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Designing the optimal lunar landing trajectory for a single thrust output, SmallSat form-
factor vehicle involves analyzing the trajectory from a deorbit burn (braking) and powered 
descent phase. Due to the need to reduce altitude and velocity while optimizing for maximum 
landing mass, the system is modeled with non-linear dynamics based on various assumptions 
which are described in the paper. Open-loop continuous propagation is used with optimal 
control theory to establish a trajectory that will be used as the source of truth and compared 
against the hardware implementation of this simulation. Because the designed control 
algorithm needs to be capable of flying on an on-board computer, a model predictive 
controller (MPC) was implemented to show how discrete real-time updates impact the 
optimization of the trajectory. MPC reduces the computational load through an online 
optimization algorithm instead of using a true optimization problem to produce a more flyable 
control scheme. To show the effects of running an MPC for a “flight-like” algorithm on a 
processor that would fit in a SmallSat form-factor, a Raspberry Pi 3B was used to demonstrate 
how varying the time horizon length and time-step frequency impact computing performance 
and fuel consumption. 

Nomenclature 

c = Control Horizon  
Δ = Constant Ratio  
f = Generic Function 
g = Earth Acceleration due to Gravity [m/s2]   
gm = Lunar (Moon) Acceleration due to Gravity [m/s2]   
H = Hamiltonian Function 
H0 = Initial Altitude of Powered Descent 
Isp = Specific Impulse [sec] 
J = Cost Function 
Ki = Open-Loop Optimal Control Constant (i = 1, 2, …) 
l = Length of the Pole 
λ = Lagrange Multiplier associated with f 
mtotal = Total Spacecraft Mass 
mdry = Dry Mass of Spacecraft  
mprop = Propellant Mass of Spacecraft   
mc = Mass of the Cart [kg] 
mp = Mass of the Pole [kg] 
μ = Lagrange Multiplier associated with ψ 
p = Prediction Horizon 
ψ = Terminal Constraints 
Ψ = Scalar Function associated with Hamiltonian Function 
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Q = Weight Matrix for the State in MPC Performance Index  
R = Weight Matrix for the Control in MPC Performance Index 
t = Time Step  
T = Terminal Descent Touchdown Time  
Ts = Sampling Time [sec] 
θ = Angle between Initial Downward Pole Location (+y) 
u = Input Vector 
u1 = Horizontal Normalized Thrust over Spacecraft Mass [m/s2] 
u2 = Vertical Normalized Thrust over Spacecraft Mass [m/s2] 
V = Value Function 
Δv = Delta-V Maneuvers  
W = Arbitrary Weightage Function 
x = State Vector 
x10 = Initial Horizontal Velocity Condition [m/s] 
x20 = Initial Vertical Velocity Condition [m/s] 
x1 = Spacecraft Horizontal Velocity [m/s] 
x2 = Spacecraft Vertical Velocity [m/s] 
x3 = Spacecraft Vertical Position (Altitude) [m] 
x4 = Spacecraft Horizontal Position (Downrange) [m] 
CLPS = Commercial Lunar Payload Services 
DDP  = Dynamic Differential Programming  
GTRI = Georgia Tech Research Institute   
ISRU = in situ Resource Utilization  
LLO  = Low Lunar Orbit 
LQR  = Linear Quadratic Regulator 
MPC  = Model Predictive Control   
PIL  = Processor in the Loop 
QP  = Quadratic Programming 
  

I.  Introduction 

 With the increased commercial funding and human activity around the lunar sphere, the ability for small companies 
and university programs to conduct experiments will become more prevalent. This rapid growth and investment are 
motivated by global interest to return humans to the Moon and establish a permanent working presence there. While 
there are significant nationally driven activities such as the Artemis program, ESA’s Lunar Pathfinder, and China’s 
Chang’e mission, there has been an equal diversification in enabling the finances for private companies to produce 
orbiters/landers that will operate in the cislunar domain. These larger orbiters & landers designed by companies such 
as Intuitive Machines and Astrobiotic Technology have received award funding through the Commercial Lunar 
Payload Services (CLPS) contract. These companies will open the space for smaller payloads and SmallSats to 
rideshare to the Moon to save on fuel expenditure and financial costs. The ability to harness Low Lunar Orbit (LLO) 
delivery services means low-cost scientific demonstrations for in situ resource utilization (IRSU) can occur more 
frequently.  
 To conduct such demonstrations but in a more cost-effective manner involves accepting a deployment release in 
LLO and then performing relevant orbital maneuvers that will allow SmallSat-sized landers to touchdown on the lunar 
surface. Modern spacecraft maneuvers are automated allowing for braking phase and powered descent phase burns 
without human input. Furthermore, as these orbital maneuvers are done autonomously, they are based on closed-loop 
control. The difference between open-loop and closed-loop control is the ability to use the current estimated state to 
help inform the control sequence while factoring in potential external disturbances. Allowing a closed-loop control 
environment to dictate the ability for a spacecraft to reach the desired landing spot on the Moon will enable more 
reliable landing capabilities.  



II.  LISA RUE Mission Concept 

A. Purpose of Concept Study 
Through a GTRI conceptual study, the LISA RUE Mission Concept was developed as a potential mission profile 

to land on the surface of the Moon near the South Pole region. LISA RUE stands for the Lunar in situ Atomic Resource 
Utilization Experiment. The goal of LISA RUE is to land a SmallSat-sized spacecraft on the lunar surface to conduct 
in situ experiments. Some of the main driving requirements of this mission involve the following metrics: 

a) Using a single thrust output engine land, a SmallSat-sized spacecraft with sufficient propellant to conduct Δv 
maneuvers through necessary orbit changes. 
b) Upon landing extract from the lunar regolith Si-, Fe-, Ni-, K-, Ca- (important metal elements) that can be used 
for optical and glass applications.  
c) Once the precious metals have been processed, the spacecraft will attempt a “ground-based” solar cell 
fabrication for the inclusion on the SSTEF-1. 

From a big perspective, the LISA RUE mission once arriving on the lunar surface will show a demonstration of how 
to mine lunar resources for space-based manufacturing. Proving such a capability will open the door for other precious 
mineral-based manufacturing. However, prior to any lunar surface processing, LISA RUE needs to reach the surface 
of the lunar surface safely. 

B. Mission Assumptions 
Before diving into the specifics of the closed-loop dynamics, some initial conditions and constraints of the 

modeling need to be presented. The following analysis was done assuming that the Intuitive Machine Nova-C lander 
used for “orbital delivery services” will drop off LISA RUE at a 100 km LLO [11]. By choosing not to land on the 
lunar surface with Nova-C, the monetary budget saving will be ~$100K for LLO insertion versus $1M for lunar 
surface descent. However, descending from 100 km LLO to the lunar surface involves propellant expenditure and 
associated mass changes. Thus, the following assumptions were made regarding the spacecraft mass: 

a) Knowing that the lander needs to accommodate the processing space for a mining and production payload, a 
SmallSat ESPA Class Satellite was selected in terms of maximum mass. Hence, the total mass (𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) will be 
constrained at 180 kg.  
b) To provide enough bandwidth for potential propellant mass required the dry mass of the spacecraft (𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑) 
will be capped at 80 kg.  
c) Lastly, in the spirit of reducing the complexity of the dynamics of the powered descent, the mass of the 
spacecraft was kept constant and modeled as a point mass. The reduction of the propellant mass consumption was 
not included even though the propellant was approximately half of the spacecraft’s total mass. In the future, this 
will be remediated for more accurate results, but holding mass fixed allowed the analysis to baseline some useful 
metrics.  

Furthermore, in terms of the engine characteristics used for maneuvering, the specific impulse (𝐼𝐼𝑠𝑠𝑠𝑠) selected was based 
on what was used for the JPL Lunar Flashlight monopropellant chemical propulsion system developed by Georgia 
Tech. 𝐼𝐼𝑠𝑠𝑠𝑠 was set to 202 seconds based on the Lunar Flashlight characteristics [5].  

C. Mission Concept of Operations (CONOPs) 
The LISA RUE mission will be inserted at 100 km LLO altitude from the Intuitive Machines lander before 

undergoing “Phase II” and “Phase III” that will allow it to successfully descend to the lunar surface. After arriving in 
LLO, LISA RUE will perform some initial identification of landing spots and then calculate the ideal descent trajectory 
based on the ideal landing spot and current position in LLO. As shown in Figure 1 and Figure 2, LISA RUE will go 
from 100 km to 5 km through the braking phase. The braking phase is critical because it will allow the spacecraft to 
substantially slow down to a velocity that sets up the spacecraft to do a controlled powered descent. The focus of this 
analysis is to understand the closed-loop simulation of LISA RUE in the powered descent phase, which begins at 5 
km.  



 
Figure 1. Lunar Descent CONOPs post Intuitive Machines Deployment into LLO [3]. 

 

 
Figure 2. 2D View of the Lunar Surface Approach Phases. 

 
Upon completion of the braking phase, the powered descent will allow a soft landing of the spacecraft. To 

determine how the powered descent will be controlled, initial conditions needed to be selected. The initial conditions 
for the powered descent were determined from the braking phase simulation which was completed in a previous 
analysis done by another student. The two-dimensional final values of braking phase became the initial conditions for 
the powered descent. To learn more about the braking phase one can reference this paper by Ramanathan and Lightsey 
[14]. While it would be ideal to achieve the horizontal and vertical velocity of 0 m/s, the final desired values were 
bounded for soft constraints under the assumption that the LISA RUE spacecraft will have landing gear than can brace 
the impact force that comes from a non-zero terminal velocity.  

Braking 
Phase 



III.  Spacecraft Model 

A. Open-Loop Dynamical Model 
The descent and landing of the spacecraft are depicted in Figure 3. The two-dimensional planar motion of the 

spacecraft, which is modeled as a point-mass, is governed by the following equations of motion: 
 

 𝑥̇𝑥1 = 𝑢𝑢1 

𝑥̇𝑥2 = 𝑢𝑢2 − 𝑔𝑔 

𝑥̇𝑥3 = 𝑥𝑥2 

𝑥̇𝑥4 = 𝑥𝑥1 

 

 

 

(1) 

 

 
 

Figure 3. 2D Lunar Descent Free Body Diagram. 
 

Here, 𝑥𝑥1is the spacecraft’s horizontal velocity [m/s], 𝑥𝑥2 is vertical horizontal velocity [m/s], 𝑥𝑥3 is the spacecraft’s 
landing altitude also known as vertical position [m], and 𝑥𝑥4 is the spacecraft’s downrange also known as horizontal 
position [m]. The horizontal and vertical accelerations, also the controlled inputs, are the gimbaled engine thrust 
normalized over the constant mass of the spacecraft. In this case the horizontal normalized input thrust is 𝑢𝑢1[m/s2] 
and the vertical normalized input thrust is 𝑢𝑢2[m/s2]. In this optimization problem, the terminal value for the 
downrange is unconstrained. All the dynamics were derived from the 2011 AIAA Powered Descent paper written by 
Allan Y. Lee [10].  

Furthermore, the initial conditions of 𝑥𝑥1, 𝑥𝑥2, and 𝑥𝑥3 are associated with 𝑥𝑥10, 𝑥𝑥20, and 𝐻𝐻0 respectively. The 
following are the initial and final conditions that are used for both the open-loop and closed-loop simulation. As a 
reminder, the initial horizontal and vertical velocity came from the braking phase simulation done in prior work.  
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Now to solve these dynamics, there needs to be a well-posed optimization problem, where a cost function will be 
minimized. The purpose of the cost function is to minimize the least sum of squares of the landing/terminal velocity 
at T and fuel consumed which is the summation of the normalized thrust.  
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The first component of the cost function is related to the spacecraft’s terminal velocity at the final time. The vertical 

velocity of the spacecraft at the time of touchdown needs to be minimized because that drives the amount of energy 
that the landing gear of the spacecraft needs to absorb. It is important to minimize this because more energy can be 
converted into forward velocity that can cause the spacecraft to tip over upon touchdown. The second component of 
the cost function is attributed to the consumed fuel by the time touchdown occurs. The weighting parameter, W, in 
Eq. 3 holds units of seconds and the purpose is to allow the user to determine how much emphasis to place on the 
consumed fuel in the open-loop analysis. The weighting factor cannot be zero because that would lead to an ill-posed 
problem since the cost function is typically minimized around the variable control input.  

The formulation of the optimal control problem comes from solving the classical calculus of variations technique 
[4]. The following is the general optimal control problem: 
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In this case, 𝑥𝑥 is the state vector and 𝑢𝑢 is the controlled input vector. The following are the conditions required 

for the optimization problem where the use of scalar functions H (Hamiltonian function) and Ψ are required. In this 
derivation, 𝜆𝜆 is the Lagrange multipler variable that associated with 𝑓𝑓 and 𝜇𝜇 is the multiplier that coincides with 𝜓𝜓. 

 
 𝜆𝜆𝑇𝑇 = −𝐻𝐻𝑥𝑥 

𝐻𝐻𝑢𝑢 = 0 

𝜆𝜆𝑓𝑓𝑇𝑇 = (Ψ𝑥𝑥)𝑓𝑓 
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Ψ�𝑥𝑥𝑓𝑓 , 𝜇𝜇� = 𝜙𝜙�𝑥𝑥𝑓𝑓� + 𝜇𝜇𝑇𝑇𝜓𝜓�𝑥𝑥𝑓𝑓� 

 

 

 

 

(5) 

  
Solving this optimal control problem gives the following input control laws: 
 

 𝑢𝑢1(𝑡𝑡) = −𝐾𝐾1 = constant 

𝑢𝑢2(𝑡𝑡) = 𝐾𝐾2𝑡𝑡 − 𝐾𝐾3 = linearly proportional to time 

 

(6) 

 
Optimal control laws are dictated by the constants solved through the methodology explained above. The 

horizontal component of the normalized thrust is kept constant while the vertical component varies linearly with 
time. The goal of the vertical component is to reduce the touchdown velocity to zero while minimizing fuel 
consumption. The following is how the constants were solved: 
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Using the solved constants, the velocity and position equations can be constructed. The following expressions 

are what enabled the open-loop simulation results and discussions by varying weights and starting altitudes.  
 

 𝑥𝑥1(𝑡𝑡) = −𝐾𝐾1𝑡𝑡 + 𝑥𝑥10 
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 The summated control inputs, which are the normalized thrust values, over the course of the entire trajectory 

one can help calculate the expended fuel cost for this open-loop optimization problem: 
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B. Closed-Loop Dynamical Model 
In the previous section, the process to formulate an open-loop control system for two-dimensional lunar descent 

dynamics was shown. Optimal control typically refers to open-loop control, while closed-loop control (which will be 
further expanded into a framework called Model Predictive Control) allows one to design a more robust control 
algorithm. In optimal control a sequence of input signals is computed that remain predetermined throughout the course 
of the entire system execution. However, when factoring in the real world, the input sequence calculated through 
optimal control is not sufficient because there is typically a deviation between the predicted and the actual system 
behavior. This deviation can be attributed due to actual system dynamics and model mismatches as well as external 
disturbances such as drag, mechanical constraints, etc. When just using an open-loop model, one can accept the 
deviation; however, a closed-loop model allows the input to be updated through the error correction. As will be 
discussed in the MPC section, Model Predictive Control, a form of closed-loop control, allows the system to recompute 
the optimal input sequence at a finite time step by reevaluating the initial conditions by looking the state deviation.  

To set up the lunar dynamics, the equations of motion need to be converted into a state-space model. Because lunar 
gravity is an external constant not tied to state variable, it needs to be modeled at an external disturbance vector. The 
general state space model is structured as: 𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝑤𝑤 and 𝑦𝑦 = 𝐶𝐶𝐶𝐶 + 𝐷𝐷𝐷𝐷. 
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(10) 

 
 This state space model, to fit into the MPC framework, had to be augmented such that the disturbance vector was 
incorporated into the standard state space matrices. The following is the line of code in MATLAB that allowed the 
augmentation process: 
 
>> LunarMPCModel = ss(A,[B F],C,[D zeros(size(C,1),size(F,2))]); 

C. Open-Loop Simulation Results 
Referencing Section III.A for Open-Loop Dynamics, the following are the output results to understand how 

varying different unconstrained variables impacts the trajectory and fuel consumption.  
 

 
 

Figure 4. Altitude vs. Time (left) and Velocity vs. Time (right) for Open-Loop Analysis. 
 

    
 

Figure 5. Acceleration vs. Time (left) and Mass of Propellant vs. Weight Factor for Open-Loop Analysis. 
 
 



 Given the final values seen from Figure 4 – the touchdown performance in terms of final altitude and velocity 
achieved are all within the performance metrics dictated for the final state. The variation of magnitudes for the 
touchdown velocities are due to the weighting factor, 𝑊𝑊. The large weight of 𝑊𝑊 will contribute to a large touchdown 
velocity but less fuel consumption. The reason for this is because the larger weightage of 𝑊𝑊 will ensure less normalized 
thrust usage, however, less aggressive thrust usage will cause the spacecraft to have a large touchdown vertical velocity 
and be unable to slow down as much. Essentially, only a 𝑊𝑊 = 1 weightage allows the touchdown to reach a near-zero 
velocity, otherwise a negative velocity arises meaning that the spacecraft goes back up in altitude which is unfeasible 
with the landing requirement.  
 Figure 5 shows that the weightage does not impact the horizontal and vertical acceleration (also known as 
normalized thrust), which then translates into less than 1.5 kg difference in mass of propellant calculated. Given that 
the only state being impacted by weight significantly is vertical velocity this helps drive that a weightage of one is the 
best selection. Furthermore, the mass of propellant was between 62 to 63 kg when added to the 80 kg dry mass ensures 
that the spacecraft sizing does not violate the 180 kg ESPA-class total mass cap. 
 

IV.  Using Model Predictive Control to Simulate Closed-Loop Dynamics 

A. Model Predictive Control Algorithm 
Model Predictive Control refers to the control problem that takes a linear time invariant (LTI) system whose 

dynamics have been discretized at certain a specific time sampling value. The model designed is subjected to some 
uncertainty in the form of unknown external disturbances or imprecise modeling of the system mechanics. The system 
dynamics are described in an LTI state-space model described in Section II.B.  

A classic regulating controls problem such as Linear Quadratic Regulator (LQR) is simply concerned with 
allowing a system state to achieve a desired setpoint/final value using an acceptable amount of control effort. In the 
case of LQR and MPC, both are centered around calculating the control input by minimizing a performance index 
also known as a quadratic cost index which takes the form in the equation below. 𝑄𝑄 and 𝑅𝑅 are weighted matrixes that 
place emphasis on specific states and inputs in the cost [9]. 

 
 

𝐽𝐽(𝑥𝑥0, {𝑢𝑢0,𝑢𝑢1,𝑢𝑢2 … }) = ��‖𝑥𝑥𝑘𝑘‖𝑄𝑄2 + ‖𝑢𝑢𝑘𝑘‖𝑅𝑅2�
∞

𝑘𝑘=0

 
 

(11) 

 
With the increase in computing power on flight computers, implementing MPC has become significantly more 

feasible as a close-loop control system. In Figure 6, the Model Predictive Controller workflow is depicted. MPC 
essentially takes in a setpoint or reference value, typically the final state, and attempts to iterate until a minimized 
input helps reach that state. The optimizer minimizes the cost function and then within the controller the predicted 
output is compared against the setpoint. The control input is computed at the sampling interval based off the parameters 
which minimize the performance index. Factoring in an optimizer allows MPC to minimize the input and then adjust 
the input based on external disturbances.  

The main advantage of MPC involves its ability to handle constraints and heed them in during the optimization 
process. This is especially important with lunar descent dynamics where going past lunar surface due to normal thrust 
inputs is not a feasible option to achieve zero touchdown velocity. The ability to change the optimal manipulated input 
that satisfies the active constraints at each time step makes MPC a robust controller method [7] [8].  



 
 

Figure 6. Model Predictive Controller Workflow. 
 

 Another fundamental aspect of MPC are the parameters that can be tuned to help the controller reach the desired 
setpoint within the constraints. Prediction horizon (𝑝𝑝), control horizon (𝑐𝑐), and sampling time (𝑇𝑇𝑠𝑠) all impact 
computational performance and the ability for the control to converge about the desired setpoint. Specifically for this 
project there was not much analysis done on optimal selection of parameters and more of a trial-and-error method 
was employed. However, here are some metrics and explanations as to how 𝑝𝑝, 𝑐𝑐, and 𝑇𝑇𝑠𝑠 can be selected [19]: 

a) Sample time (𝑇𝑇𝑠𝑠) is typically a starting guess that allows about 10 to 20 samples covering the rise time of the 
open loop plant.  
b) Prediction horizon (𝑝𝑝) is the number of samples over which the controller calculates minimizing the cost. It 
is typically set so that it captures the complete response till steady of the system dynamics. Typically, a larger 
prediction computational performance. 
c) Control horizon (𝑐𝑐) is a small subset of control samples used to minimize the cost over the prediction horizon. 
The controller optimizes over a receding horizon and can typically be as long as the prediction horizon but is 
usually kept much shorter since one is just trying to capture the portion of the state that is most turbulent. The 
length of the control horizon also impacts computational performance.  
 

 
 

Figure 7. Variable Parameters of Model Predictive Control [16]. 



 Given the progression of the project, for the lunar dynamics MPC modeling, the MATLAB toolbox was utilized. 
The MATLAB MPC toolbox allowed the abstraction of the controller mechanics through in-built functionality. In 
Engel 2022, the toolbox was used to model the nonlinear dynamics of a blunt body Mars entry vehicle. However, 
given the need to implement the controller on an embedded system an MPC algorithm was designed from the 
ground-up to simulate cart-pole dynamics – this will be elaborated upon in future sections [6] [12].  

B. Dynamic Differential Programming (DDP) Optimizer 
Given that the foundation of DDP is based on LQR, it was decided to use DDP as the optimizer in the custom 

MPC algorithm that was tested and validated using cart-pole dynamics. DDP is extremely useful because it scales 
linearly with time and is used specifically for trajectory optimization, while QP is just a general solver because it finds 
controls and states simultaneously. Unlike LQR, DDP solves optimal control problems through solving localized cost 
function and dynamics and then iteratively solving the sequence recursively through the time steps.  

The algorithm for DDP is significantly expanded upon in Tassa, et al. 2014, however the following are important 
equations that allow the iterative optimizer of the input to occur. The value function is the cost function evaluated at 
a fixed state. Thus, at each time step in MPC has an associated state at which the theoretical minimum input is 
calculated for a state [17]. 
 

 𝑉𝑉(𝑥𝑥, 𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢  𝐽𝐽𝑖𝑖(𝑥𝑥,𝑢𝑢𝑖𝑖) (12) 

 
Dynamic 
The DDP algorithm essentially solves an optimal control problem by “recursively solving the value-function for a 
single optimal control problem, proceeding backwards in time, hence the name dynamic programming”. By 
minimizing control at each time step and then calculating recursively backwards, DDP can build the full sequence of 
controls for a specific prediction horizon.  
 

 𝑉𝑉(𝑥𝑥, 𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢 [𝑙𝑙(𝑥𝑥,𝑢𝑢) + 𝑉𝑉(𝑓𝑓(𝑥𝑥,𝑢𝑢), 𝑖𝑖 + 1)] → Backwards Recursive Stepping 

𝑉𝑉(𝑥𝑥,𝑛𝑛) = 𝑙𝑙𝑓𝑓(𝑥𝑥) → Base Case 

 

(13) 

 
Differential 
The differential aspect of DDP essentially solves an equivalent optimal control off a nominal trajectory and then 
compare the two value functions. The difference in the perturbations is the differential or change. The value function 
listed below shows the general formulation accounting for the perturbation: 
 

 𝑉𝑉(𝑥𝑥, 𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑚𝑚𝛿𝛿𝛿𝛿 [𝑙𝑙(𝑥𝑥� + 𝛿𝛿𝛿𝛿,𝑢𝑢� + 𝛿𝛿𝛿𝛿) + 𝑉𝑉(𝑓𝑓(𝑥𝑥� + 𝛿𝛿𝛿𝛿,𝑢𝑢� + 𝛿𝛿𝛿𝛿), 𝑖𝑖 + 1)] (14) 

C. Quadratic Programming (QP) Optimizer 
In the MATLAB MPC toolbox, a QP optimizer is utilized. Because the toolbox QP solver converts a linear MPC 

optimization problem to a general QP problem, it can minimize the performance index it creates. QP is significantly 
smarter at dealing with constraints than DDP, but not as open source in terms of mathematical formulation as DDP.  
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𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏 

 
 

(15) 

 
In the problem stated above, x is the solution vector, H is the Hessian matrix that represents the dynamics and 

weighting matrices at a fixed time stamp, A is the matrix for constraints, and b and f are other vectors [13].  

D. Prediction Horizon and Sampling Time Impacts on Lunar Dynamics 
After designing an MPC controller using the toolbox, the prediction horizon, control horizon, and sampling time 

were tuned to achieve a trajectory that did not violate the hard altitude and velocity constraints. As can be seen between 
Figures 8 - 10, not having properly tuned prediction horizon and sampling times can lead to overshooting and 
constraint violations.  
 



 
 

Figure 8. Model Predictive Control for Altitude vs. Time while varying Prediction Horizon (left) and 
Sampling Time (right) 

 
 The control parameters set for the lunar dynamics simulation were 𝑝𝑝 =  50, 𝑐𝑐 =  10, and 𝑇𝑇𝑠𝑠 = 1.0. These 
parameters lead to the quickest descent while not violating the 0 km hard constraint for altitude final value. Even 
though all the prediction horizon options: 10, 20, and 50 reached 0 km around a similar touchdown time, it was 
evident that not looking far enough ahead till more transient response appears caused the system to violate the 
altitude constraint.  
 Regarding the sampling time, having a significantly smaller sampling time impacts the total prediction horizon 
length and total control horizon length. Hence, a similar issue arises with a smaller sampling time the controller 
loses the ability to look ahead enough with its control input optimization. However, having a large sampling time at 
5.0 seconds did not violate the altitude constraint but took significantly longer to descend and furthermore caused 
the spacecraft to raise in altitude prior to beginning in descent which would lead to more fuel consumption.  

 

 
 

Figure 9. Model Predictive Control for Velocity vs. Time while varying Prediction Horizon (left) and 
Sampling Time (right) 

 



   
 

Figure 10. MPC for Acceleration vs. Time while varying Prediction Horizon (left) and Sampling Time (right) 
 
For both velocity and input acceleration (normalized thrust) the larger sampling time led to a significantly unstable 

input normalized thrust and vertical velocity. Such an erratic thrust output is not possible with actual flight hardware. 
The prediction horizon variations did not have drastic differences in output for velocity and acceleration but when 
viewed from the lens of the altitude profile it illuminated what the proper tuned value was required.  

V.  Implementation of MPC on Embedded Hardware 

A. Executable Development in MATLAB 
Most controllers, when only implemented on a host machine, do not give context to how it could potentially be 

implemented on an actual spacecraft. Thus, seeing how the model predictive controller would operate on an actual 
embedded system gives insights into parameters impacting computational performance in a flight-like setting. High-
level, running a standalone executable, also known as processor-in-the-loop (PIL) testing, gives the engineering team 
confidence that the flight software runs correctly by verifying the code’s execution on the target processor. PIL mode 
allows satisfies verification objectives without manual code review. Without having the knowledge of programming 
in C, one can utilize the MATLAB Autocoder feature to generate code that could turn into an executable and the PIL 
confirms that the code generation works correctly. By running executables on the target, one can discover things like 
unexpected behavior due to cross-compiler settings tack overflows due to smaller memory on-target, etc.  

 
 

Figure 11. MATLAB Execution Generation Process. 
 
 



The workflow shown in Figure 11 involves using the MATLAB Autocoder to generate compatible C files. Then 
the MinGW-w64 GCC compiler generates an executable or binary that will then be subsequently executed on the 
Raspberry Pi 3B. The specific compiler listed is important to generate an executable that can successfully be run on 
an ARM Cortex-A53 processor. The MATLAB code was outfitted with opening a text file where the data from the 
algorithm is stored for post-processing. Then, through a secure copy, the data can be brought back onto the host 
computer to post-process the data.  
 

 
 

Figure 12. Successful Executable (.elf) Build (left) and Data Dump into Text File on Pi (right). 
 

 The figure above the successful executable build through MATLAB’s PIL infrastructure and furthermore the state 
and input output in a data file that could be viewed on the Raspberry Pi.  

B. Space Radiation Considerations 
While the Raspberry Pi does provide the platform to see how an embedded system reacts to executing a flight-like 

controller, one would be remiss to not account for radiation impacts on electronics aboard a lunar mission. Given 
previous studies done on the Raspberry Pi’s ability to handle radiation, it is very clear that the Pi can only operate in 
Low Earth Orbit (LEO) rather than Low Lunar Orbit. The cislunar space experiences approximately 150 times more 
radiation than Low Earth Orbit. NASA typically requires LEO SmallSat avionics components to withstand 20-50 krad 
total dose of radiation with an 10-7 to 10-8 errors/bit-day. Furthermore, Figure 13 shows that the Raspberry Pi has the 
ability to boot up and run normally up through 40 krad and levels beyond that lead to peripheral connections 
experiencing issues [18].  

 

 
 

Figure 13. Testing Data for Raspberry Pi Boot-Up based on Radiation Doses. 
 
 Knowing that the Raspberry Pi has limitations in terms of operating with robust reliability to higher levels of 
radiation, it begs the question what could potentially be a better alternative. Given the command and data handling 
success of the Lunar Flashlight mission, the use of the JPL Sphinx Board would be a good alternative to further the 
testing of the MPC algorithm on a board that can handle lunar levels of radiation. The Sphinx Board has several space-
grade parts that performance flawlessly at minimum 30 krads of radiation. Furthermore, the GR72 processor itself has 
a tolerance up to 300 krads. In terms of dealing with bit flipping due to radiation, the Sphinx Board carries up to four 
copies of the flight software executable image. Hence if a reset occurs, the Sphinx can reflash an uncorrupted version 
of the flight software [15]. 



C. Cart-Pole Dynamics  
Because of the decision to use the MPC toolbox through MATLAB and the added complexity of requiring custom 

MEX functions to explain the toolbox functions, a simpler problem was implemented with verified results to show 
how MPC would run using DDP for cart-pole dynamics on a custom, “written from scratch” algorithm. The goal of 
the controller was to stabilize the pole vertically upright but with no change to position and angular or linearly rates. 
The final angular position vertically would be equivalent to 180 degrees.  

The initial state is 𝑥𝑥0 = [0 0 0 0]𝑇𝑇 and the final state is 𝑥𝑥𝑓𝑓 = [0 𝜋𝜋 0 0]𝑇𝑇.  The following are the cart-
pole dynamics used for the system propagation with the additional Jacobian (also known as the gradient) of the system 
dynamics and control input. The Jacobian is required to linearize the cart-pole nonlinear dynamics so that the MPC 
system is capable of iterating.  
 

 
 

Figure 14. Cart-Pole System. 
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The decision to use DDP was addressed above, but the following figure shows how the MPC algorithm flowed.   

 



 
 

Figure 15. MPC-DDP Code Workflow. 
 

 The MATLAB code was structured in an object-oriented programming manner. The main function initializes the 
cart pole dynamics as an object and passes the initial and final conditions. The cost function object was created and 
passed the state running cost matrix, input running cost matrix, and final state difference cost matrix. Then, variable 
allocation occurred for all the inputs and states to be stored at each DDP iteration. The DDP process, which was 
described early, begins iterating to optimize the state closest to the final desired value and then outputs the correcting 
gain. Then the MPC retains the control horizon sized input to feed back into the simulation until the state is equal to 
the desired final state based on the convergence threshold [2].  

VI.  Comparison of MPC on MATLAB versus Embedded Hardware 

A. Validation & Verification Metrics 
To validate that the MPC algorithm in MATLAB autocoded to a functional executable, the algorithm was run both 

on MATLAB as well as the Raspberry Pi. Because the operating system of the Raspberry Pi, through the MATLAB 
add-on package, is a 32-bit system, the assumption is that the bit structure follows the IEEE 754 Float 32-bit Single 
Precision. Given the size of the mantissa in the IEEE 754 structure, the approximate absolute normalized range is from 
10-38 to 1038 in terms of the value of the number. However, the most important aspect to validate the results is ensuring 
that the precision between the MATLAB and the Pi results match to a minimum of seven decimal digits. That order 
of precision allows the difference between the Pi and MATLAB to be within an acceptable range.  

B. Prediction Horizon Impacts  
The goal of this section and the following is to show the results of varying one of the MPC parameters and the 

results from a MATLAB run and a Raspberry Pi execution. When taking the difference between the MATLAB and 
Raspberry Pi data there was no difference – the error was exactly zero up to the required seven digit 32-bit precision.  

For the cart-pole dynamics the system almost achieved the setpoint in the fastest time span with the following 
parameters values: 𝑝𝑝 =  150, 𝑐𝑐 =  50, and 𝑇𝑇𝑠𝑠 = 0.02. When the prediction horizon was equal to 250, it did reach the 
setpoint much faster, but because of the significantly larger prediction horizon, the computational time which can be 
seen in Section VI.D was much longer. On the other hand, a prediction horizon of 60 did not give the system enough 
“prediction runway” to see the state achieve transient response. As a result, the cart-pole system was not able to reach 
the desired setpoint. Trying to strike a balance between the parameters and the computational load is critical when 
trying to implement an MPC controller on actual flight hardware. 
 



  
 

Figure 16. Varying the Prediction Horizon for State and Control Input in MATLAB Execution. 
 

  
 

Figure 17. Varying the Prediction Horizon for the State and Control Input in Raspberry Pi Execution. 

C. Control Horizon Impacts 
Like the process conducted for the prediction horizon verification, there was virtually no difference between the 

Raspberry Pi and MATLAB executions. The level of precision between both styles of running the MPC-DDP 
algorithm shows the ability for the process to successfully run on a flight-like processor.  

As mentioned earlier, the control horizon is essentially what is fed into the final state and control input at a specific 
time step. When the control horizon is too small (like 10 steps) for a prediction horizon of 150, the system has an 
unstable response and does not achieve the desired setpoint. The outcomes of not properly tuned prediction and control 
horizons are similar in nature. Conversely, a very large control horizon does allow the system to reach a significantly 
closer final value, in terms of deviation from the setpoint, however the computation intensity of calculating a much 
large control horizon impacts computational performance. In comparison to a control horizon of 50 steps, the 140 
version does minimize the error more which leads to a potential trade-off when extrapolated to the lunar descent 
dynamics. The state vector does not have much of a difference between angular position and rate and the 50 steps 
control horizon is better for the lateral position and rate. As a result, the need for a control horizon that is almost the 
same length as the prediction horizon is unnecessary. 

In a real-life flight setting, picking a prediction and control horizon that allows the spacecraft to land safely within 
the landing margin of error and not violating the processor’s memory capabilities is a critical decision.  



    
 

Figure 18. Varying the Control Horizon for the State and Control Input in MATLAB Execution. 
 

  
 

Figure 19. Varying the Control Horizon for the State and Control Input in Raspberry Pi Execution. 

D. Runtime Differences  
Another important aspect of understanding controller executions on a SmallSat tailored processor involves looking 

at runtime speeds. In a situation like powered descent, the ability to make quick, real-time adjustment to the reaction-
control system to prevent a sideways landing or impact upon landing is for a processor to be able to compute at a 
relatively fast speed. To see how quickly the Raspberry Pi could run a 3-minute cart-pole dynamic simulation, the 
“time” function was used to register the speed and a similar mechanism with MATLAB through the timeit() function. 
The timeit() function in MATLAB runs the algorithm several times and returns a median time.  
 

 



 
 

Figure 20. Timing Execution on Pi (left) and MATLAB (right) 
 

The following tables show the runtime differences between the Pi and MATLAB when varying the prediction 
horizon and control horizon as discussed in the previous sections.  
 

Table 1. Comparison between MATLAB and Raspberry Pi Run Times for Prediction Horizon Changes 
 

Prediction 
Horizon 

MATLAB 
Runtime [sec] 

Raspberry Pi 
Runtime [sec] 

60 0.1153 0.174 
150 0.8428 0.209 
250 1.5538 0.258 

 
Table 2. Comparison between MATLAB and Raspberry Pi Run Times for Control Horizon Changes 

 
Control  
Horizon 

MATLAB 
Runtime [sec] 

Raspberry Pi 
Runtime [sec] 

10 0.2636 0.170 
50 0.8428 0.209 

140 0.2752 0.166 
 

The comparison shows that the MATLAB execution was slower than the Raspberry Pi. This is interesting to 
document because in practice, a Windows 64-bit host computer with an Intel Core i7 processor should have several 
orders of magnitude faster processing time than a 32-bit Raspberry Pi 3B. There are several potential causes that can 
explain this unexpected difference: 

a) MATLAB is an application running on the host machine. Thus, the time it takes to call the classes and create 
the objects within its application framework takes significantly longer than the Pi directly running a compiled 
and linked executable ready to run in binary format on its processor. A more accurate representation of this 
test would be to cross-compile the MATLAB autogenerated C code into an executable that could run directly 
on the host computer. 

b) Another important distinction is that the host computer is running several other processes while the majority 
of the Raspberry Pi’s memory was being allocated to running the executable.  

E. Lessons Learned 
Throughout the course of this project there were several unsuccessful attempts at designing a model predictive 

controller that was capable of running on an embedded system. The following is a summary of some of the lessons 
learned from this project: 

 
 

Figure 21. Failed ACADO Toolkit CMake Build. 



Using the ACADO Toolkit, which was designed to be a user-friendly package to design an MPC controller and 
then generate an executable to run on several select embedded processors, had limited documentation post 2013. The 
complexity behind using Visual Studio and CMake in conjunction with MATLAB unfortunately did not produce any 
reasonable results. Figure 21 shows that attempt at trying to build the ACADO Toolkit however about half of the 
projects failed to build [1].  

 
 

Figure 22. Improperly tuned Lunar Descent MPC using toolbox. 
 
The largest takeaway from this project involved the usage of the MATLAB MPC Toolbox. While the toolbox 

allowed to simplify the process of writing all the optimizer algorithm, the “black-box effect” of the toolbox lead to 
several issues: 

a) It is harder to properly tune the MPC and due to the nature of the controller wanting to quickly achieve steady 
state and the desired setpoint, the controller is very likely to violate hard and soft constraints. In the case of 
the lunar lander situation that caused it to simulate going 4000 meters beneath the lunar surface on initial 
tuning attempts as shown in Figure 22. 

b) Using custom MATLAB functions made it difficult to use the Autocoder to convert the code into functional 
C code without implementing custom MEX functions. Hence it is better to understand the mechanics by 
implementing one’s own algorithm when attempting to translate code that can operate on an embedded system.  

c) When just operating in the MATLAB framework, the toolbox is not capable of linearizing the dynamics. 
Specifically, if one wanted to linearize the dynamics that would require using Simulink which again abstracts 
the controller design making it difficult to understand its implementation on the Raspberry Pi.  

 

Future Work 

 There are several areas of potential future work that can build off the foundation laid above. Specifically in the 
realm of the spacecraft model one can expand the model into nonlinear dynamics by not assuming constant mass and 
possibly expanding into three dimensions. Furthermore, folding in the braking phase such that the initial state for 
powered descent varies more accurately with altitude changes.  
 Specifically with the model predictive controller algorithm, one should phase out the MPC toolbox and only use 
the code that can run on the Raspberry Pi and replace the cart-pole dynamics with the lunar descent dynamics. 
Redesigning the code such that it is flexible for different time sampling values is an important future improvement. 
Furthermore, right now Gaussian white noise is used to simulate the difference between the plant and plant model but 
replacing that would realistic sensor sense would produce more error deviation values. Lastly, regarding the embedded 
systems implementation, one should replace the Raspberry Pi with a flight computer that is radiation compliant for 
lunar standards. 
 
 
 



Acknowledgments 

I would like to thank the people who have helped me reach this point in my education. Thank you to Dr. Lightsey 
for giving me the opportunity to work on this project and enabling me to gain relevant skills useful to the GNC field 
within the aerospace industry. This project allowed me to gain invaluable experience that will be immensely helpful 
for the next portion of this project and future jobs. Thank you for your continued support throughout my graduate 
career. 

I would also like to acknowledge the technical help of Keshav Ramanathan who contributed to this project’s 
premise and provided me a foundation for braking phase and powered descent analysis that I used as a starting point. 
Furthermore, I would like to extend gratitude to Joshua Kuperman and Andrew Fear who helped me understand the 
premise of model predictive control and how to approach designing the algorithm. Lastly, thank you to my former 
internship boss at Blue Origin Dr. Matt Jardin for allowing me to learn the skills needed to implement a processor-in-
the-loop framework during the Summer of 2021. Also, thank you to my roommate Allison Schwoboda who has 
endlessly inspired me to keep chipping at research when roadblock presented themselves. Finally, thank you to my 
parents and younger brother for always being my unwavering support system.  

 

References 

[1] Adhau, S., Patil, S., Ingole, D., and Sonawane, D., “Implementation and analysis of Nonlinear Model Predictive Controller on 
embedded systems for real-time applications,” 2019 18th European Control Conference (ECC), 2019.  

 
[2] Almubarak, H., Stachowicz, K., Sadegh, N., and Theodorou, E. A., “Safety embedded differential dynamic  

programming using discrete barrier states,” IEEE Robotics and Automation Letters, vol. 7, 2022, pp. 2755–2762.  
 

[3] Azimov, D. M., “Enhanced Apollo-Class Real-Time Targeting and Guidance for Powered Descent and Precision  
Landing,” ResearchGate Available: https://www.researchgate.net/publication/337705198_Enhanced_Apollo- 
Class_Real-Time_Targeting_and_Guidance_for_Powered_Descent_and_Precision_Landing, 15 April, 2023.  

 
[4] Bryson, A.E. and Ho, Y.C., “Applied Optimal Control,” Hemisphere Publishing Corporation, Bristol, Pennsylvania, 1975 

 
[5] Cheek, N., Daniel, N., Lightsey, E. G., Peet, S., Smith, C., and Cavender, D., “Development of a COTS-Based  

Propulsion System Controller for NASA’s Lunar Flashlight CubeSat Mission,” 35th Annual Small Satellite  
Conference, 2021.  

 
[6] Engel, D., and Putnam, Z. R., “Control of a blunt body Mars entry vehicle with flaps using model predictive  

control,” AIAA SciTech 2022 Forum, 2022.  
 
[7] Fear, A., and Lightsey, E. G., “Implementation of small satellite autonomous rendezvous using model predictive  

control,” AIAA SciTech 2022 Forum, 2022.  
 
[8] Khalid, A., Jaffery, M. H., Javed, M. Y., Yousaf, A., Arshad, J., Ur Rehman, A., Haider, A., Althobaiti, M. M.,  

Shafiq, M., and Hamam, H., “Performance analysis of Mars-powered descent-based landing in a constrained  
optimization control framework,” Energies, vol. 14, 2021, p. 8493.  

 
[9] Kouvaritakis, B., and Cannon, M., Model Predictive Control - Classical, Robust and Stochastic, Cham: Springer,  

2016.  
 
[10] Lee, A., “Fuel-efficient descent and landing guidance logic for a safe lunar touchdown,” AIAA Guidance, 

Navigation, and Control Conference, 2011.  
 
[11] “Lunar Access Services User's Guide V1.4,” Intuitive Machines Available:  

https://www.intuitivemachines.com/lunar-access-services 
 
[12] “Model Predictive Control Toolbox User's Guide ,” PDF Room Available: https://pdfroom.com/books/model- 

predictive-control-toolbox-users-guide/Jr2EL8LJgyv 
 
[13] “QP Solver - MATLAB & Simulink” Available: https://www.mathworks.com/help/mpc/ug/qp-solver.html 
 
[14] Ramanathan, K., and Lightsey, E. G., “Investigation and Analysis into Establishing a Cislunar PNT System and  

https://www.researchgate.net/publication/337705198_Enhanced_Apollo-
https://pdfroom.com/books/model-


Performing a Soft Landing on the Lunar Surface,” 2022. 
 
[15] Rizvi, A., Ortega, K. F., and He, Y., “Developing Lunar Flashlight and Near-Earth Asteroid Scout Flight  

Software Concurrently using Open-Source F Prime Flight Software Framework,” 2022.  
 
[16] Silva, C. H., Henrique, H. M., and Oliveira-Lopes, L. C., “Experimental application of Predictive Controllers,”  

Journal of Control Science and Engineering, vol. 2012, 2012, pp. 1–18.  
 
[17] Tassa, Y., Mansard, N., and Todorov, E., “Control-limited differential dynamic programming,” 2014 IEEE  

International Conference on Robotics and Automation (ICRA), 2014.  
 
[18] Violette, D. P., “Arduino/Raspberry Pi: Hobbyist Hardware and Radiation Total Dose Degradation,” NASA  

Electronics and Parts Packaging (NEPP) Available:  
https://nepp.nasa.gov/workshops/eeesmallmissions/talks/11%20-%20THUR/1030%20- 
%20EEE%20Parts%20Selection%20for%20Small%20Spacecraft%20Missions.pdf 

 
[19] “What is Model predictive control? - MATLAB & Simulink” Available:  

https://www.mathworks.com/help/mpc/gs/what-is-mpc.html 
 
 

 

https://nepp.nasa.gov/workshops/eeesmallmissions/talks/11%20-%20THUR/1030%20-

	Nonlinear Model Predictive Controller
	Implementation on a Microprocessor
	for 2D Lunar Powered Descent
	Nomenclature
	I.   Introduction
	II.   LISA RUE Mission Concept
	A. Purpose of Concept Study
	B. Mission Assumptions
	C. Mission Concept of Operations (CONOPs)

	III.   Spacecraft Model
	A. Open-Loop Dynamical Model
	B. Closed-Loop Dynamical Model
	C. Open-Loop Simulation Results

	IV.   Using Model Predictive Control to Simulate Closed-Loop Dynamics
	A. Model Predictive Control Algorithm
	B. Dynamic Differential Programming (DDP) Optimizer
	C. Quadratic Programming (QP) Optimizer
	D. Prediction Horizon and Sampling Time Impacts on Lunar Dynamics

	V.   Implementation of MPC on Embedded Hardware
	A. Executable Development in MATLAB
	B. Space Radiation Considerations
	C. Cart-Pole Dynamics

	VI.   Comparison of MPC on MATLAB versus Embedded Hardware
	A. Validation & Verification Metrics
	B. Prediction Horizon Impacts
	C. Control Horizon Impacts
	D. Runtime Differences
	E. Lessons Learned

	Future Work
	Acknowledgments
	References

