QR factorization with R diagonal meaning that M should consist

only of rotation and scaling (no shear, etc)

For E, xTEx = xTMTMx ≤ 1 where E = MTM

For limits, each ith entry gives the maximum distance from the center to the boundary of

the constraint region. When limits is used, the M matrix is diagonal, limits = diag(M−1) ,

and the resulting constraint region is aligned with the coordinate axes.

The default value of p is 2, corresponding to sphere and ellipsoidal constraint regions. As

p is increased from 2, the constraint more closely resembles a rectangle (like inflating a

balloon and seeing it fill a box)

185

C.7 Dynamic System Classes

Dynamic system classes are used by the Reachability object to propagate states, costates,

flow states, and flow state transition matrices. There are multiple predefined dynamic sys-

tem classes that can be created with ease:

1. Linear Time-invariant (LTI)

2. Linear Time-varying (LTV)

3. Sympy-Defined with Smooth Switching Approximations

4. Sympy-Defined with Exact Switching Functions

5. quasi Linear Parameter-varying (qLPV)

The LTI Dynamics have the following system model:

ẋ = Ax+Bu

The LTV Dynamics have the following system model:

ẋ = A(t)x+B(t)u

The Sympy-Defined Dynamics have the following system model:

ẋ = f(x, u, t) in general. However, because the optimal control law must be computed

analytically, the following system model is preferred as the optimal control law can be

analytically computed (refer to Optimal Control Overview):

ẋ = f1(x, t) + f2(x, t)u

The qLPV Dynamics have the following system model:

ẋ = A(v) ∗ (x− xv(v)) +B(v)(u− uv(v))− h(ev(v), xv(v)) +H(x)

where v(x) denotes a scalar parameter that depends on the state and parametrizes other

terms in the dynamics model, xv(v) denotes a trim state, uv(v) denotes a trim control

186

input, and ev(v) denotes other quanitites that depend on v .

All of the dynamic system classes are built in a way so they have the same forms of the

methods/functions. This is so the reachability is able to swap out dynamics models without

changing any of the internal code. As a result, each dynamic system class is required to

have the following methods/functions with these arguments:

• dxdt(y,t)

• dpdt(y,t)

• dPhidt(y,t)

• dydt(y,t)

• dYdt(Y,t)

• H(y,t)

• propagate y(y0,t0,tf,numTimeSteps,rtol,atol)

• propagate Y(y0,t0,tf,numTimeSteps,rtol,atol)

In each of the above functions/methods, y is the trajectory flow state defined by concate-

nating the state and costate y = [x, p]. There is also the augmented flow state defined by

concatenating the trajectory flow state with a vectorized form of its state transition matrix

Y = [y, vec(Phi)]. The current time value is given by t.

If you are dealing with a dynamic system that is not predefined, there are primarily two

methods to create a dynamic system class to use in the reachability analysis.

1. Create a dynamics class of your own that contains the methods/functions and argu-

ments listed above

2. Define the dynamic system model symbolically using Sympy, autocode the Sympy

functions, then use either of the predefined Sympy dynamics classes.

187

There are templates and examples for both of these approaches given in the examples.

C.8 Module Code Documentation

C.8.1 Reachability Module

class reach.Reachability(dynamics, ICconstraint, jsonLoadFile-

Name=None)
Bases: object

Class for Reachability Analysis

Compute samples of reachable sets and tubes using continuation methods

particles

List of particle objects. Each index of this particle list corresponds to the ID

number of the particle.

Type list

neighborsLedger

List of unique edges for entire particle mesh/graph/network. Every index of

this list contains the list [pi ID, pj ID] where pi ID and pj ID correspond to the

particle ID numbers (index of self.particles list)

This is useful when performing iterations over every neighboring pair of parti-

cles.

Type list

neighborsList

List of neighborhoods per particle. Every ith index of this list contains the

list of particle ID numbers of the neighbors of particle i ([pi Neighbor ID1,

pi Neighbor ID2, pi Neighbor ID3,])

188

Type list

numParticles

Current number of particles in the mesh/graph for this reachability analysis.

Type int

squaredCost

Boolean on whether or not to use the squared inner product performance metric

as optimal control objective function or the inner product

Type bool

subspaceDim

This specifies the dimension of the subspace of interest in the reachability anal-

ysis. This essentially defines the dimension that the particles are sampled in.

Type int, subspaceDim <= N

init (dynamics, ICconstraint, jsonLoadFileName=None)

Constructor for reachability class.

Parameters

• dynamics (Dynamics Object) – Dynamics object defini-

tion representing the dynamics for this reachability analysis

• ICconstraint (Constraint Object) – Constraint ob-

ject representing the initial condition manifold for this reacha-

bility analysis

• jsonLoadFileName (str, optional) – Filename or path to

json file that keeps the options for this reachability analysis

initializeReach(subspaceDim=None, sampType=’uniform’, uniform-

SamplingRate=20)

189

Initializes particle/support vector distribution based off of uniform distribution

NOTICE - This software only computes subspace reachability from the first

subspaceDim number of state space components. If you want to compute a

subspace reachable volume for a particle component/subspace of the state, the

state vector and dynamics should be rearranged so the important states are listed

first.

Parameters

• subspaceDim (int, optional) – Number of dimensions

for the subspace of interest in the reachability analysis.

If subspaceDim is None, the default value is self.N for a full

state space reachability analysis

NOTICE - This software only computes subspace reachability

from the first subspaceDim number of state space components.

If you want to compute a subspace reachable volume for a par-

ticle component/subspace of the state, the state vector and dy-

namics should be rearranged so the important states are listed

first.

• sampType ({'uniform', 'box', 'octagonal'}, optional)

– String specifying the desired particle sampling technique within

the subspace of interest (specified by subspaceDim)

Options are:

– uniform - Equally spaced samples on sphere

– box - Bounding box samples. This creates a sample along

both the positive and negative coordinate directions of each

190

specified coordinate axis of the subspace (e.g. -x, +x, -y, +y).

Provides 2*‘subspaceDim‘ samples total

– octagonal - Provides 2*(subspaceDim ˆ2) samples total based

on octagonal sampling. Octagonal sampling has box samples

plus it also provides the bisection sample between each pair

of box samples.

• uniformSamplingRate (int, optional) – Desired number

of particles per (0, 2 π) dimension of angular coordinates vector

When subspaceDim is 2, this argument equivalent to the total

number of particles

This parameter will only be used if the sampType = uniform

computeReach(Tvec, contMethodOption=2, printProgress=True, parti-

cleIndex=None, newtonsCorrectionBool=False)
Perform continuation/homotopy over time horizon for each particle to get reach

object.

If particleIndex is None, continuation/homotopy is computed for each particle

in self.particles list.

Parameters

• Tvec (array like) – 1D array of time values for the reach-

ability analysis. The first value should correspond to the initial

time when the initial condition constraint is defined and the final

time should correspond to the desired time horizon to compute

the reach object

• contMethodOption (int) – Integer specifying which ho-

motopy/continuation method is desired.

191

Options are:

1. Basic continuation method

2. Pseudo-arclength continuation method

3. Pseudo-arclength homotopy using Sards theorem (NOT WORK-

ING)

4. Predictor-Corrector with Newton step updates (IN DEVEL-

OPMENT)

5. Predictor-Corrector with Broyden step updates (IN DEVEL-

OPMENT)

• printProgress (bool, optional) – Boolean determin-

ing whether or not a progress bar should be shown in the con-

sole/terminal while the continuation method is being performed.

• particleIndex ({int, list of ints, None}, optional)

– Integer indices of self.particles list that method should be per-

formed on

• newtonsCorrectionBool (bool, optional) – Boolean

determining whether or not newtons correction steps should be

performed at the end of every continuation method iteration

over time horizon

computeCurrentStateTrajectories(numTimeSteps, particleIn-

dex=None)
Computes current (at current time horizon, T) optimal trajectories as a function

of t (x(t), p(t) from t = t0T)

If dealing with a reach tube (where particles may be frozen), instead this com-

putes the frozen trajectory (x(t), p(t) from t = t0..Tfr).

192

If particleIndex is None, trajectories are computed for each particle in self.particles

list.

Parameters

• numTimeSteps (int) – number of time values (t) for the

trajectories. This is like a time resolution for trajectories for

plotting.

• particleIndex ({int, list of ints, None}, optional)

– Integer indices of particles list that trajectories should be com-

puted for

computeFinalStateHistories(particleIndex=None)

Computes final states and costates as a function of time horizon, T .

This will create/update the particle.xf T and particle.pf T properties.

The size of particle.xf T and particle.pf T are N x numTimeSteps where N is

dimension of state/costate and numTimeSteps is number of entries in self.Tvec

.

This should normally be called after the self.computeReach method.

If particleIndex is None, trajectories are computed for each particle. If parti-

cleIndex is set, only those particles (specified by the indices of self.particles

list) will have the quantities computed.

Parameters particleIndex ({int, list of ints, None},

optional) – Integer indices of particles list that trajectories

should be computed for

computeTrajectoriesOverT(numTimeSteps, particleIndex=None)

At each time horizon (T), compute trajectory for x and p (x(t), p(t)) for each

193

specified particle.

This method computes and creates the particle.y t T property where the size is

given by 2*N x numTimeSteps x numTimeHorizonSteps where N is the dimen-

sion of state/costate, the input argument numTimeSteps denotes the number of

time values, t, to compute the trajectories, and numTimeHorizonSteps is num-

ber of entries in self.Tvec.

This should normally be called after the self.computeReach method

If particleIndex is None, trajectories are computed for each particle in self.particles

list.

Parameters

• numTimeSteps (int) – number of time values (t) for the

trajectories. This is like a time resolution for trajectories for

plotting.

• particleIndex ({int, list of ints, None}, optional)

– Integer indices of particles list that trajectories should be com-

puted for

updateReach(T)

createBallTree()

Creates ball tree for efficient nearest neighbor searches

addParticles(thArray, dsArrayBool=False)

Add particles specified by thArray/dsArray to overall particle list

Depending on the input argument, dsArrayBool, thArray will be treated as an

array of angle coordinates or search unit vectors

Creates and uses ball tree for nearest neighbor search to define new particles

194

neighbors

Automatically calls methods to compute reachability and state/costate trajecto-

ries

Parameters

• thArray ((numNewParticles,N-1), (numNewParticles,

N)) – Array defining angular coordinates or unit vector search

directions for the new particles to add to the analysis

• dsArrayBool (bool, optional) – Boolean that deter-

mines how the input array is treated

– False - Input array is treated as an array of angular coordi-

nates

– True - Input array is treated as an array of unit vector search

directions

redistributeParticles()

updateGraphDistanceCost()

Updates the value of the graph distance cost quantities (J) based on current (at

current T,ds/th) particle states

updateDistanceCost()

Updates the value of the distance cost quantities (D) based on current (at current

T,ds/th) particle states

meshRefinement(method=’bisect’, cost=’J’, q1=25, q3=75, maxRefine-

ments=3)
Iterated version of singleMeshRefinement where it repeats the outlier test and

adding particles until no more particles need to be added (based on outlier pa-

rameters)

195

Parameters

• method ({'bisect', 'cubic'}, optional) – String

that determines which mesh refinement technique is used

– bisect : Bisection based mesh refinement is performed

– cubic : Cubic minimization mesh refinement is performed

• cost ({'J','D'}, optional) – String that specifies which

distance metric to use in determining outliers

– J : Weighted graph distance cost

– D : Euclidean distance

• q1 (int, optional) – Integer between 1 and 49 specifying

the first quartile

• q3 (int, optional) – Integer between 51 and 99 specify-

ing the third quartile

The closer this number is to 50 the more uniform it attempts to

become

• maxRefinements (int, optional) – Integer that spec-

ifies the maximum number of refinement iterations

singleMeshRefinement(method=’bisect’, cost=’J’, q1=25, q3=75)

Performs a single iteration of mesh refinement where it computes edge-distance

cost outliers and attempts to remove them by spawning a new particle in that

region of the reach object

Parameters

• method ({'bisect', 'cubic'}, optional) – String

196

that determines which mesh refinement technique is used

– bisect : Bisection based mesh refinement is performed

– cubic : Cubic minimization mesh refinement is performed

• cost ({'J','D'}, optional) – String that specifies which

distance metric to use in determining outliers

– J : Weighted graph distance cost

– D : Euclidean distance

• q1 (int, optional) – Integer between 1 and 49 specifying

the desired first quartile value for the IQR outlier detection

• q3 (int, optional) – Integer between 51 and 99 specify-

ing the desired third quartile value for the IQR outlier detection

The closer this number is to 50 the more uniform it attempts to

become

reduceError Newton(convTol=1e-06, maxIter=5)

Use Newtons method to improve accuracy (reduce necessary condition error)

of reach set at current time horizon, T

Parameters

• convTol (float, optional) – Desired tolerance for nec-

essary condition of optimality constraint satisfaction (parti-

cle.F())

• maxIter (int, optional) – Integer that specifies the max-

imum number of Newtons method updates

vertices(prop=’xf T’, returnNormals=False)

197

Converts the specified reachable volume point solutions to an array (numParti-

cles x numDimensions) of vertices.

If specified, will additionally return the corresponding normal vectors as an

array (numParticles x numDimensions)

Parameters

• prop ({'xf T , x'}, optional) – String specifying which

particle attribute/property to save

• returnNormals (bool, optional) – Boolean that de-

termines whether or not the normal vectors are also returned

Returns

• vertArr (array like, shape (numParticles, N)) – Array that con-

tains the particles states (either xf T or x) denoting the vertices

of a graph/mesh

• normalArr (array like, shape (numParticles, N)) – Array that

contains the particles costates (either pf T or p) denoting the

surface normals of a graph/mesh

vertices over T(returnNormals=False)

Converts the specified reachable volume point solutions to an array (numParti-

cles x numDimensions x numTimeHorizonSteps) of vertices.

If specified, will additionally return the corresponding normal vectors as an

array (numParticles x numDimensions x numTimeHorizonSteps)

Make sure self.computeFinalStateHistories is called before this so the self.xf T

and self.pf T are computed

Parameters returnNormals (bool, optional) – Boolean that

198

determines whether or not the normal vectors are also returned

Returns

• vertArr (array like, shape (numParticles, N, numTimeHorizon-

Steps)) – Array that contains the particles states (xf T) denoting

the vertices of a graph/mesh

• normalArr (array like, shape (numParticles, N, numTimeHori-

zonSteps)) – Array that contains the particles costates (pf T)

denoting the surface normals of a graph/mesh

saveFigures(figHandles, saveFilename=None, filePathStr=’./Figures/’,

dpi=600)
Saves specified figures as png files in specified file path

If saveFilename is a single string, this function will save all of the figure handles

provided with saveFilename 0.png, saveFilename 1.png, saveFilename 2.png,

etc.

If saveFilename is a list of strings, each index of this list will be the saved

filename for the same index in the figure handles list.

Parameters

• figHandles (list) – List of figure handles that need to be

saved

• saveFilename ({str, list of str}, optional) –

Filename(s) (without extension) to save figures

If saveFilename is a single string, this function will save all of

the figure handles provided with saveFilename 0.png, saveFile-

name 1.png, saveFilename 2.png, etc.

199

If saveFilename is a list of strings, each index of this list will be

the saved filename for the same index in the figure handles list.

• filePathStr (str, optional) – String specifying file

path to save figures

• dpi ({None, int}, optional) – The resolution in dots

per inch. If None, defaults to 600.

convertReachSetToTube(returnNew=True)

Converts a reach set to a reach tube. If specified, a copy of the reach object will

be made before the conversion and returned.

Parameters returnNew (bool, optional) – List of figure han-

dles that need to be saved

Returns

rt – If returnNew is true, then a copy of the original reach set

object is created. The conversion to the reach tube is performed

on the copy and returned.

If returnNew is false, the current reach set is converted to a reach

tube

Return type Reachability object, optional

C.8.2 Particle Module

class particle.Particle(th, ICconstraint, neighborsInd=None, squared-

Cost=False, t0=0.0)
Bases: object

Class for Reachability Particle

200

Each particle corresponds to a sample on the boundary of a reachability volume

ds, th

ds is the unit vector search direction for optimal control performance metric and

support function. th is the hyperspherical coordinate representation of ds

Type array like, shape (N,) and (N-1,)

x,p,y

State x, costate p, and flow state y‘=[‘x, p] at the current time horizon, T

Type array like, shape (N,) , (N,) , (2N,)

z

Optimal initial solution vector z = [x0 , lam] where x0 is optimal initial state

(at initial time, t0) that satisfies the initial conditon constraint and lam is the

corresponding lagrange multiplier to the initial condition constraint

Type array like, shape (N+1,)

dFdz

Jacobian of necessary condition of optimality function F with respect to z

Type array like (N+1, N+1)

dFdT

Jacobian of necessary condition of optimality function F with respect to time

horizon T

Type array like (N+1,)

xf T, pf T, z T

Final state, final costate, and optimal initial solution as a function of time hori-

zon. This corresponds to the histories (over time horizon) of the final state,

final costate, and optimal initial solution. numTimeHorizonSteps corresponds

201

to the number of time horizon T values. These quantities are related to how the

reachable volume over time horizon, T

Type array like, shape (N,numTimeHorizonSteps) , (N,numTimeHorizonSteps)

, (N+1,numTimeHorizonSteps)

x t, p t

State and costate trajectories from initial time t0 to the current time horizon T.

numTimeSteps corresponds to the number of time interval values t at current

time horizon T

Type array like, shape (N,numTimeSteps), (N,numTimeSteps)

y t T

Array that stores all the state/costate trajectories over time interval (t) given

different time horizon values, T.

Type array like, shape (2N, numTimeSteps, numTimeHorizonSteps)

init (th, ICconstraint, neighborsInd=None, squaredCost=False, t0=0.0)

Constructor for particle class.

Parameters

• th (array like, shape(N-1,)) – 1D numpy array of

size N-1 where N is the dimension of the state space corre-

sponding to angular coordinates in hyperspherical coordinates.

• ICconstraint (Constraint object) – Constraint ob-

ject representing the initial condition manifold for this reacha-

bility analysis

• neighborsInd (list, optional) – List of particle in-

dices that correspond to the neighbors of this particle

202

https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates

• squaredCost (bool, optional) – If true, a squared in-

ner product performance metric is used in the reachability anal-

ysis and if false an inner product performance metric is used.

• t0 ({int, float}, optional) – Initial time value. Time

at which initial condition constraint is defined

classmethod fromds(ds, ICconstraint, neighborsInd=None, squared-

Cost=False, t0=0.0)
Alternate constructor for particle class using unit vector search direction

Parameters

• ds (array like, shape (N,)) – Unit vector in state space

given by 1D numpy array of size N where N is the dimension

of the state space

• ICconstraint (Constraint object) – Constraint ob-

ject representing the initial condition manifold for this reacha-

bility analysis

• neighborsInd (list, optional) – List of particle in-

dices that correspond to the neighbors of this particle

• squaredCost (bool, optional) – If true, a squared in-

ner product performance metric is used in the reachability anal-

ysis and if false an inner product performance metric is used.

• t0 ({int, float}, optional) – Initial time value. Time

at which initial condition constraint is defined

updatez(newz)

Updates particle properties (z,y0,x0,p0,lam) based on new z value

Parameters newz (array like, shape (N+1,)) – 1D numpy

203

array denoting the new optimal initial condition for the optimal

control/reachability problem

updateth(newth)

Updates particle properties (th,ds) based on new theta value

Parameters newth (array like, shape (N-1,)) – 1D numpy

array denoting the new vector of angular coordinates for this par-

ticle

updateds(newds)

Updates particle properties (th,ds) based on new ds (unit vector search direc-

tion) value

Parameters newds (array like, shape (N,)) – 1D numpy

array denoting the new unit vector search direction for this particle

updatey(newy)

Updates particle properties (y, x, p) based on new y (state concatenated with

costate) value

Parameters newy (array like, shape (2N,)) – 1D numpy

array denoting the current flow state for this particle

updateFinalStates y(dynamics)

Uses current self.z and self.T to compute xf,pf,yf,F

Does not include state transition matrix (STM)/Phi propagation, dFdz, or dFdT

jacobians. To compute these terms as well, use self.updateFinalStates

Parameters dynamics (Dynamics object) – Dynamics object

definition to propagate this particle with

updateFinalStates(dynamics)

204

Uses current self.z and self.T to compute xf,pf,yf,F and other things that result

Parameters dynamics (Dynamics object) – Dynamics object

definition to propagate this particle with

h(x=None)

Compute support function value for this particle

Parameters x (array like, optional) – Input state to evalu-

ate this particles support function using this particles unit vector

search direction (ds).

If not provided, uses self.x from particle to compute its support

function

Returns hVal – Support function value

Return type {float, array}

V(x=None)

Compute inner product performance value for this particle

Parameters x (array like, optional) – Input state to evalu-

ate this particles performance value using this particles unit vector

search direction (ds).

If not provided, uses self.x from particle to compute its perfor-

mance value

Returns VVal – Inner product performance value

Return type {float, array}

Vx(x=None)

Compute performance value jacobian for this particle

205

Parameters x (array like, optional) – Input state to evalu-

ate this particles performance value using this particles unit vector

search direction (ds).

If not provided, uses self.x from particle to compute its perfor-

mance value

Returns VxVal – Inner product performance jacobian value

Return type array like, shape (N,)

Vxx()

Compute performance value hessian for this particle. Right now this is inde-

pendent of state input

Returns VxxVal – Inner product performance hessian value

Return type array like, shape (N,N)

dF dth()

Compute jacobian of optimality constraint, F, with respect to angular coordi-

nates, th, for this particle.

Returns dF dthVal – Optimality constraint jacobian with respect to

particle angular coordinates

Return type array like, shape (N+1,N-1)

dF dds()

Compute jacobian of optimality constraint, F, with respect to unit vector search

direction, ds, for this particle.

Returns dF ddsVal – Optimality constraint jacobian with respect to

particle unit vector search direction

206

Return type array like, shape (N+1,N)

F()

Evaluate particles optimality constraint function

Returns FVal – Optimality constraint value

Return type array like, shape (N+1,)

FNorm()

Evaluate 2-norm of particles optimality constraint function

Returns FNormVal – Optimality constraint norm value

Return type float

computeGraphDistanceCost(particles, Q)

Compute Laplacian (weighted graph distance) for this particle. It also updates

the particle.J property of every particle

Parameters

• particles (list) – List of particle objects. Each index

should be ordered so particle.neighborsInd is still true

• Q (array like, shape (subspaceDim, N)) – Weight-

ing matrix

Returns JVal – Laplacian (weighted graph distance) cost value for

this particle

Return type float

computeDistanceCost(particles, subspaceDim=2)

Compute Euclidean distance cost for this particle. It also updates the particle.D

property of every particle

207

Parameters

• particles (list) – List of particle objects. Each index

should be ordered so particle.neighborsInd is still true

• subspaceDim (int) – Number of dimensions in subspace of

interest in reachability problem

Returns DVal – Euclidean distance cost value for this particle

Return type float

C.8.3 Constraint Module

class constraints.Constraint(M, p=2, xc=None, constType=’F’)

Bases: object

Class for P-Norm Constraints

This class represents p-norm constraints and provides functions for evaluating useful

quanities related to the constraint.

In addition to specifying the value of p to use for the p-norm constraint, there are

three methods for defining a constraint size and orientation:

1. M - Transformation matrix from ellipsoid to sphere

2. E - Ellipsoid shape matrix

3. limits - Limits along each axes (symmetric about center)

For M, x̃ = Mx where ‖x̃‖p,F ≤ 1,M > 0 , and M−1 describes transformation

matrix from sphere to ellipsoid

MT matrix should have QR factorization with R diagonal meaning that M should

consist only of rotation and scaling (no shear, etc)

208

For E, xTEx = xTMTMx ≤ 1 where E = MTM

For limits, each ith entry gives the maximum distance from the center to the boundary

of the constraint region. When limits is used, the M matrix is diagonal, limits =

diag(M−1) , and the resulting constraint region is aligned with the coordinate axes.

The default value of p is 2, corresponding to sphere and ellipsoidal constraint regions.

As p is increased from 2, the constraint more closely resembles a rectangle (like

inflating a balloon and seeing it fill a box)

init (M, p=2, xc=None, constType=’F’)

Constructor for constraint class.

Parameters

• M (array like, shape (N,N)) – Transformation matrix

from ellipsoid to sphere

x̃ = Mx where ‖x̃‖p,F = 1,M > 0 , and M−1 describes

transformation matrix from sphere to ellipsoid

MT matrix should have QR factorization with R diagonal mean-

ing that M should consist only of rotation and scaling (no shear,

etc)

• p ({int, float} , p > 1) – p norm value to use for this

constraint

• xc (array like, shape (N,), optional) – Center

coordinate of control constraint. If not provided, the default

value is the origin

• constType ({'F', 'p'}, optional) – Type of constraint

to use based off of p-norm or F-norm unit ball

209

classmethod fromShapeMatrix(E, p=2, xc=None, constType=’F’)

Alternate constructor for constraint class using shape matrix transpose(M)*M

Shape matrix based from ellipsoid equation, xTEx = xTMTMx ≤ 1

Parameters

• E (array like, shape (N,N)) – Shape matrix where

xTEx = xTMTMx ≤ 1

• p ({int, float} , p > 1) – p norm value to use for this

constraint

• xc (array like, shape (N,), optional) – Center

coordinate of control constraint. If not provided, the default

value is the origin

• constType ({'F', 'p'}, optional) – Type of constraint

to use based off of p-norm or F-norm unit ball

classmethod fromLimits(limits, p=2, xc=None, constType=’F’)

Alternate constructor for constraint class using limits along each state/coordinate

dimension

Parameters

• limits ({array like, list}, size N) – 1D list or

array that define the max deviation of the constraint from its

center along each axis

• p ({int, float} , p > 1) – p norm value to use for this

constraint

• xc (array like, shape (N,), optional) – Center

coordinate of control constraint. If not provided, the default

210

value is the origin

• constType ({'F', 'p'}, optional) – Type of constraint

to use based off of p-norm or F-norm unit ball

g(x, constType=None)

Evaluate constraint at specified state location. If negative, the state is within the

constraint region and if positive, the state is outside of the constraint region.

Equivalent to ||x|| {p,F} - 1

Parameters

• x (array like, shape (N,)) – State to evaluate the con-

straint

• constType ({'F','p'}, str, optional) – Constraint

type. This argument specifies whether or not the constraint is

based on p-norm/Minkowski distance metric (p) or the F-norm

equivalent of it (F). If not provided, defaults to constraint con-

straint type (self.constType)

Returns

gVal – Constraint satisfaction value where gVal = 0 signifies that

the state is on the boundary of the constraint region

If gVal is negative, the state is within the constraint region and if

gVal is positive, the state is outside of the constraint region

Return type float

Dg(x, constType=None)

Evaluate constraint gradient at specified state location. Equivalent to d(||x|| {p,F})/dx

211

Parameters

• x (array like, shape (N,)) – State to evaluate the con-

straint gradient

• constType ({'F','p'}, str, optional) – Constraint

type. This argument specifies whether or not the constraint is

based on p-norm/Minkowski distance metric (p) or the F-norm

equivalent of it (F). If not provided, defaults to constraint con-

straint type (self.constType)

Returns DgVal – Constraint gradient vector at given state, x

Return type array like, shape (N,)

D2g(x, constType=None, eps=1e-06)

Evaluate constraint hessian at specified state location. Equivalent to d2(||x|| {p,F})/dx2

If p >= 2, the exact solution will be computed and returned. However, for 1 <

p < 2, this derivative doesnt exist (its infinite). In these cases (1 < p < 2), an

approximate value of the derivative will be returned based on smooth approx-

imations based on the argument eps. As eps approches 0, the approximation

becomes more accurate.

Parameters

• x (array like, shape (N,)) – State to evaluate the con-

straint hessian

• constType ({'F','p'}, str, optional) – Constraint

type. This argument specifies whether or not the constraint is

based on p-norm/Minkowski distance metric (p) or the F-norm

equivalent of it (F). If not provided, defaults to constraint con-

212

straint type (self.constType)

• eps (float, optional) – Scalar determining the degree

of sharpness in the smooth approximations. As eps approaches

0, the approximations approach the true functions when com-

ponent of x is near zero

Returns D2gVal – Constraint hessian matrix at given state, x

Return type array like, shape (N,N)

D3g(x, constType=None, eps=1e-06)

Evaluate constraint triple derivative at specified state location. Equivalent to

d3(||x|| {p,F})/dx3

If p >= 3 or p = 2, the exact solution will be computed and returned. However,

for 1 < p < 2 and 2 > p > 3, this derivative doesnt exist (its infinite). In

these cases, an approximate value of the derivative will be returned based on

smooth approximations based on the argument eps. As eps approches 0, the

approximation becomes more accurate.

Parameters

• x (array like, shape (N,)) – State to evaluate the con-

straint triple derivative

• constType ({'F','p'}, str, optional) – Constraint

type. This argument specifies whether or not the constraint is

based on p-norm/Minkowski distance metric (p) or the F-norm

equivalent of it (F). If not provided, defaults to constraint con-

straint type (self.constType)

• eps (float, optional) – Scalar determining the degree

213

of sharpness in the smooth approximations. As eps approaches

0, the approximations approach the true functions when com-

ponent of x is near zero

Returns D3gVal – Constraint hessian matrix at given state, x

Return type array like, shape (N,N,N)

randomSample(scaleFactor=None)

Computes a random sample that lies on or within the constraint

Parameters scaleFactor (float, 0 < scaleFactor <=

1, optional) – If scaleFactor isnt provided or is equal to 1, the

random sample will lie on the boundary of the constraint region.

If scaleFactor is less than 1, the random sample will lie within the

constraint region

Returns sample – Random sample that lies on or within the con-

straint region

Return type array like, shape (N,)

maxInnerProduct(y, returnLambda=False, constType=None)

Returns the point x that maximizes inner product between y and x (dot(y,x))

where x satisifies the constraint.

Parameters

• y (array like, shape (N,)) – Input vector to maximize

inner product over

• returnLambda (bool, optional) – Boolean to deter-

mine whether or not the corresponding lagrange multiplier to

this problem should be returned

214

• constType ({'F','p'}, str, optional) – Constraint

type. This argument specifies whether or not the constraint is

based on p-norm/Minkowski distance metric (p) or the F-norm

equivalent of it (F). If not provided, defaults to constraint con-

straint type (self.constType)

Returns

• x (array like, shape (N,)) – Vector that maximizes inner product

with y and also satisfies constraint

• lam (float) – Lagrange multiplier for this constrained optimiza-

tion problem

maxInnerProductSmooth(y, eps=1e-06)

Returns the point x that maximizes inner product between y and x (dot(y,x))

where x satisifies the constraint.

Uses smooth approximations of sign(x) and abs(x) depending on the value of

eps

Parameters

• y (array like, shape (N,)) – Input vector to maximize

inner product over

• eps (float, optional) – Scalar determining the degree

of sharpness in the smooth approximations. As eps approaches

0, the approximations approach the true functions when x is

near zero

Returns x – Vector that maximizes inner product with y and also sat-

isfies constraint

215

Return type array like, shape (N,)

maxInnerProductSmoothJacobian(y, eps=1e-06)

Returns the jacobian dx/dy where y/x are the input/output to the maxInnerProd-

uct function.

Uses smooth approximations of sign(x) and abs(x) depending on the value of

eps

Parameters

• y (array like, shape (N,)) – Input vector to maximize

inner product over

• eps (float, optional) – Scalar determining the degree

of sharpness in the smooth approximations. As eps approaches

0, the approximations approach the true functions when x is

near zero

Returns dxdy – Jacobian of constraint maximal inner product func-

tion with respect to the input vector

Return type array like, shape (N,N)

maxInnerProductSmoothJacobian2(y, eps=1e-06)

Returns the jacobian dx/dy where y/x are the input/output to the maxInnerProd-

uct function.

Uses slightly different computations compared to maxInnerProductSmoothJa-

cobian

Uses smooth approximations of sign(x) and abs(x) depending on the value of

eps

Parameters

216

• y (array like, shape (N,)) – Input vector to maximize

inner product over

• eps (float, optional) – Scalar determining the degree

of sharpness in the smooth approximations. As eps approaches

0, the approximations approach the true functions when x is

near zero

Returns dxdy – Jacobian of constraint maximal inner product func-

tion with respect to the input vector

Return type array like, shape (N,N)

maxInnerProductJacobianNumerical(y, h=0.0001)

Uses central finite differences to approximate the jacobian dx/dy where y/x are

the input/output to the maxInnerProduct function.

Parameters

• y (array like, shape (N,)) – Input vector to maximize

inner product over

• h (float, optional) – Scalar determining the step size in

the central finite differencing

Returns dxdy – Jacobian of constraint maximal inner product func-

tion with respect to the input vector

Return type array like, shape (N,N)

smoothJacobianTensor(y, eps=1e-06)

Returns the jacobian d/dy(dx/dy) where y/x are the input/output to the maxIn-

nerProduct function.

Uses smooth approximations of sign(x) and abs(x) depending on the value of

217

eps

Parameters

• y (array like, shape (N,)) – Input vector to maximize

inner product over

• eps (float, optional) – Scalar determining the degree

of sharpness in the smooth approximations. As eps approaches

0, the approximations approach the true functions when x is

near zero

Returns dxdydy – Double Jacobian (tensor) of constraint maximal

inner product function with respect to the input vector

Return type array like, shape (N,N,N)

constraints.pNormJacobian(y, p)

Returns the jacobian d(||y|| p)/dy where y is an input vector and p is the value of

the p-norm

Uses smooth approximations of sign(x) and abs(x) depending on the value of eps

Parameters

• y (array like, shape (N,)) – Input vector to maximize

inner product over

• eps (float, optional) – Scalar determining the degree of

sharpness in the smooth approximations. As eps approaches 0,

the approximations approach the true functions when x is near

zero

Returns dxdy – Jacobian of constraint maximal inner product function

with respect to the input vector

218

Return type array like, shape (N,N)

C.8.4 Dynamic System Module

class dynSystems.LTIDynamics(A, B, uLimit=1, pNorm=2,

signApproxEps=1e-06)
Bases: object

Class for Linear Time Invariant (LTI) dynamic systems of the form

xDot = A*x + B*u

where A is n x n, B is n x m and u control input has p-norm type constraint

init (A, B, uLimit=1, pNorm=2, signApproxEps=1e-06)

Constructor for LTI dynamics system class.

Parameters

• A (array like, shape (N,N)) – State space system ma-

trix

• B (array like, shape (N,M)) – State space control in-

put matrix

• uLimit ({array like, float, int, list}, optional)

– Max control input along each dimension of control vector

• pNorm ({float, int}, optional) – p-norm value for

constraint

• signApproxEps (float, optional) – Scalar determin-

ing the degree of sharpness in the smooth approximations of

sign() and abs()

219

As signApproxEps approaches 0, the approximations approach

the true functions

uStar(y, t)

Computes optimal control (u) given flow state (y = [x, p]) where x is state and

p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns uStar – Optimal control input given current flow state and

time

Return type array like, shape (M,)

dxdt(y, t)

Computes state dynamics (dx/dt) given flow state (y = [x, p]) where x is state

and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns xd – State dynamics given current flow state and time

Return type array like, shape (N,)

dpdt(y, t)

Computes costate dynamics (dp/dt) given flow state (y = [x, p]) where x is state

220

and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns pd – Costate dynamics given current flow state and time

Return type array like, shape (N,)

dPhidt(Y, t)

Computes state transition matrix STM dynamics (dPhi/dt) given flow state (Y

= [x, p, Phi]) where x is state, p is costate, and Phi is STM for y

Parameters

• Y (array like, shape (2N + (2N)ˆ2,)) – Augmented

flow state, Y = [x, p, vec(Phi)], where x is state, p is costate, and

Phi is STM for y

• t (float) – Time value

Returns Phid – State dynamics given current flow state and time

Return type array like, shape (2N,2N)

H(y, t)

Computes optimal control Hamiltonian given flow state (y = [x, p]) where x is

state and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

221

• t (float) – Time value

Returns HVal – Optimal control Hamiltonian value given current

flow state and time

Return type float

dydt(y, t)

Computes trajectory flow dynamics (dy/dt) given flow state (y = [x, p]) where

x is state and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns yd – Flow dynamics given current flow state and time

Return type array like, shape (2N,)

dYdt(Y, t)

Computes augmented flow dynamics (dPhi/dt) given flow state (Y = [x, p, Phi])

where x is state, p is costate, and Phi is STM for y

Parameters

• Y (array like, shape (2N + (2N)ˆ2,)) – Augmented

flow state, Y = [x, p, vec(Phi)], where x is state, p is costate, and

Phi is STM for y

• t (float) – Time value

Returns Yd – Augmented flow dynamics given current flow state and

time

222

Return type array like, shape (2N + (2N)ˆ2,)

propagate y(y0, t0, tf, numTimeSteps=None, rtol=1e-06, atol=1e-06)

Propagate flow state y0 = [x0, p0] from t0 to yf = [xf, pf] at tf

Parameters

• y0 (array like, shape (2N,)) – Initial flow state, y0

= [x0, p0], where x0 is initial state and p0 is initial costate

• t0 (float) – Initial time value

• tf (float) – Final time value

• numTimeSteps (int, optional) – If not provided, this

function will only return yf = [xf,pf]

If provided, this function will return x(t), p(t) with t from t0 to

tf with numTimeSteps time values

• atol (rtol,) – Relative and absolute tolerance for the differ-

ential equation solver

Returns yf – Depending on the input argument of numTimeSteps, this

will either be the final flow state yf = [xf, pf] or it would be an

array with y(t) from t0 to tf with numTimeSteps time values

Return type array like, shape (2N,) or (numTimeSteps,2N)

propagate Y(y0, t0, tf, numTimeSteps=None, rtol=1e-06, atol=1e-06)

Propagate augmented flow state Y0 = [x0, p0, vec(Phi0)] from t0 to Yf = [xf,

pf, vec(Phif)] at tf

Parameters

• y0 (array like, shape (2N,)) – Initial flow state, y0

223

= [x0, p0], where x0 is initial state and p0 is initial costate

• t0 (float) – Initial time value

• tf (float) – Final time value

• numTimeSteps (int, optional) – If not provided, this

function will only return Yf = [xf, pf, vec(Phif)]

If provided, this function will return x(t),p(t) with t from t0 to tf

with numTimeSteps time values

• atol (rtol,) – Relative and absolute tolerance for the differ-

ential equation solver

Returns Yf – Depending on the input argument of numTimeSteps,

this will either be the final augmented flow state Yf = [xf, pf,

vec(Phif)] or it would be an array with Y(t) from t0 to tf with

numTimeSteps time values

Return type array like, shape (2N + (2N)ˆ2,) or (numTimeSteps,2N

+ (2N)ˆ2)

class dynSystems.LTVDynamics(A, B, uLimit=1, pNorm=2, t0=0.0,

signApproxEps=1e-06)
Bases: object

Class for Linear Time-Varying (LTV) dynamic systems of the form

xDot = A(t)*x + B(t)*u

where A is n x n, B is n x m and u control input has p-norm type constraint

init (A, B, uLimit=1, pNorm=2, t0=0.0, signApproxEps=1e-06)

Constructor for LTI dynamics system class.

Parameters

224

• A (array like, shape (N,N)) – State space system ma-

trix

• B (array like, shape (N,M)) – State space control in-

put matrix

• uLimit ({array like, float, int, list}, optional)

– Max control input along each dimension of control vector

• pNorm ({float, int}, optional) – p-norm value for

constraint

• signApproxEps (float, optional) – Scalar determin-

ing the degree of sharpness in the smooth approximations of

sign() and abs()

As signApproxEps approaches 0, the approximations approach

the true functions

uStar(y, t)

Computes optimal control (u) given flow state (y = [x, p]) where x is state and

p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns uStar – Optimal control input given current flow state and

time

Return type array like, shape (M,)

225

dxdt(y, t)

Computes state dynamics (dx/dt) given flow state (y = [x, p]) where x is state

and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns xd – State dynamics given current flow state and time

Return type array like, shape (N,)

dpdt(y, t)

Computes costate dynamics (dp/dt) given flow state (y = [x, p]) where x is state

and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns pd – Costate dynamics given current flow state and time

Return type array like, shape (N,)

dPhidt(Y, t)

Computes state transition matrix STM dynamics (dPhi/dt) given flow state (Y

= [x, p, Phi]) where x is state, p is costate, and Phi is STM for y

Parameters

• Y (array like, shape (2N + (2N)ˆ2,)) – Augmented

226

flow state, Y = [x, p, vec(Phi)], where x is state, p is costate, and

Phi is STM for y

• t (float) – Time value

Returns Phid – State dynamics given current flow state and time

Return type array like, shape (2N,2N)

H(y, t)

Computes optimal control Hamiltonian given flow state (y = [x, p]) where x is

state and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns HVal – Optimal control Hamiltonian value given current

flow state and time

Return type float

dydt(y, t)

Computes trajectory flow dynamics (dy/dt) given flow state (y = [x, p]) where

x is state and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns yd – Flow dynamics given current flow state and time

227

Return type array like, shape (2N,)

dYdt(Y, t)

Computes augmented flow dynamics (dPhi/dt) given flow state (Y = [x, p, Phi])

where x is state, p is costate, and Phi is STM for y

Parameters

• Y (array like, shape (2N + (2N)ˆ2,)) – Augmented

flow state, Y = [x, p, vec(Phi)], where x is state, p is costate, and

Phi is STM for y

• t (float) – Time value

Returns Yd – Augmented flow dynamics given current flow state and

time

Return type array like, shape (2N + (2N)ˆ2,)

propagate y(y0, t0, tf, numTimeSteps=None, rtol=1e-06, atol=1e-06)

Propagate flow state y0 = [x0, p0] from t0 to yf = [xf, pf] at tf

Parameters

• y0 (array like, shape (2N,)) – Initial flow state, y0

= [x0, p0], where x0 is initial state and p0 is initial costate

• t0 (float) – Initial time value

• tf (float) – Final time value

• numTimeSteps (int, optional) – If not provided, this

function will only return yf = [xf,pf]

If provided, this function will return x(t), p(t) with t from t0 to

tf with numTimeSteps time values

228

• atol (rtol,) – Relative and absolute tolerance for the differ-

ential equation solver

Returns yf – Depending on the input argument of numTimeSteps, this

will either be the final flow state yf = [xf, pf] or it would be an

array with y(t) from t0 to tf with numTimeSteps time values

Return type array like, shape (2N,) or (numTimeSteps,2N)

propagate Y(y0, t0, tf, numTimeSteps=None, rtol=1e-06, atol=1e-06)

Propagate augmented flow state Y0 = [x0, p0, vec(Phi0)] from t0 to Yf = [xf,

pf, vec(Phif)] at tf

Parameters

• y0 (array like, shape (2N,)) – Initial flow state, y0

= [x0, p0], where x0 is initial state and p0 is initial costate

• t0 (float) – Initial time value

• tf (float) – Final time value

• numTimeSteps (int, optional) – If not provided, this

function will only return Yf = [xf, pf, vec(Phif)]

If provided, this function will return x(t),p(t) with t from t0 to tf

with numTimeSteps time values

• atol (rtol,) – Relative and absolute tolerance for the differ-

ential equation solver

Returns Yf – Depending on the input argument of numTimeSteps,

this will either be the final augmented flow state Yf = [xf, pf,

vec(Phif)] or it would be an array with Y(t) from t0 to tf with

numTimeSteps time values

229

Return type array like, shape (2N + (2N)ˆ2,) or (numTimeSteps,2N

+ (2N)ˆ2)

class dynSystems.SympyDynamicsSmooth(n, fname)

Bases: object

Class for Sympy Dynamic Systems with Smooth Approximations of sign(), abs(),

optimal control

init (n, fname)

Constructor for Smooth Sympy Dynamics class

Parameters

• n (int) – Dimension/size of state

• fname (str) – denoting filename within tempFiles folder -

usually has the .modname file extension

dydt(y, t)

Computes trajectory flow dynamics (dy/dt) given flow state (y = [x, p]) where

x is state and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns yd – Flow dynamics given current flow state and time

Return type array like, shape (2N,)

dYdt(Y, t)

Computes augmented flow dynamics (dPhi/dt) given flow state (Y = [x, p, Phi])

230

where x is state, p is costate, and Phi is STM for y

Parameters

• Y (array like, shape (2N + (2N)ˆ2,)) – Augmented

flow state, Y = [x, p, vec(Phi)], where x is state, p is costate, and

Phi is STM for y

• t (float) – Time value

Returns Yd – Augmented flow dynamics given current flow state and

time

Return type array like, shape (2N + (2N)ˆ2,)

dxdt(y, t)

Computes state dynamics (dx/dt) given flow state (y = [x, p]) where x is state

and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns xd – State dynamics given current flow state and time

Return type array like, shape (N,)

dpdt(y, t)

Computes costate dynamics (dp/dt) given flow state (y = [x, p]) where x is state

and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

231

where x is state and p is costate

• t (float) – Time value

Returns pd – Costate dynamics given current flow state and time

Return type array like, shape (N,)

dPhidt(Y, t)

Computes state transition matrix STM dynamics (dPhi/dt) given flow state (Y

= [x, p, Phi]) where x is state, p is costate, and Phi is STM for y

Parameters

• Y (array like, shape (2N + (2N)ˆ2,)) – Augmented

flow state, Y = [x, p, vec(Phi)], where x is state, p is costate, and

Phi is STM for y

• t (float) – Time value

Returns Phid – State dynamics given current flow state and time

Return type array like, shape (2N,2N)

H(y, t)

Computes optimal control Hamiltonian given flow state (y = [x, p]) where x is

state and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns HVal – Optimal control Hamiltonian value given current

flow state and time

232

Return type float

propagate y(y0, t0, tf, numTimeSteps=None, rtol=1e-06, atol=1e-06)

Propagate flow state y0 = [x0, p0] from t0 to yf = [xf, pf] at tf

Parameters

• y0 (array like, shape (2N,)) – Initial flow state, y0

= [x0, p0], where x0 is initial state and p0 is initial costate

• t0 (float) – Initial time value

• tf (float) – Final time value

• numTimeSteps (int, optional) – If not provided, this

function will only return yf = [xf,pf]

If provided, this function will return x(t), p(t) with t from t0 to

tf with numTimeSteps time values

• atol (rtol,) – Relative and absolute tolerance for the differ-

ential equation solver

Returns yf – Depending on the input argument of numTimeSteps, this

will either be the final flow state yf = [xf, pf] or it would be an

array with y(t) from t0 to tf with numTimeSteps time values

Return type array like, shape (2N,) or (numTimeSteps,2N)

propagate Y(y0, t0, tf, numTimeSteps=None, rtol=1e-06, atol=1e-06)

Propagate augmented flow state Y0 = [x0, p0, vec(Phi0)] from t0 to Yf = [xf,

pf, vec(Phif)] at tf

Parameters

• y0 (array like, shape (2N,)) – Initial flow state, y0

233

= [x0, p0], where x0 is initial state and p0 is initial costate

• t0 (float) – Initial time value

• tf (float) – Final time value

• numTimeSteps (int, optional) – If not provided, this

function will only return Yf = [xf, pf, vec(Phif)]

If provided, this function will return x(t),p(t) with t from t0 to tf

with numTimeSteps time values

• atol (rtol,) – Relative and absolute tolerance for the differ-

ential equation solver

Returns Yf – Depending on the input argument of numTimeSteps,

this will either be the final augmented flow state Yf = [xf, pf,

vec(Phif)] or it would be an array with Y(t) from t0 to tf with

numTimeSteps time values

Return type array like, shape (2N + (2N)ˆ2,) or (numTimeSteps,2N

+ (2N)ˆ2)

class dynSystems.SympyDynamicsSwitch(n, fname)

Bases: object

Class for Sympy Dynamic Systems with Switching Functions defined

init (n, fname)

Constructor for Smooth Sympy Dynamics class

Parameters

• n (int) – Dimension/size of state

• fname (str) – denoting filename within tempFiles folder -

234

usually has the .modname file extension

dydt(y, t)

Computes trajectory flow dynamics (dy/dt) given flow state (y = [x, p]) where

x is state and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns yd – Flow dynamics given current flow state and time

Return type array like, shape (2N,)

dYdt(Y, t)

Computes augmented flow dynamics (dPhi/dt) given flow state (Y = [x, p, Phi])

where x is state, p is costate, and Phi is STM for y

Parameters

• Y (array like, shape (2N + (2N)ˆ2,)) – Augmented

flow state, Y = [x, p, vec(Phi)], where x is state, p is costate, and

Phi is STM for y

• t (float) – Time value

Returns Yd – Augmented flow dynamics given current flow state and

time

Return type array like, shape (2N + (2N)ˆ2,)

dxdt(y, t)

Computes state dynamics (dx/dt) given flow state (y = [x, p]) where x is state

235

and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns xd – State dynamics given current flow state and time

Return type array like, shape (N,)

dpdt(y, t)

Computes costate dynamics (dp/dt) given flow state (y = [x, p]) where x is state

and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns pd – Costate dynamics given current flow state and time

Return type array like, shape (N,)

dPhidt(Y, t)

Computes state transition matrix STM dynamics (dPhi/dt) given flow state (Y

= [x, p, Phi]) where x is state, p is costate, and Phi is STM for y

Parameters

• Y (array like, shape (2N + (2N)ˆ2,)) – Augmented

flow state, Y = [x, p, vec(Phi)], where x is state, p is costate, and

Phi is STM for y

236

• t (float) – Time value

Returns Phid – State dynamics given current flow state and time

Return type array like, shape (2N,2N)

H(y, t)

Computes optimal control Hamiltonian given flow state (y = [x, p]) where x is

state and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns HVal – Optimal control Hamiltonian value given current

flow state and time

Return type float

propagate y(y0, t0, tf, numTimeSteps=None, rtol=1e-06, atol=1e-06)

Propagate flow state y0 = [x0, p0] from t0 to yf = [xf, pf] at tf

Parameters

• y0 (array like, shape (2N,)) – Initial flow state, y0

= [x0, p0], where x0 is initial state and p0 is initial costate

• t0 (float) – Initial time value

• tf (float) – Final time value

• numTimeSteps (int, optional) – If not provided, this

function will only return yf = [xf,pf]

237

If provided, this function will return x(t), p(t) with t from t0 to

tf with numTimeSteps time values

• atol (rtol,) – Relative and absolute tolerance for the differ-

ential equation solver

Returns yf – Depending on the input argument of numTimeSteps, this

will either be the final flow state yf = [xf, pf] or it would be an

array with y(t) from t0 to tf with numTimeSteps time values

Return type array like, shape (2N,) or (numTimeSteps,2N)

propagate Y(y0, t0, tf, numTimeSteps=None, rtol=1e-06, atol=1e-06)

Propagate augmented flow state Y0 = [x0, p0, vec(Phi0)] from t0 to Yf = [xf,

pf, vec(Phif)] at tf

Parameters

• y0 (array like, shape (2N,)) – Initial flow state, y0

= [x0, p0], where x0 is initial state and p0 is initial costate

• t0 (float) – Initial time value

• tf (float) – Final time value

• numTimeSteps (int, optional) – If not provided, this

function will only return Yf = [xf, pf, vec(Phif)]

If provided, this function will return x(t),p(t) with t from t0 to tf

with numTimeSteps time values

• atol (rtol,) – Relative and absolute tolerance for the differ-

ential equation solver

Returns Yf – Depending on the input argument of numTimeSteps,

238

this will either be the final augmented flow state Yf = [xf, pf,

vec(Phif)] or it would be an array with Y(t) from t0 to tf with

numTimeSteps time values

Return type array like, shape (2N + (2N)ˆ2,) or (numTimeSteps,2N

+ (2N)ˆ2)

class dynSystems.dynSystemTemplate

Bases: object

Template for dynamic system class

init ()

Constructor for Dynamic System Class

dydt(y, t)

Computes trajectory flow dynamics (dy/dt) given flow state (y = [x, p]) where

x is state and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns yd – Flow dynamics given current flow state and time

Return type array like, shape (2N,)

dYdt(Y, t)

Computes augmented flow dynamics (dPhi/dt) given flow state (Y = [x, p, Phi])

where x is state, p is costate, and Phi is STM for y

Parameters

239

• Y (array like, shape (2N + (2N)ˆ2,)) – Augmented

flow state, Y = [x, p, vec(Phi)], where x is state, p is costate, and

Phi is STM for y

• t (float) – Time value

Returns Yd – Augmented flow dynamics given current flow state and

time

Return type array like, shape (2N + (2N)ˆ2,)

dxdt(y, t)

Computes state dynamics (dx/dt) given flow state (y = [x, p]) where x is state

and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns xd – State dynamics given current flow state and time

Return type array like, shape (N,)

dpdt(y, t)

Computes costate dynamics (dp/dt) given flow state (y = [x, p]) where x is state

and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

240

Returns pd – Costate dynamics given current flow state and time

Return type array like, shape (N,)

dPhidt(Y, t)

Computes state transition matrix STM dynamics (dPhi/dt) given flow state (Y

= [x, p, Phi]) where x is state, p is costate, and Phi is STM for y

Parameters

• Y (array like, shape (2N + (2N)ˆ2,)) – Augmented

flow state, Y = [x, p, vec(Phi)], where x is state, p is costate, and

Phi is STM for y

• t (float) – Time value

Returns Phid – State dynamics given current flow state and time

Return type array like, shape (2N,2N)

H(y, t)

Computes optimal control Hamiltonian given flow state (y = [x, p]) where x is

state and p is costate

Parameters

• y (array like, shape (2N,)) – Flow state, y = [x, p],

where x is state and p is costate

• t (float) – Time value

Returns HVal – Optimal control Hamiltonian value given current

flow state and time

Return type float

241

propagate y(y0, t0, tf, numTimeSteps=None, rtol=1e-06, atol=1e-06)

Propagate flow state y0 = [x0, p0] from t0 to yf = [xf, pf] at tf

Parameters

• y0 (array like, shape (2N,)) – Initial flow state, y0

= [x0, p0], where x0 is initial state and p0 is initial costate

• t0 (float) – Initial time value

• tf (float) – Final time value

• numTimeSteps (int, optional) – If not provided, this

function will only return yf = [xf,pf]

If provided, this function will return x(t), p(t) with t from t0 to

tf with numTimeSteps time values

• atol (rtol,) – Relative and absolute tolerance for the differ-

ential equation solver

Returns yf – Depending on the input argument of numTimeSteps, this

will either be the final flow state yf = [xf, pf] or it would be an

array with y(t) from t0 to tf with numTimeSteps time values

Return type array like, shape (2N,) or (numTimeSteps,2N)

propagate Y(y0, t0, tf, numTimeSteps=None, rtol=1e-06, atol=1e-06)

Propagate augmented flow state Y0 = [x0, p0, vec(Phi0)] from t0 to Yf = [xf,

pf, vec(Phif)] at tf

Parameters

• y0 (array like, shape (2N,)) – Initial flow state, y0

= [x0, p0], where x0 is initial state and p0 is initial costate

242

• t0 (float) – Initial time value

• tf (float) – Final time value

• numTimeSteps (int, optional) – If not provided, this

function will only return Yf = [xf, pf, vec(Phif)]

If provided, this function will return x(t),p(t) with t from t0 to tf

with numTimeSteps time values

• atol (rtol,) – Relative and absolute tolerance for the differ-

ential equation solver

Returns Yf – Depending on the input argument of numTimeSteps,

this will either be the final augmented flow state Yf = [xf, pf,

vec(Phif)] or it would be an array with Y(t) from t0 to tf with

numTimeSteps time values

Return type array like, shape (2N + (2N)ˆ2,) or (numTimeSteps,2N

+ (2N)ˆ2)

C.8.5 qLPV System Module

class qLPV.qLPV(A, B, v, xtrm, utrm, vFunc, dv dxFunc,

dv2 dx2Func, controlConstraint, etrm=None,

hFunc=None, dh dxtFunc=None, dh2 dxt2Func=None,

dh detFunc=None, dh2 det2Func=None, HFunc=None,

dH dxFunc=None, dH2 dx2Func=None)
Bases: object

Class for qLPVs and evaluation of qLPV derivatives xdot = A(v)*(x - x v(v)) +

B(v)(u - u v(v)) - h(e v(v) , x v(v)) + H(x)

where v(x)

243

init (A, B, v, xtrm, utrm, vFunc, dv dxFunc, dv2 dx2Func, con-

trolConstraint, etrm=None, hFunc=None, dh dxtFunc=None,

dh2 dxt2Func=None, dh detFunc=None, dh2 det2Func=None,

HFunc=None, dH dxFunc=None, dH2 dx2Func=None)
Dimensions:

n = dimension of state (x), costate (p)

m = dimension of control (u)

a = dimension of trim parameters

b = number of tabulated values for each of the given parameters

A : n x n x b : State dynamics matrix

B : n x m x b : Control input matrix

v : 1 x b or (b,) : scalar qLPV parameter

xtrm : n x b : Trim states

utrm : m x b : Trim control

etrm : a x b : Trim parameters, optional

vFunc : callable function that takes state, x as the input and outputs the scalar v

dv dxFunc : callable function that takes state, x as the input and outputs the

jacobian dv/dx (1 x n or n,)

dv2 dx2Func : callable function that takes state, x as the input and outputs the

hessian dv2/dx2 (n x n)

244

controlConstraint : constraint object representing constraints on control inputs

hFunc : callable function that takes xtrim and returns trim function (n, or n x

1), optional, if not given, assumed zero

dh dxtFunc : callable function that takes xtrim and returns trim function

jacobian with respect to trim state (n x n), optional, if not given, assumed zero

dh2 dxt2Func : callable function that takes xtrim and returns trim function

double jacobian with respect to trim state (n x n x n), optional, if not given,

assumed zero

dh detFunc : callable function that takes etrim and returns trim function

jacobian with respect to trim parameters (n x a), optional, if not given,

assumed zero

dh2 det2Func : callable function that takes etrim and returns trim function

double jacobian with respect to trim parameters (n x a x a), optional, if not

given, assumed zero

HFunc : callable function that takes x and returns nonlinear portion of

dynamics (n, or n x 1), optional, if not given, assumed zero

dH dxFunc : callable function that takes x and returns nonlinear dynamics

jacobian with respect to state (n x n), optional, if not given, assumed zero

dH2 dx2Func : callable function that takes x and returns nonlinear dynamics

double jacobian with respect to state (n x n x n), optional, if not given,

assumed zero

245

A()

Updates qLPV A arrays by evaluating spline fit at given state

B()

Updates qLPV B arrays by evaluating spline fit at given state

xtrm()

Updates qLPV xtrm array by evaluating spline fit at given state

utrm()

Updates qLPV utrm array by evaluating spline fit at given state

etrm()

Updates qLPV etrm array by evaluating spline fit at given state

uStar()

Computes optimal control

optimalControlJacobian()

Computes jacobians of optimal control input with respect to state and costate

update qLPV(x, p, withJacobian=False)

Updates parameter and all other states based off of state and costate input

update jacobian(x, p)

Update jacobian terms based on state and costate input

trimUpdate()

Given current state, x, update trim function (h), and its derivatives

nonlinearTermUpdate()

Given current state, x, update nonlinear dynamics section of dynamics value

dfdx()

Updates dfdx given current state

246

dfdp()

Updates dfdp given current state

dgdp()

Updates dgdp given current state

dgdx()

Updates dgdx given current state

dydt(y, t)

Flow dynamics

dxdt(y, t)

State Dynamics

dpdt(y, t)

Costate dynamics

dPhidt(Y, t)

STM Dynamics

dYdt(Y, t)

Augmented Flow dynamics

propagate y(y0, t0, tf, numTimeSteps=None, rtol=1e-06, atol=1e-06)

Propagate y0 = x0,p0 from t0 to yf = xf,pf at tf

propagate Y(y0, t0, tf, numTimeSteps=None, rtol=1e-06, atol=1e-06)

Propagate Y0 = x0,p0,Phi0 from t0 to yf = xf,pf,Phif at tf

plotqLPVFit(new v=None, showAxes=False)

Plots qLPV spline fit with all of the table lookup quantities

247

C.8.6 Continuation Module

contMethodMod.contMethod T(Tvec, particle, dynamics, contMethodOp-

tion=2, newtonsCorrection=False)
This function computes continuation methods over time horizon, T, for the given

particle

It updates the fields of the given particle directly.

Parameters

• Tvec (array like, shape (numTimeHorizonSteps,

)) – Array of time horizon, T, values to evaluate the continuation

method over

• particle (Particle object) – Current particle in reach-

ability analysis. This is parametrized by a hyperspherical coordi-

nate or unit vector search direction

• dynamics (Dynamics object) – Dynamics system object

that can propagate the state and costate to the specified time hori-

zon

• contMethodOption (int, optional) – Integer specify-

ing which homotopy/continuation method is desired.

Options are:

1. Basic continuation method

2. Pseudo-arclength continuation method

3. Pseudo-arclength homotopy using Sards theorem (NOT WORK-

ING)

248

4. Predictor-Corrector with Newton step updates (IN DEVELOP-

MENT)

5. Predictor-Corrector with Broyden step updates (IN DEVEL-

OPMENT)

• newtonsCorrection (bool, optional) – If true, a New-

tons method correction will be performed after the continuation

method is complete.

contMethodMod.contMethodODE(z, T, particle, dynamics)

This is the ODE function for the basic continuation method integrator routines over

time horizon

It updates the fields of the given particle directly.

Parameters

• z (array like, shape (N+1,)) – Concatentation between

initial state and Lagrange multiplier for the initial condition con-

straint,

z = [x0, lam]

• T (float) – Current time horizon in the continuation method

integration

• particle (Particle object) – Current particle in reach-

ability analysis. This is parametrized by a hyperspherical coordi-

nate or unit vector search direction

• dynamics (Dynamics object) – Dynamics system object

that can propagate the state and costate to the specified time hori-

zon

249

contMethodMod.arcLengthEvent1(z s, sig, particle)

contMethodMod.arcLengthEvent1s(z s, sig, particle)

contMethodMod.arcLengthEvent2(z s, sig, particle)

contMethodMod.arcLengthEvent3(z s, sig, particle)

contMethodMod.arcLengthEvent4(z s, sig, particle)

contMethodMod.contMethodODE arcLength(z s, sig, particle, dynam-

ics)
This is the ODE function for the pseudoarclength continuation method integrator

routines over time horizon

It updates the fields of the given particle directly.

Parameters

• z s (array like, shape (N+2,)) – Concatentation be-

tween initial state, Lagrange multiplier for the initial condition

constraint, and current time horizon in continuation method inte-

gration

z = [x0, lam, T]

• sig (float) – Current arc length in the pseudo arclength con-

tinuation method integration

• particle (Particle object) – Current particle in reach-

ability analysis. This is parametrized by a hyperspherical coordi-

nate or unit vector search direction

• dynamics (Dynamics object) – Dynamics system object

that can propagate the state and costate to the specified time hori-

zon

250

contMethodMod.contMethodODE arcLength generalized(z tau, sig,

particle,

dynamics,

case=1)
contMethodMod.contMethodODE arcLength Sard(z s, sig, particle, dy-

namics)
contMethodMod.newtonsCorrection dFdz(particle, dynamics,

convTol=1e-06, maxIter=5)

contMethodMod.computeTangentVector(dFdz, dFdT, tol=1e-09)

contMethodMod.PC Continuation(particle, dynamics, h, hmin, tol, dmax,

ctmax, hmax)

contMethodMod.PC Continuation2(particle, dynamics, h, hmin, hmax, tol,

maxNewtIter=3)
contMethodMod.PC Continuation Broyden(particle, dynamics, h, hmin,

tol)
contMethodMod.PC Continuation Broyden2(particle, dynamics, h,

hmin, hmax, tol)

contMethodMod.contMethod toT(Tdesired, particle, dynamics, newton-

sCorrection=False)
contMethodMod.contMethod(Tvec, particle, dynamics, newtonsCorrec-

tion=False)

C.8.7 Plotting Module

plotting.axisEqual(ax, axesStr=’xyz’)

3D Equivalent of axis equal for matplotlib

Parameters

• ax (axis object) – Matplotlib axis object

251

• axesStr (str, optional) – String of axes (e.g. xy, xyz,

xz) that list axes that should have equal distance units

plotting.plotReachTrajectories(particles, projDim=None, sc=1.0, ax-

esLabels=None, addedPtInds=None,

axisEqualBool=True)
Plot particle state trajectories in state/phase space at current time horizon T (x(t;T)).

This also highlights the initial states (x0(T) = x(t0;T)) and final states (xf(T) = x(tf;T))

with markers. Note that the only components of the state that are plotted will be the

ones specified by the input argument projDim

This function has the capability of plotting different components of the state vector

using the projDim argument.

This function can only plot 2D or 3D state trajectories.

This function only pulls from the particle.x t attribute to create the plot

Parameters

• particles (list of Particle objects) – List of par-

ticle objects created for a reachability analysis that need to be

plotted. This function plots details from every particle in this ar-

gument list

• projDim (list of int, optional) – Projection dimen-

sions are a list of which dimensions of the state vector to plot

trajectories of (e.g. projDim = [1,3] will plot the first and third

components of the state vector).

NOTICE: This uses MATLAB-based indexing where projDim =

[1,2] will plot the first and second state

By default, if no value is specified, projDim = [1,2] and function

252

will plot the first and second state trajectories in state/phase space

The length of projDim should be either 2 or 3.

• sc ({float, list of floats}, optional) – All plot-

ted quantities are multiplied by sc before plotting. This is useful

in cases where units of the reachability analysis are different from

the desired units of the plot.

If this is a list, it should correspond to a scaling factor for each

dimension/axis being plotted

• axesLabels (list of str, optional) – If not provided,

the default axis labels are based on the projDim argument (e.g.

x1, x2).

If this argument is provided, each entry in this list will be the axis

label for the axes specified in projDim

This argument, if provided, should be the same length as the pro-

jDim argument.

• addedPtInds (list of int, optional) – This argu-

ment is a list of indices of the particles argument list that cor-

respond to added points through mesh refinement or some other

process. Every particle with an index specified by this argument

will have a different marker than the original particles

Returns fh – A figure handle for the created plot

Return type Figure handle

253

plotting.plotReachHistories1D(particles, projDim=1, shadedTraj-

Bool=True, particleHistBool=False,

sc=1.0, axesLabels=None)
Plot particle final states over time horizon T for a single dimension of the state space

(i.e. xf i(T) = x i(tf;T) where i denotes the specified dimension of the state to plot)

This is equivalent to projecting the reachable volume onto the specified state dimen-

sion. This way, this plot shows the reachable envelope (range of all possible state

values) for the specified state dimension as a function of time horizon T

This function is the 1-dimensional version of plotReachGrowth

The projDim argument specifies which state dimension to plot. This must be a single

value

This function pulls from the particle.xf T and particle.xf T Spline attributes to create

the plot

Parameters

• particles (list of Particle objects) – List of par-

ticle objects created for a reachability analysis that need to be

plotted. This function plots details from every particle in this ar-

gument list

• projDim (int, optional) – Projection dimension is an in-

teger specifying which dimensions of the state vector to plot de-

tails of (e.g. projDim = 1 will plot the first component of the state

vector).

NOTICE: This uses MATLAB-based indexing where projDim =

1 will plot the first state information

• shadedTrajBool (bool, optional) – This booleans de-

254

termines whether or not the set of possible values for the specified

state is shaded gray or not.

• particleHistBool (bool, optional) – This booleans

determines whether or not the individual particle final state histo-

ries histories (xf i(T) = x i(tf;T) where i specifies the dimension

of the state that is being plotted)

If True, the individual particle histories will be drawn as dashed

lines.

• sc (float, optional) – All plotted quantities are multi-

plied by sc before plotting. This is useful in cases where units

of the reachability analysis are different from the desired units of

the plot.

• axesLabels (list of str, optional) – If not provided,

the default axis labels are based on the projDim argument (e.g.

x1, x2) and the horizontal axis label defaults to T for time hori-

zon.

If this argument is provided, each entry in this list will be the axis

label for the axes specified in projDim

This argument, if provided, should be the same length as the pro-

jDim argument.

Returns fh – A figure handle for the created plot

Return type Figure handle

plotting.plotReachGrowth(particles, numSnaps=5, projDim=None,

sc=1.0, axesLabels=None, axisEqual-

Bool=True)

255

Plots reachable volume at different snapshots of time horizon, T (from T=0 to the

final time horizon). This plot shows how the reachable volume is evolving over time

horizon

This plot represents the reachable volume as a polygon in this plot by connecting a

straight line between each particle state

This function is the multi-dimensional version of plotReachHistories1D

The projDim argument specifies which state dimensions to plot.

This function pulls from the particle.xf T and particle.xf T Spline attributes to create

the plot

Parameters

• particles (list of Particle objects) – List of par-

ticle objects created for a reachability analysis that need to be

plotted. This function plots details from every particle in this ar-

gument list

• numSnaps (int) – Specifies number of reachable volumes to

plot from T=0 to the the final time horizon (including the both

endpoints).

In the case where numSnaps = 1, the final time horizon, only the

final time horizon reachable volume will be plotted

The time horizon, T, values will be equally spaced from 0 to Tf

including both endpoints

• projDim (list of int, length 2 or 3, optional)

– Projection dimensions are a list of which dimensions of the

state vector to plot trajectories of (e.g. projDim = [1,3] will plot

256

the first and third components of the state vector).

NOTICE: This uses MATLAB-based indexing where projDim =

[1,2] will plot the first and second state

By default, if no value is specified, projDim = [1,2] and function

will plot the first and second state trajectories in state/phase space

• sc ({float, list of floats}, optional) – All plot-

ted quantities are multiplied by sc before plotting. This is useful

in cases where units of the reachability analysis are different from

the desired units of the plot.

If this is a list, it should correspond to a scaling factor for each

dimension/axis being plotted

• axesLabels (list of str, optional) – If not provided,

the default axis labels are based on the projDim argument (e.g.

x1, x2).

If this argument is provided, each entry in this list will be the axis

label for the axes specified in projDim

This argument, if provided, should be the same length as the pro-

jDim argument.

Returns fh – A figure handle for the created plot

Return type Figure handle

plotting.plotReachVolume(particles, projDim=None, sc=1.0, axesLa-

bels=None, axisEqualBool=True)
Plots reachable volume at current/final time horizon, T. This plot shows the current

reachable volume at the current time horizon, T, with markers representing the parti-

cle final states and lines denoting neighbor relationships between particles.

257

The projDim argument specifies which state dimensions to plot.

This function only pulls from the particle.xf T attribute to create the plot

Parameters

• particles (list of Particle objects) – List of par-

ticle objects created for a reachability analysis that need to be

plotted. This function plots details from every particle in this ar-

gument list

• projDim (list of int, length 2 or 3, optional)

– Projection dimensions are a list of which dimensions of the

state vector to plot trajectories of (e.g. projDim = [1,3] will plot

the first and third components of the state vector).

NOTICE: This uses MATLAB-based indexing where projDim =

[1,2] will plot the first and second state

By default, if no value is specified, projDim = [1,2] and function

will plot the first and second state trajectories in state/phase space

• sc ({float, list of floats}, optional) – All plot-

ted quantities are multiplied by sc before plotting. This is useful

in cases where units of the reachability analysis are different from

the desired units of the plot.

If this is a list, it should correspond to a scaling factor for each

dimension/axis being plotted

• axesLabels (list of str, optional) – If not provided,

the default axis labels are based on the projDim argument (e.g.

x1, x2).

258

If this argument is provided, each entry in this list will be the axis

label for the axes specified in projDim

This argument, if provided, should be the same length as the pro-

jDim argument.

Returns fh – A figure handle for the created plot

Return type Figure handle

plotting.plotIntersection(R1, R2, R1color=None, R2color=None,

sc=1.0, axesLabels=None, axisEqual-

Bool=True)
Takes in two reachability objects, computes intersection of them in the subspace of

interest, and plots result. It also returns a list of particles that make up the intersection

(if they exist)

This function only pulls from the particle.xf T attribute to create the plot

Parameters

• R1 (Reachability object) – First Reachability object to

use in intersection computation

• R2 (Reachability object) – Second Reachability object

to use in intersection computation

• R1color (rgb color list, optional) – RGB Color list

that will denote the color used to plot R1

• R2color (rgb color list, optional) – RGB Color list

that will denote the color used to plot R2

• sc ({float, list of floats}, optional) – All plot-

ted quantities are multiplied by sc before plotting. This is useful

259

in cases where units of the reachability analysis are different from

the desired units of the plot.

If this is a list, it should correspond to a scaling factor for each

dimension/axis being plotted

• axesLabels (list of str, optional) – If not provided,

the default axis labels are based on the projDim argument (e.g.

x1, x2).

If this argument is provided, each entry in this list will be the axis

label for the axes specified in projDim

This argument, if provided, should be the same length as the pro-

jDim argument.

Returns

• fh (Figure handle) – A figure handle for the created plot

• intersectParticles (list of Particle objects) – A list of particles

from R1 and/or R2 that are intersection particles. That is, they be-

long to both reachable volumes simultaneously. If the two reach-

able volumes do not intersect, this list will be empty.

plotting.plotUnion(R1, R2, R1color=None, R2color=None, sc=1.0, axes-

Labels=None, axisEqualBool=True)
Takes in two reachability objects, computes union of them in the subspace of interest,

and plots result. It also returns a list of particles that make up the union

This function only pulls from the particle.xf T attribute to create the plot

Parameters

• R1 (Reachability object) – First Reachability object to

260

use in union computation

• R2 (Reachability object) – Second Reachability object

to use in union computation

• R1color (rgb color list, optional) – RGB Color list

that will denote the color used to plot R1

• R2color (rgb color list, optional) – RGB Color list

that will denote the color used to plot R2

• sc ({float, list of floats}, optional) – All plot-

ted quantities are multiplied by sc before plotting. This is useful

in cases where units of the reachability analysis are different from

the desired units of the plot.

If this is a list, it should correspond to a scaling factor for each

dimension/axis being plotted

• axesLabels (list of str, optional) – If not provided,

the default axis labels are based on the projDim argument (e.g.

x1, x2).

If this argument is provided, each entry in this list will be the axis

label for the axes specified in projDim

This argument, if provided, should be the same length as the pro-

jDim argument.

Returns

• fh (Figure handle) – A figure handle for the created plot

• unionParticles (list of Particle objects) – A list of particles from

R1 and/or R2 that are union particles. That is, they belong to

261

only one of the reachable volumes boundary. If the two reachable

volumes do not intersect, to returning all the particles.

plotting.plotRedistributionCDFs(meshRefinementBeforeAfter,

idealPlotBool=True, column-

Bool=True)
Plot cumulative distribution function (cdf) type plots for the particle redistribution

problem

This results in 3 plots being created

1. A cdf plot based on distribution of all edge-wise (particle to particle pair) dis-

tances/costs (over all edges)

2. A cdf plot based on distribution of all particle-wise distances/costs (over all

particles)

3. A line plot showing change in overall cost before and after each mesh refine-

ment iteration for all iterations

Parameters

• meshRefinementBeforeAfter (list) – List of mesh re-

finements properties both before and after refinement iterations.

Each index (corresponds to mesh refinement iteration) has [be-

fore, after] were before/after are J, JHist, JHist edge (or D equiv-

alents)

• idealPlotBool (bool, optional) – If True, then include

the ideal cdf graph to help visualize what the ideal particle dis-

tribution looks like. This should be a step-like function at the

average distance of the particle final states

262

• columnBool (bool, optional) – If True, then single columns

of subplots will be made where each subplot corresponds to a

mesh refinement iteration.

If False, then all cdfs are shown on a single plot

Returns

• redistCdfEdgeFig (Figure handle) – A figure handle correspond-

ing to the cdf plot based on edge distances

• redistCdfParticleFig (Figure handle) – A figure handle corre-

sponding to the cdf plot based on particle-wise distances/cost

• JSaveFig (Figure handle) – A figure handle corresponding to the

line plot of the overall cost change over mesh refinement itera-

tions

C.8.8 Utilities Module

This module contains useful functions.

utilities.R1(th, deg=None)

Performs a coordinate/frame transformation about the x-axis

Parameters

• th (float) – Angle in radians to rotate (default radians)

• deg (bool, optional) – If set, the input will be treated as

degrees

Returns out – 3x3 Coordinate/Frame transformation matrix

Return type array like, shape(3,3)

263

utilities.R2(th, deg=None)

Performs a coordinate/frame transformation about the y-axis

Parameters

• th (float) – Angle in radians to rotate (default radians)

• deg (bool, optional) – If set, the input will be treated as

degrees

Returns out – 3x3 Coordinate/Frame transformation matrix

Return type array like, shape(3,3)

utilities.R3(th, deg=None)

Performs a coordinate/frame transformation about the z-axis

Parameters

• th (float) – Angle in radians to rotate (default radians)

• deg (bool, optional) – If set, the input will be treated as

degrees

Returns out – 3x3 Coordinate/Frame transformation matrix

Return type array like, shape(3,3)

utilities.matNorm(x)

return the norm of every row of a numpy array

utilities.normOfVec(x)

Faster norm of 1D vector that np.linalg.norm for small arrays

utilities.normalize(vec)

normalize input array

264

utilities.angBtwnVecs(u, v)

Return angle (radians) between two input vectors

utilities.angleBtwnUnitVecs(u, v)

Return angle (radians) between two input unit vectors

utilities.adj(matrix)

Adjoint of matrix

utilities.getOrthProjection(ofv1, ontov2)

Get the orthogonal projection of v1 onto v2. Returns orthogonal projection of v1

onto v2 and projection of v1 onto v2

utilities.vec2radec(vec)

Converts vec to ra/dec [deg]

utilities.vec2radec rad(vec)

Converts vec to ra/dec [rad]

utilities.radec2vec(ra, dec)

Converts ra/dec [deg] to vector

utilities.radec2vec rad(ra, dec)

Converts ra/dec [rad] to vector

utilities.randInRange(N, minVal, maxVal)

Returns random array of shape (N,) from minVal to maxVal

utilities.numericalJacobian(f, y, h=0.0001, jacType=’central’)

Computes the numerical jacobian of f(y), dfdy If f returns a n x m array and y is a l x

1 or (l,) array, then output jacobian is squeeze(n x m x l) If f returns a (n,) array and

y is a l x 1 (l,) array, then output jacobian is squeeze(n x l)

Parameters

265

• f (callable function) – This is the function that must be

callable like f(y)

• y (array like, shape (l,) or (l,1)) – This is a sin-

gle vector/array that the numerical jacobian will be computed at

• h (float, optional) – Step size

• jacType ({central, forward, backward}, optional)

– Type of numerical differencing to use

Returns dfdy – Numerical jacobian of function f around point y (dfdy(y))

Return type array like

utilities.sympyNorm(x)

Takes in a sympy vector as a Matrix object and returns a sympy object that represents

the 2 norm

Parameters x (sympy Matrix object) – sympy vector to take the

2 norm of

Returns s – Symbolic expression of 2 norm of input vector x

Return type sympy expression

utilities.sympySignApprox(x, epsil=1e-06, scalar=False)

Takes in a sympy vector as a Matrix object and returns a sympy object that represents

a smooth approximation of the sign/signum function.

Parameters

• x (sympy Matrix object) – sympy vector to take the sign

of

• epsil (float, optional) – Small number for the sign ap-

266

proximation. As epsil approaches zero, the approximation ap-

proaches the true sign function

• scalar (bool, optional) – Boolean that says whether or

not the input x is a scalar (not a Matrix object)

Returns sign x – Symbolic expression sign of vector x

Return type sympy expression

utilities.sympyAbsApprox(x, epsil=1e-06, scalar=False)

Takes in a sympy vector as a Matrix object and returns a sympy object that represents

a smooth approximation of the absolute value function.

Parameters

• x (sympy Matrix object) – sympy vector to take the abso-

lute value of

• epsil (float, optional) – Small number for the absolute

value approximation. As epsil approaches zero, the approxima-

tion approaches the true absolute value function

• scalar (bool, optional) – Boolean that says whether or

not the input x is a scalar (not a Matrix object)

Returns abs x – Symbolic expression absolute value of vector x

Return type sympy expression

utilities.sympySatApprox(x, epsil=1e-06, scalar=False)

Takes in a sympy vector as a Matrix object and returns a sympy object that represents

a smooth approximation of the unit saturation function. The linear region of inputs

must be from -1 to 1 and the resulting output will be from -1 to 1.

267

Parameters

• x (sympy Matrix object) – sympy vector to take the abso-

lute value of

• epsil (float, optional) – Small number for the absolute

value approximation. As epsil approaches zero, the approxima-

tion approaches the true absolute value function

• scalar (bool, optional) – Boolean that says whether or

not the input x is a scalar (not a Matrix object)

Returns sat x – Symbolic expression absolute value of vector x

Return type sympy expression

utilities.printProgressBar(iteration, total, prefix=”, suffix=”, deci-

mals=1, length=100, fill=’’)
Print progress bar in terminal. Should call in a loop to create terminal progress bar.

Parameters

• iteration (int) – Current iteration

• total (int) – Total iterations

• prefix (str, optional) – Prefix string

• suffix (str, optional) – Suffix string

• decimals (int, optional) – Positive number of decimals

in percent complete

• length (int, optional) – Character length of bar

• fill (str, optional) – Bar fill character

utilities.null(a, rtol=2.220446049250313e-16)

268

Compute null space of matrix using svd

utilities.qr null(A, tol=None)

Compute null space of matrix using QR

utilities.QR null(A)

Compute null space of matrix using QR and only returns a single dimension of the

null space. Assumes matrix A is N x N+1 with rank N

utilities.outliers z score(ys, threshold=3)

detect outlier indices in 1D data using z-score (1D Mahalanobis dist)

utilities.outliers modified z score(ys, threshold=3.5)

detect outlier indices in 1D data using modified z-score which is more robust

utilities.outliers iqr(ys, q1=25, q3=75, upperOnly=True)

Detect outlier indices in 1D data using IQR method (pretty robust)

Parameters

• ys (array like) – Numpy array of data values to compute

outliers of

• q1 (float, optional) – Lower quartile value

• q3 (float, optional) – Upper quartile value

• upperOnly (bool, optional) – If True, only returns out-

liers on the positive side of the distribution (larger than q3)

utilities.cpickleSave(saveList, filename=’obj.save’)

Saves variables in the saveList as a pickle file

utilities.cpickleLoad(filename=’obj.save’)

Loads variables stored in pickle file as list

269

utilities.dillSave(saveList, filename=’obj.save’)

Uses dill to save variables in the saveList

utilities.dillLoad(filename=’obj.save’)

Loads variables stored by dill as list

utilities.createMultiDimList(m, n)

Creates a m x n list array with all 0s

Index like sampleList[i][j]

utilities.removeEntriesFromDict(entries, the dict)

Remove entries in entries from the dict

utilities.generateThetaArray(numThDim, uniformSamplingRate,

uniformlySpaced=False, findNeigh-

bors=False)
Creates a theta array where every row is a theta vector corresponding to a particle

uniformSamplingRate gives the number of points for the 0,2pi angle while uniform-

SamplingRate/2 gives the total for all other axes

Parameters

• numThDim (int) – Number of dimensions of the theta vector

• uniformSamplingRate (int) – uniformSamplingRate gives

the number of points for the 0,2pi angle while uniformSamplin-

gRate/2 gives the total for all other axes

• uniformlySpaced (bool, optional) – Boolean to de-

termine whether or not to try and uniformly space the particles

on the sphere

• findNeighbors (bool, optional) – If true, the neigh-

270

bors (of each theta) will be created and returned

Returns

• th (array like, shape (numParticles,numThDim)) – Output theta

array where every row is a different theta vector

• numParticles (int) – Total number of particles. This is also the

number of rows of th

• neighborsList (list of list) – List of every particles neighbors. Its

a list where every index corresponds to a different particle. The

ith index of neighborsList is a list with all the neighbor indices of

particle/theta i

• neighborsLedger (list of list) – List of all unique neighbor pairs

Every index of this list corresponds to a unique neighbor pair

given by [p iID, p jID] for every neighboring i,j

utilities.generateThetaArray Box(subspaceDim, findNeigh-

bors=False)
Creates a theta array where every row is a theta vector corresponding to a particle

and create angles that correspond to bounding box

Parameters

• subspaceDim (int) – Number of dimensions of subspace you

need to sample. This is equal to the number of dimensions of

theta plus one

• findNeighbors (bool, optional) – If true, the neigh-

bors (of each theta) will be created and returned

Returns

271

• th (array like, shape (numParticles,numThDim)) – Output theta

array where every row is a different theta vector

• numParticles (int) – Total number of particles. This is also the

number of rows of th

• neighborsList (list of list) – List of every particles neighbors. Its

a list where every index corresponds to a different particle. The

ith index of neighborsList is a list with all the neighbor indices of

particle/theta i

• neighborsLedger (list of list) – List of all unique neighbor pairs

Every index of this list corresponds to a unique neighbor pair

given by [p iID, p jID] for every neighboring i,j

utilities.generateThetaArray Octagonal(subspaceDim, findNeigh-

bors=False)
Creates a theta array where every row is a theta vector corresponding to a particle

and create angles that correspond to octagonal region (box sampling plus directions

that bisect each pair)

Parameters

• subspaceDim (int) – Number of dimensions of subspace you

need to sample. This is equal to the number of dimensions of

theta plus one

• findNeighbors (bool, optional) – If true, the neigh-

bors (of each theta) will be created and returned

Returns

• th (array like, shape (numParticles,numThDim)) – Output theta

array where every row is a different theta vector

272

• numParticles (int) – Total number of particles. This is also the

number of rows of th

• neighborsList (list of list) – List of every particles neighbors. Its

a list where every index corresponds to a different particle. The

ith index of neighborsList is a list with all the neighbor indices of

particle/theta i

• neighborsLedger (list of list) – List of all unique neighbor pairs

Every index of this list corresponds to a unique neighbor pair

given by [p iID, p jID] for every neighboring i,j

utilities.theta2ds(theta)

Convert theta vector (in radians) to a search direction

utilities.ds2theta(x, twoDBool=False)

Convert search direction vector to theta vector (in radians) if 2DBool set, then we

treat ds vector as if its 2D because nD has multiple theta vectors for a single ds

vector

utilities.dds dth(th)

Compute jacobian matrix for d ds/d th

Make sure theta is in radians

utilities.findCubicMin(f0, f1, fp0, fp1)

Solves for cubic fit minimum given s=0 corresponds to f0, fp0 and s=1 corresponds

to f1, fp1

Cubic fit, f = a + b*s + 1/2*c*s**2 + 1/6*d*s**3

utilities.findCubicFit(f0, f1, fp0, fp1)

Solves for cubic fit coefficients given s=0 corresponds to f0, fp0 and s=1 corresponds

273

to f1, fp1

Cubic fit, f = a + b*s + 1/2*c*s**2 + 1/6*d*s**3

utilities.abs smooth(x, epsi=0.0001)

Smooth approximation to absolute value function of array

utilities.sign smooth(x, epsi=0.0001)

Smooth approximation to sign function of array

utilities.kron axis(A, B)

kron(A,B) with A,B square

utilities.dot kron2(A, flatB)

Returns A.dot(B).ravel() or A.dot(B).flatten() where A is matrix and B is inverse vec

of flatB

Uses ROW MAJOR vec and inverse vec operator

utilities.my minkowski(u, v, p)

My own version of the scipy version to compute the Minkowski distance of order p

between u and v without checks

utilities.my minkowski2(u, v, p)

My own version of the scipy version to compute the Minkowski distance of order p

between u and v without checks

utilities.skewMat(v)

Takes in a sympy vectoras a Matrix object, list of 3 numbers, or numpy array and

returns a sympy object that represents the skew-symmetric matrix

Parameters x (sympy Matrix object, list, numpy array)

– Input vector

Returns xTilde – Symbolic expression of skew-symmetric matrix of in-

274

put vector x

Return type sympy expression

275

REFERENCES

[1] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent hamilton-jacobi
formulation of reachable sets for continuous dynamic games,” IEEE Transactions
on Automatic Control, vol. 50, no. 7, pp. 947–957, 2005.

[2] M. J. Holzinger, D. J. Scheeres, and R. S. Erwin, “On-orbit operational range
computation using gauss’s variational equations with J2 perturbations,” Journal of
Guidance, Control, and Dynamics, vol. 37, no. 2, pp. 608–622, 2014.

[3] I. M. Mitchell, M. Chen, and M. Oishi, “Ensuring safety of nonlinear sampled data
systems through reachability,” IFAC Proceedings Volumes, vol. 45, no. 9, pp. 108
–114, 2012, 4th IFAC Conference on Analysis and Design of Hybrid Systems.

[4] P. Varaiya, “Reach set computation using optimal control,” in Proc. KIT Workshop,
1997, pp. 377–383.

[5] J. Lygeros, “On reachability and minimum cost optimal control,” Automatica, vol. 40,
no. 6, pp. 917–927, Jun. 2004.

[6] A. B. Kurzhanskiy and P. Varaiya, “Dynamic optimization for reachability prob-
lems,” Journal of Optimization Theory and Applications, vol. 108, no. 2, pp. 227–
251, 2001.

[7] I. M. Mitchell, “A toolbox of level set methods,” UBC Department of Computer
Science, Technical Report, 2007.

[8] A. M. Bayen and C. J. Tomlin, “A construction procedure using characteristics for
viscosity solutions of the hamilton-jacobi equation,” in Decision and Control, 2001.
Proceedings of the 40th IEEE Conference on, vol. 2, 2001, 1657–1662 vol.2.

[9] J. Anderson, J. Degroote, G. Degrez, E. Dick, R. Grundmann, and J. Vierendeels,
Computational Fluid Dynamics: An Introduction, 3rd ed. Springer Berlin Heidel-
berg, 2009.

[10] I. M. Mitchell and C. J. Tomlin, “Overapproximating reachable sets by hamilton-
jacobi projections,” Journal of Scientific Computing, vol. 19, no. 1, pp. 323–346,
2003.

[11] E. Asarin, T. Dang, and O. Maler, “D/dt: A tool for reachability analysis of contin-
uous and hybrid systems,” IFAC Proceedings Volumes, vol. 34, no. 6, pp. 741 –746,

276

2001, 5th IFAC Symposium on Nonlinear Control Systems 2001, St Petersburg,
Russia, 4-6 July 2001.

[12] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer for non-
linear hybrid systems,” in Computer Aided Verification, N. Sharygina and H. Veith,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 258–263, ISBN:
978-3-642-39799-8.

[13] M. Althoff, “An introduction to CORA 2015,” in ARCH14-15. 1st and 2nd Inter-
national Workshop on Applied veRification for Continuous and Hybrid Systems, G.
Frehse and M. Althoff, Eds., ser. EPiC Series in Computing, vol. 34, EasyChair,
2015, pp. 120–151.

[14] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2E2: A verification
tool for stateflow models,” in Tools and Algorithms for the Construction and Anal-
ysis of Systems, C. Baier and C. Tinelli, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 68–82, ISBN: 978-3-662-46681-0.

[15] I. Hwang, D. M. Stipanović, and C. J. Tomlin, “Polytopic approximations of reach-
able sets applied to linear dynamic games and a class of nonlinear systems,” in
Advances in Control, Communication Networks, and Transportation Systems: In
Honor of Pravin Varaiya. Boston, MA: Birkhäuser Boston, 2005, pp. 3–19, ISBN:
978-0-8176-4409-3.

[16] A. Girard and C. L. Guernic, “Efficient reachability analysis for linear systems
using support functions,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 8966–
8971, 2008.

[17] J. N. Maidens, S. Kaynama, I. M. Mitchell, M. M. Oishi, and G. A. Dumont, “La-
grangian methods for approximating the viability kernel in high-dimensional sys-
tems,” Automatica, vol. 49, no. 7, pp. 2017 –2029, 2013.

[18] A. B. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reachability analysis,”
in International Workshop on Hybrid Systems: Computation and Control, Springer,
2000, pp. 202–214.

[19] M. J. Holzinger and D. J. Scheeres, “Reachability set subspace computation for
nonlinear systems using sampling methods,” in IEEE Conference on Decision and
Control and European Control Conference, Institute of Electrical and Electronics
Engineers (IEEE), 2011.

[20] E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2003,
ISBN: 089871544X.

277

[21] T. Ohtsuka and H. Fujii, “Stabilized continuation method for solving optimal con-
trol problems,” Journal of Guidance, Control, and Dynamics, vol. 17, no. 5, pp. 950–
957, 1994.

[22] N. Baresi, Z. P. Olikara, and D Scheeres, “Fully numerical methods for continuing
families of quasi-periodic invariant tori in astrodynamics,” vol. 65, Jan. 2018.

[23] C. L. Guernic and A. Girard, “Reachability analysis of linear systems using support
functions,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 2, pp. 250 –262, 2010,
IFAC World Congress 2008.

[24] G. Frehse and R. Ray, “Flowpipe-guard intersection for reachability computations
with support functions*,” IFAC Proceedings Volumes, vol. 45, no. 9, pp. 94 –101,
2012, 4th IFAC Conference on Analysis and Design of Hybrid Systems.

[25] R. Ray, A. Gurung, B. Das, E. Bartocci, S. Bogomolov, and R. Grosu, “Xspeed: Ac-
celerating reachability analysis on multi-core processors,” in Hardware and Soft-
ware: Verification and Testing, N. Piterman, Ed., Cham: Springer International Pub-
lishing, 2015, pp. 3–18, ISBN: 978-3-319-26287-1.

[26] D. Bertsekas, with Angelia Nedic, and A. Ozdaglar, Convex Analysis and Opti-
mization. Athena Scientific, 2003, ISBN: 1886529450.

[27] A. Tulsyan and P. I. Barton, “Reachability-based fault detection method for uncer-
tain chemical flow reactors,” IFAC-PapersOnLine, vol. 49, no. 7, pp. 1 –6, 2016,
11th IFAC Symposium on Dynamics and Control of Process SystemsIncluding
Biosystems DYCOPS-CAB 2016.

[28] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry, “Reach-avoid problems with
time-varying dynamics, targets and constraints,” in Proceedings of the 18th Inter-
national Conference on Hybrid Systems: Computation and Control, ser. HSCC ’15,
Seattle, Washington: ACM, 2015, pp. 11–20, ISBN: 978-1-4503-3433-4.

[29] J. Brew, M. J. Holzinger, and S. R. Schuet, “Using reachability to compute unsafe
regions in state space through sampling methods,” in International Astronautical
Congress, International Astronautical Federation, 2018.

[30] W. Rudin, Real and Complex Analysis, 3rd Ed. New York, NY, USA: McGraw-Hill,
Inc., 1987, ISBN: 0070542341.

[31] J. Brew, M. J. Holzinger, and S. R. Schuet, “Reachability subspace exploration
using continuation methods,” in AAS/AIAA Space Flight Mechanics Meeting, 2017.

[32] G. Farin, Curves and surfaces for computer-aided geometric design: a practical
guide. Elsevier, 2014.

278

[33] L. Pagani and P. J. Scott, “Curvature based sampling of curves and surfaces,” Com-
puter Aided Geometric Design, vol. 59, pp. 32 –48, 2018.

[34] M. D. Meyer, P. Georgel, and R. T. Whitaker, “Robust particle systems for cur-
vature dependent sampling of implicit surfaces,” in International Conference on
Shape Modeling and Applications 2005 (SMI’ 05), 2005, pp. 124–133.

[35] A. P. Witkin and P. S. Heckbert, “Using particles to sample and control implicit
surfaces,” in ACM SIGGRAPH 2005 Courses, ACM, 2005, p. 260.

[36] P. Jepp, J. Denzinger, B. Wyvill, and M. C. Sousa, “Using multi-agent systems for
sampling and rendering implicit surfaces,” in 2008 XXI Brazilian Symposium on
Computer Graphics and Image Processing, 2008, pp. 255–262.

[37] A. Y. Zomaya et al., “Parallel and distributed computing handbook,” 1996.

[38] W. Ren and E. Atkins, “Distributed multi-vehicle coordinated control via local
information exchange,” International Journal of Robust and Nonlinear Control:
IFAC-Affiliated Journal, vol. 17, no. 10-11, pp. 1002–1033, 2007.

[39] S. Poduri, S. Pattem, B. Krishnamachari, and G. S. Sukhatme, “Using local geome-
try for tunable topology control in sensor networks,” IEEE Transactions on Mobile
Computing, vol. 8, no. 2, pp. 218–230, 2009.

[40] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent networks.
Princeton University Press, 2010, vol. 33.

[41] K. Deb and K. Deb, “Multi-objective optimization,” in Search Methodologies: In-
troductory Tutorials in Optimization and Decision Support Techniques, E. K. Burke
and G. Kendall, Eds. Boston, MA: Springer US, 2014, pp. 403–449, ISBN: 978-1-
4614-6940-7.

[42] D. F. Lawden, Analytical Methods of Optimization. Mineola, NY: Dover Publica-
tions Inc., 2003.

[43] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2004.

[44] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods for
engineering,” Structural and multidisciplinary optimization, vol. 26, no. 6, pp. 369–
395, 2004.

[45] M. G. C. Tapia and C. A. C. Coello, “Applications of multi-objective evolutionary
algorithms in economics and finance: A survey,” in Evolutionary Computation,
2007. CEC 2007. IEEE Congress on, IEEE, 2007, pp. 532–539.

279

[46] Y.-Z. Luo, G.-J. Tang, and Y.-J. Lei, “Optimal multi-objective linearized impulsive
rendezvous,” Journal of guidance, control, and dynamics, vol. 30, no. 2, pp. 383–
389, 2007.

[47] P. O. Yapo, H. V. Gupta, and S. Sorooshian, “Multi-objective global optimization
for hydrologic models,” Journal of hydrology, vol. 204, no. 1-4, pp. 83–97, 1998.

[48] I. Das and J. E. Dennis, “Normal-boundary intersection: A new method for gen-
erating the pareto surface in nonlinear multicriteria optimization problems,” SIAM
journal on optimization, vol. 8, no. 3, pp. 631–657, 1998.

[49] Y. H. YV, L. S. Lasdon, and D. DA WISMER, “On a bicriterion formation of
the problems of integrated system identification and system optimization,” IEEE
Transactions on Systems, Man and Cybernetics, no. 3, pp. 296–297, 1971.

[50] A. Messac, “From dubious construction of objective functions to the application of
physical programming,” AIAA journal, vol. 38, no. 1, pp. 155–163, 2000.

[51] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjec-
tive genetic algorithm: Nsga-ii,” IEEE Transactions on Evolutionary Computation,
vol. 6, no. 2, pp. 182–197, 2002.

[52] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,” Swarm intel-
ligence, vol. 1, no. 1, pp. 33–57, 2007.

[53] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms in mul-
tiobjective optimization,” Evolutionary computation, vol. 3, no. 1, pp. 1–16, 1995.

[54] J. Rakowska, R. T. Haftka, and L. T. Watson, “Tracing the efficient curve for
multi-objective control-structure optimization,” Computing Systems in Engineer-
ing, vol. 2, no. 5-6, pp. 461–471, 1991.

[55] C. Hillermeier, Nonlinear multiobjective optimization: a generalized homotopy ap-
proach. Springer Science & Business Media, 2001, vol. 135.

[56] O. Schütze, A. Dell’Aere, and M. Dellnitz, “On continuation methods for the nu-
merical treatment of multi-objective optimization problems,” in Dagstuhl Seminar
Proceedings, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2005.

[57] M. J. Daskilewicz, “Methods for parameterizing and exploring pareto frontiers us-
ing barycentric coordinates,” PhD thesis, Georgia Institute of Technology, 2013.

[58] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley,
Calif.: University of California Press, 1951, pp. 481–492.

280

[59] K. Deb and D. K. Saxena, “On finding pareto-optimal solutions through dimen-
sionality reduction for certain large-dimensional multi-objective optimization prob-
lems,” Tech. Rep., 2005.

[60] M. Chen, “High dimensional reachability analysis: Addressing the curse of dimen-
sionality in formal verification,” PhD thesis, EECS Department, University of Cal-
ifornia, Berkeley, 2017.

[61] S. Chen, J. Montgomery, and A. Bolufé-Röhler, “Measuring the curse of dimen-
sionality and its effects on particle swarm optimization and differential evolution,”
Applied Intelligence, vol. 42, Apr. 2015.

[62] A. Martı́n and O. Schütze, “Pareto tracer: A predictor–corrector method for multi-
objective optimization problems,” Engineering Optimization, vol. 50, no. 3, pp. 516–
536, 2018. eprint: https://doi.org/10.1080/0305215X.2017.
1327579.

[63] J. Brew, M. Holzinger, and S. Schuet, “Using continuation methods to compute
convex reachable volume projections,” submitted to AIAA Journal of Guidance,
Control, and Dynamics, 2019.

[64] ——, “Decentralized techniques for sampling boundary of subspace reachable set,”
submitted to AIAA Journal of Guidance, Control, and Dynamics, 2019.

[65] M. J. Holzinger and D. J. Scheeres, “Reachability results for nonlinear systems with
ellipsoidal initial sets,” IEEE transactions on aerospace and electronic systems,
vol. 48, no. 2, pp. 1583–1600, 2012.

[66] A. Gambier and E. Badreddin, “Multi-objective optimal control: An overview,” in
2007 IEEE International Conference on Control Applications, 2007, pp. 170–175.

[67] S. Peitz and M. Dellnitz, “A survey of recent trends in multiobjective optimal
control—surrogate models, feedback control and objective reduction,” Mathemati-
cal and Computational Applications, vol. 23, no. 2, p. 30, 2018.

[68] I. M. Mitchell and S. Sastry, “Continuous path planning with multiple constraints,”
in 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475),
vol. 5, 2003, 5502–5507 Vol.5.

[69] A. Kumar and A. Vladimirsky, “An efficient method for multiobjective optimal
control and optimal control subject to integral constraints,” Journal of Computa-
tional Mathematics, pp. 517–551, 2010.

281

https://doi.org/10.1080/0305215X.2017.1327579
https://doi.org/10.1080/0305215X.2017.1327579

[70] M. J. Holzinger, D. J. Scheeres, and J. Hauser, “Reachability using arbitrary perfor-
mance indices,” IEEE Transactions on Automatic Control, vol. 60, no. 4, pp. 1099–
1103, 2015.

[71] M. J. Holzinger, D. J. Scheeres, and J. Hauser, “Optimal reachability sets using
generalized independent parameters,” in Proceedings of the 2011 American Control
Conference, 2011, pp. 905–912.

[72] A. E. Bryson and Y. C. Ho, Applied Optimal Control. New York: Blaisdell, 1969.

[73] I. M. Mitchell, “Comparing forward and backward reachability as tools for safety
analysis,” in Hybrid Systems: Computation and Control, A. Bemporad, A. Bic-
chi, and G. Buttazzo, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 428–443, ISBN: 978-3-540-71493-4.

[74] K. Sundaresan, “Smooth banach spaces,” Bull. Amer. Math. Soc., vol. 72, no. 3,
pp. 520–521, May 1966.

[75] H. Sussmann, “A general theorem on local controllability,” SIAM Journal on Con-
trol and Optimization, vol. 25, no. 1, pp. 158–194, 1987.

[76] J. C. Butcher, Numerical methods for ordinary differential equations. John Wiley
& Sons, 2016.

[77] R. M. Mattheij, “The conditioning of linear boundary value problems,” SIAM Jour-
nal on Numerical Analysis, vol. 19, no. 5, pp. 963–978, 1982.

[78] L. N. Trefethen and D. B. III, Numerical Linear Algebra. SIAM: Society for Indus-
trial and Applied Mathematics, 1997.

[79] D. Ruiz, “A scaling algorithm to equilibrate both rows and columns norms in ma-
trices,” Tech. Rep., 2001.

[80] H. Schaub and J. L. Junkins, Analytical Mechanics of Space Systems. Reston, VA:
AIAA Education Series, 2003.

[81] R. Beard, “Quadrotor dynamics and control,” Apr. 2019.

[82] F. Immler, M. Althoff, X. Chen, C. Fan, G. Frehse, N. Kochdumper, Y. Li, S. Mitra,
M. S. Tomar, and M. Zamani, “Arch-comp18 category report: Continuous and hy-
brid systems with nonlinear dynamics,” in ARCH18. 5th International Workshop on
Applied Verification of Continuous and Hybrid Systems, G. Frehse, Ed., ser. EPiC
Series in Computing, vol. 54, EasyChair, 2018, pp. 53–70.

282

[83] J. Gravesen, “Surfaces parametrized by the normals,” Computing, vol. 79, no. 2,
pp. 175–183, 2007.

[84] M. L. Sampoli and B. Jüttler, “Support function representation for curvature depen-
dent surface sampling,” in Applied and Industrial Mathematics in Italy III. World
Scientific, 2009, pp. 520–531. eprint: https://www.worldscientific.
com/doi/pdf/10.1142/9789814280303_0046.

[85] M. E. Muller, “A note on a method for generating points uniformly on n-dimensional
spheres,” Commun. ACM, vol. 2, no. 4, pp. 19–20, Apr. 1959.

[86] D. E. Knuth, The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental
Algorithms. Redwood City, CA, USA: Addison Wesley Longman Publishing Co.,
Inc., 1997, ISBN: 0-201-89683-4.

[87] X. Ge, F. Yang, and Q.-L. Han, “Distributed networked control systems: A brief
overview,” Information Sciences, vol. 380, pp. 117–131, 2017.

[88] F. Bullo, J. Cortes, and S. Martinez, Distributed control of robotic networks: a
mathematical approach to motion coordination algorithms. Princeton University
Press, 2009, vol. 27.

[89] N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and coordinated
control of groups,” in Decision and Control, 2001. Proceedings of the 40th IEEE
Conference on, IEEE, vol. 3, 2001, pp. 2968–2973.

[90] P. Ogren, E. Fiorelli, and N. E. Leonard, “Cooperative control of mobile sensor
networks: Adaptive gradient climbing in a distributed environment,” IEEE Trans-
actions on Automatic control, vol. 49, no. 8, pp. 1292–1302, 2004.

[91] Y. Hong, G. Chen, and L. Bushnell, “Distributed observers design for leader-following
control of multi-agent networks,” Automatica, vol. 44, no. 3, pp. 846–850, 2008.

[92] M. A. Batalin and G. S. Sukhatme, “Spreading out: A local approach to multi-robot
coverage,” in Distributed Autonomous Robotic Systems 5, Springer, 2002, pp. 373–
382.

[93] C. H. Caicedo-Nunez and M. Zefran, “A coverage algorithm for a class of non-
convex regions,” in Decision and Control, 2008. CDC 2008. 47th IEEE Conference
on, IEEE, 2008, pp. 4244–4249.

[94] L. Meirovitch, Methods of Analytical Dynamics, ser. Dover Civil and Mechanical
Engineering. Dover Publications, 2012, ISBN: 9780486137599.

283

https://www.worldscientific.com/doi/pdf/10.1142/9789814280303_0046
https://www.worldscientific.com/doi/pdf/10.1142/9789814280303_0046

[95] R. K I, G Deepa, and D. K. Namboori, Computational Chemistry and Molecular
Modeling- Principles and applications K.I.Ramachandran, G.Deepa and Krishnan
Namboori P.K.-Springer-Verlag GmbH, Germany: Springer International (2008).
Jan. 2008.

[96] D. Hardin and E. Saff, “Discretizing manifolds via minimum energy points,” No-
tices of the AMS, vol. 51, no. 10, pp. 1186–1194, 2004.

[97] W. M. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and Control: A
Lyapunov-Based Approach. Princeton University Press, 2008.

[98] The Finite Element Method for Solid and Structural Mechanics. Elsevier, 2014.

[99] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic
and stochastic gradient optimization algorithms,” IEEE Transactions on Automatic
Control, vol. 31, no. 9, pp. 803–812, 1986.

[100] D. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.

[101] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,” SIGMOD
Rec., vol. 24, no. 2, pp. 71–79, May 1995.

[102] P.-A. Absil, R. E. Mahony, and B. Andrews, “Convergence of the iterates of de-
scent methods for analytic cost functions,” SIAM Journal on Optimization, vol. 16,
pp. 531–547, 2005.

[103] G. A. Young and R. L. Smith, Essentials of Statistical Inference, ser. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
2005.

[104] E. B. Dam, M. Koch, and M. Lillholm, Quaternions, interpolation and animation.
Citeseer, 1998, vol. 2.

[105] D. Liberzon, Calculus of Variations and Optimal Control Theory: A Concise Intro-
duction. Princeton University Press, 2012.

[106] P. L. Yu, “Cone convexity, cone extreme points, and nondominated solutions in
decision problems with multiobjectives,” Journal of Optimization Theory and Ap-
plications, vol. 14, no. 3, pp. 319–377, 1974.

[107] M. Sakawa and H. Yano, “Generalized hyperplane methods for characterizing lambda-
extreme points and trade-off rates for multiobjective optimization problems,” Eu-
ropean Journal of Operational Research, vol. 57, no. 3, pp. 368 –380, 1992.

284

[108] J. M. Longuski, J. J. Guzmán, and J. E. Prussing, Optimal Control with Aerospace
Applications. Springer Nature, 2014.

[109] R. F. Stengel, Optimal Control and Estimation, ser. Dover Books on Mathematics.
Dover Publications, 1994.

[110] E. H. Spanier, Algebraic topology, 1. Springer Science & Business Media, 1989,
vol. 55.

[111] L. T. Watson, “Numerical linear algebra aspects of globally convergent homotopy
methods,” SIAM Review, vol. 28, no. 4, pp. 529–545, 1986.

[112] W. C. Rheinboldt, “Numerical continuation methods: A perspective,” Journal of
Computational and Applied Mathematics, vol. 124, no. 1, pp. 229 –244, 2000, Nu-
merical Analysis 2000. Vol. IV: Optimization and Nonlinear Equations.

[113] J. S. Arora, “Chapter 18 - multi-objective optimum design concepts and methods,”
in Introduction to Optimum Design (Fourth Edition), J. S. Arora, Ed., Fourth Edi-
tion, Boston: Academic Press, 2017, pp. 771 –794, ISBN: 978-0-12-800806-5.

[114] S. Bansal, M. Chen, S. L. Herbert, and C. J. Tomlin, “Hamilton-jacobi reachability:
A brief overview and recent advances,” CoRR, vol. abs/1709.07523, 2017. arXiv:
1709.07523.

[115] B. HomChaudhuri, M. Oishi, M. Shubert, M. Baldwin, and R. S. Erwin, “Comput-
ing reach-avoid sets for space vehicle docking under continuous thrust,” in 2016
IEEE 55th Conference on Decision and Control (CDC), 2016, pp. 3312–3318.

[116] J. Darbon and S. Osher, “Algorithms for overcoming the curse of dimensionality
for certain hamilton–jacobi equations arising in control theory and elsewhere,” Re-
search in the Mathematical Sciences, vol. 3, no. 1, 2016.

[117] M. J. Holzinger and D. J. Scheeres, “Reachability results for nonlinear systems with
ellipsoidal initial sets,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 48, no. 2, pp. 1583–1600, 2012.

[118] A. Messac, G. J. Sundararaj, R. V. Tappeta, and J. E. Renaud, “Ability of objective
functions to generate points on nonconvex pareto frontiers,” AIAA Journal, vol. 38,
no. 6, pp. 1084–1091, 2000. eprint: https://doi.org/10.2514/2.1071.

[119] C. W. Warren, “Global path planning using artificial potential fields,” in Proceed-
ings, 1989 International Conference on Robotics and Automation, Ieee, 1989, pp. 316–
321.

285

http://arxiv.org/abs/1709.07523
https://doi.org/10.2514/2.1071

[120] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using barrier cer-
tificates,” in International Workshop on Hybrid Systems: Computation and Control,
Springer, 2004, pp. 477–492.

[121] A. A. Kurzhanskiy and P. Varaiya, “Ellipsoidal techniques for reachability analysis
of discrete-time linear systems,” IEEE Transactions on Automatic Control, vol. 52,
no. 1, pp. 26–38, 2007.

[122] P.-J. Meyer, A. Devonport, and M. Arcak, “Tira: Toolbox for interval reachability
analysis,” in Proceedings of the 22Nd ACM International Conference on Hybrid
Systems: Computation and Control, ser. HSCC ’19, Montreal, Quebec, Canada:
ACM, 2019, pp. 224–229, ISBN: 978-1-4503-6282-5.

[123] B. Krauskopf, H. M. Osinga, and J. Galán-Vioque, Numerical continuation meth-
ods for dynamical systems. Springer, 2007.

[124] D. Folta and F. Vaughn, “A survey of earth-moon libration orbits: Stationkeeping
strategies and intra-orbit transfers,” in AIAA/AAS Astrodynamics Specialist Confer-
ence and Exhibit, 2004, p. 4741.

[125] W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross, “Low energy transfer to the
moon,” Celestial Mechanics and Dynamical Astronomy, vol. 81, no. 1-2, pp. 63–
73, 2001.

[126] R. W. Farquhar, D. W. Dunham, Y. Guo, and J. V. McAdams, “Utilization of li-
bration points for human exploration in the sun–earth–moon system and beyond,”
Acta Astronautica, vol. 55, no. 3-9, pp. 687–700, 2004.

[127] N. Bosanac, A. D. Cox, K. C. Howell, and D. C. Folta, “Trajectory design for a
cislunar cubesat leveraging dynamical systems techniques: The lunar icecube mis-
sion,” Acta Astronautica, vol. 144, pp. 283 –296, 2018.

[128] M. Althoff, S. Bak, X. Chen, C. Fan, M. Forets, G. Frehse, N. Kochdumper, Y.
Li, S. Mitra, R. Ray, C. Schilling, and S. Schupp, “Arch-comp18 category report:
Continuous and hybrid systems with linear continuous dynamics,” in ARCH18. 5th
International Workshop on Applied Verification of Continuous and Hybrid Systems,
G. Frehse, Ed., ser. EPiC Series in Computing, vol. 54, EasyChair, 2018, pp. 23–
52.

[129] D. Eppstein, “Zonohedra and zonotopes,” Online, 2019.

286

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Thesis Statement
	Subspace Reachable Sets
	Parallelized Distributed Control of Extremal Solutions
	Connections with Multi-objective Optimization
	Summary of Contributions and Relevant Literature

	Using Continuation Methods to Compute Reachable Volume Projections
	Sampling Methods for Subspace Reachability
	Unit Ball Constraints
	Norm Definitions and Differentiability Conditions
	Affine Transformations of Unit Ball
	Feasible Control Set
	Maximal Inner Product on Unit Ball

	Continuation Methods
	Backwards Reachability Methodology
	Unions of Reachable Volumes
	Accuracy Considerations
	Numerical Considerations
	Results
	Single DOF Double Integrator
	Zermelo's Problem
	Orbital Relative Motion
	Six DOF Quadrotor Model

	Conclusions

	Decentralized Techniques for Sampling of Subspace Reachable Sets
	Curvature-Based Sampling
	Distance-Based Sampling
	Distributed Control
	Spawning or Deleting Samples

	Results
	Search Angle Bisection using IQR
	Potential Function Gradient Descent Redistribution

	Conclusions

	Connections with Reachability Theory and Multi-objective Optimization
	Reachability optimal control formulation
	Multi-objective optimization Problem Formulation
	Joint Reachability and Multi-objective Optimization Formulation - HJB PDE
	Reduction of Joint Formulation to Minimum-Time Reachability
	Reduction of Joint Formulation to Multi-objective Optimization

	Solution Methods for Joint Reachability and Multi-objective Optimization Formulation
	Solving Reachability Problems with Multi-objective Optimization
	Solving Multi-objective Optimization Problems with Reachability

	Joint Reachability and Multi-objective Optimization Formulation - Continuation Solution Technique
	Results
	Hillermeier academic example
	Cislunar Space Problem Trajectory Optimization

	Conclusions

	Reachability Toolbox Comparison
	Conclusions
	Derivations
	Hamilton Jacobi Bellman PDE
	Minimum-time Reachability Optimal Control Problem First Order Necessary Conditions of Optimality
	Minimum-Time Optimal Control Policy for Control Affine Systems

	Reproducing Results
	Viscous Damper Linear System
	Zermeloâ•Žs Problem - Union of Initial Condition Sets
	Duffing Oscillator - Mesh Refinement
	Cislunar Problem - Reachability with Minimum Control Effort Cost
	Problem Setup
	Create Nonlinear Dynamics Model Using Python Symbolic Toolbox
	Perform Reachability Analysis

	SCoRe Documentation
	References

