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CISLUNAR SATELLITE CONSTELLATION DESIGN VIA INTEGER
LINEAR PROGRAMMING

Malav Patel*, Yuri Shimane†, Hang Woon Lee‡, and Koki Ho§

Cislunar space awareness is of increasing interest to the international community
as Earth-Moon traffic is projected to increase. This raises the problem of plac-
ing satellites optimally in a constellation to provide satisfactory coverage for said
traffic. The Circular Restricted 3 Body Problem (CR3BP) provides promising pe-
riodic orbits in the Earth-Moon rotating frame for traffic monitoring. This work
converts a spatially and temporally varying traffic coverage requirement into an
integer linear programming problem, attempting to minimize the number of satel-
lites required for the requested coverage.

INTRODUCTION

The Earth-Moon system and related orbital trajectories have been of interest since the early
Apollo missions in the 1960s and 1970s. This trend carried into the early part of the 21st cen-
tury with research efforts aiming to find better trajectories for tours in the Earth-Moon system and
operations near the Moon.1,2

The Artemis program has renewed this interest as Earth-Moon traffic is projected to increase
through crewed and uncrewed missions in the coming decade. This makes the region of space
between the Earth and the Moon, coined cislunar space, an attractive region to monitor. Ground
based measurement is unable to provide sufficient observational power for such a vast region. This
insufficiency motivates space-based monitoring schemes, realized as satellite constellations with
optical payloads on favorable orbits for surveillance. Technological advancements over the last
several decades have equipped satellites with stronger optical payloads, shrinking the performance
gap between space-based and ground based observation technology. Several works3,4 have begun to
investigate optimal architectures for surveillance. Intuitively, the cost of launching and maintaining
a patrol constellation scales with the number of satellites in the constellation.

Following this demand for surveillance capability, Wilmer et al.5 and Dahlke et al.6 investigated
using periodic orbits to monitor activity near the Lagrange points (L1-L5) in the Earth-Moon sys-
tem. Zimovan et al.7 investigated near-rectilinear halo orbits (NRHOs) around the Moon because
of attractive stability, transfer prospectives, and eclipsing properties. Because of this, NRHOs are
promising orbits for lunar space stations that serve as outposts for cislunar activity. Klonowski et
al.8 formulated space situational awareness (SSA) architecture design as a Markov Decision Pro-
cess and employed the popular Monte Carlo Tree Search to optimize a constellation of up to 5
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observers to maintain custody of a space object traveling on a specific orbit between the Earth and
Moon. Vendl et al.9 explored a more general region of cislunar space, specifically a 20 degree cone
emanating from the Earth towards the Moon. The region consisted of 1071 target points, which
were used to choose an optimal phase of an observer on an L1 (and separately, L2) Lyapunov orbit
to maximize observation capability. However, the number of satellites was not a design variable
in this formulation. In contrast, Visonneau et al.10 presented a genetic algorithm for finding opti-
mally sized constellations for monitoring regions of cislunar space, with no restriction on number
of observers.

Monitoring capability depends on favorable SSA architectures, namely an attractive choice of
orbits to place observers in. Frueh et al.11 introduces the 2:1 resonant orbit as an attractive candidate
for monitoring cislunar space because of its close approaches to the Earth and Moon and because it
covers the entire cislunar region in under 20 revolutions. Gupta et al.12 investigated how phasing an
observer and a data relay satellite on separate orbits can impact the length of the window in which
communication is possible. This phasing, however, is for the tail of the observation process, where
already collected data needs to be relayed back to Earth.

This work aims to optimize the phasing and number of satellites to track and observe a specific
target moving in the cislunar region.

PROBLEM OVERVIEW

To motivate the solution procedure, we present the results of past work in a similar domain. Lee
et al.13 presented spatio-temporally varying Earth observation as an integer linear programming
problem (ILP). The formulation sought to minimize the number of satellites required to satisfy a
given regional coverage requirement on Earth’s surface. This work’s main contribution is to show
that we can extend the formulation presented by Lee et al.13 to the cislunar regime.

Accessibility Profile

Suppose there is target point in space between the Earth and Moon, denoted by p and an observer
at position r. The target point’s observability can be quantified by an accessibility measure, g. A
simple measure could be the distance between observer and target, g(p, r) = ∥p − r∥. A more
sophisticated measure is the apparent magnitude of the object, which is a function of the position of
the sun as well, g = g(p, r, s).14

Suppose the observer is on an orbit with period T , time is discretized for computational ease,
and p is a static target point in space. At time step n, rn is the observer’s position, sn the sun’s
position, and a[n] = g(p, rn, sn) is the accessibility measure. If the orbit is discretized into L equal
time steps, then a is a L× 1 vector containing the accessibility measures along the observer’s orbit.
In practice, the target point will be in one of two states, [observable] or [not observable]. In other
words, the continuous accessibility measure must be transformed into a binary one. To achieve this,
we introduce the accessibility profile, v, distinct from the accessibility measure vector, a. Define a
threshold value, M , for the accessibility measure. Then,

v[n] =

{
1, if a[n] ≤M
0, otherwise

}
At time step n, v[n] indicates whether the observer can view the target point.
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Constellation Pattern Vector

Instead of a single observer, suppose we have a set (called a constellation) of observers on the
same orbit of period T again discretized into L time steps. The constellation pattern vector x
captures the phasing of the observers in the constellation relative to a seed satellite. At time step
n = 0, if the seed satellite is at position r, then after nk time steps, the k-th observer will be
at position r. The continuous-time time delay for the k-th observer is ∆tk = nk ∗ T

L . This is
illustrated below in Figure 1.

Figure 1: Correspondence between constellation pattern vector and constellation setup13

Coverage Timeline and Coverage Requirement

The accessibility profile is a vector of binary variables describing when the target is in view of the
observer as the observer travels along its orbit. The coverage timeline, denoted by b, is a L×1 vector
that extends the accessibility profile concept to multiple observers. At time step n, b[n] describes
the number of satellites with view access to the target point. Instead of a vector of binary variables,
the coverage timeline is a vector of non-negative integers.

It turns out that a circular convolution between the constellation pattern vector x and the acces-
sibility profile v returns the coverage timeline b. The circular nature of the convolution is a direct
consequence of the periodicity of the observers’ orbit. As such, b can be computed from x and v:

b[n] =
L−1∑
m=0

v[m] ∗ x[(n−m) mod L]

=

L−1∑
m=0

x[m] ∗ v[(n−m) mod L]

Alternatively, the circular convolution can be conveniently expressed as a matrix multiplication
between an L×L circulant matrix, V , and the constellation pattern vector, x. Here, the i-th column
of V is produced by circularly shifting v by i elements.

V x = b

Expanded in matrix form and using 1-based indexing,
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
v[1] v[L] · · · v[3] v[2]
v[2] v[1] v[L] v[3]

... v[2] v[1]
. . .

...

v[L− 1]
. . . . . . v[L]

v[L] v[L− 1] · · · v[2] v[1]



x[1]
x[2]

...

x[L]

 =


b[1]
b[2]

...

[
¯
L]


Often times, we are interested in satisfying a coverage requirement, f , which demands a different

number of observers at different time steps. The goal, then, is to place a set of observers on the orbit
(i.e. find a constellation pattern x) such that the resulting coverage timeline b meets or exceeds the
coverage requirement f . Stated mathematically,

Find x

such that b[n] ≥ f [n] for n = {1, 2, · · · , L}
where V x = b

Integer Linear Program Formulation

In general, there can be many constellation pattern vectors that satisfy the coverage requirement.
However, it is often beneficial to minimize the total number of observers in the constellation while
still satisfying the coverage requirement, since fewer observers reduce launch and maintenance
costs.

The problem above of finding a constellation pattern x is now a problem of finding the optimal
constellation pattern x∗ that minimizes the number of observers in the constellation. The following
integer linear program presents this mathematically.

minimize
x

1Tx

subject to V x ≥ f,
x ∈ {0, 1}L

The objective is to minimize the total number of satellites, hence the objective 1Tx, which sums
all the entries in x.

Extension to Multiple Orbits & Target Points

The above formulation is linear, and thus allows extensions to multiple target points and multiple
constellations.

Multiple Target Points Suppose we have a set J of target points and we seek to find an optimal
constellation of observers on a single orbit to monitor these target points according to a set of cov-
erage requirements F = {f1, f2, · · · , f|J |}. Each target point in J will have its own accessibility
profile, and thus its own circulant matrix. Denote the circulant matrix for each target point by Vj,1,
where j indexes the elements in J . Then we have
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minimize
x

1Tx

subject to V1,1 x ≥ f1,
V2,1 x ≥ f2,
...

V|J |,1 x ≥ f|J |

x ∈ {0, 1}L

The linear constraint can be condensed into a single matrix equation by vertically concatenating
the circulant matrices Vj,1 and coverage requirements fj

minimize
x

1Tx

subject to


V1,1
V2,1

...
V|J |,1

x ≥

f1
f2
...

f|J |


x ∈ {0, 1}L

Multiple Orbits Suppose we have a set Z of orbits and we seek to an optimal constellation of
observers on each orbit to monitor a single target point. Each orbit in Z will have its own accessi-
bility profile, and thus its own circulant matrix. Denote the circulant matrix for each orbit by V1,z
where z indexes the elements in Z . Furthermore, each orbit will have its own constellation pattern
vector, xz . Then we have

minimize
x

|Z|∑
z=1

1Txz

subject to V1,1 x1 ≥ f, V1,2 x2 ≥ f, · · · , V1,|Z| x|Z| ≥ f
x ∈ {0, 1}L

The linear constraint can be condensed into a single matrix equation by horizontally concatenat-
ing the circulant matrices V1,z and vertically concatenating the constellation pattern vectors xz .

minimize
x

|Z|∑
z=1

1Txz

subject to
[
V1,1 V1,2 · · · V1,|Z|

]
x1
x2
...

x|Z|

 ≥ f
xz ∈ {0, 1}L

We can combine the linearities above to provide a single comprehensive integer linear program.
Let x be the augmented constellation pattern vector obtained by vertically concatenating the con-
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stellation pattern vectors xz , where z indexes the elements in Z . Let f be the augmented coverage
requirement obtained by vertically concatenating the coverage requirements fj for each target point,
where j indexes the elements in J . Let V be the augmented circulant matrix obtained by vertically
concatenating the circulant matrices for each target point and horizontally concatenating the circu-
lant matrices for each orbit. For clarity, V , x, and f are shown in matrix form,

V =


V1,1 V1,2 · · · · · · V1,|Z|
V2,1 V2,2 · · · · · · V2,|Z|

...
...

. . . . . .
...

...
...

. . . . . .
...

V|J |,1 V|J |,2 · · · · · · V|J |,|Z|

x =


x1
x2
...

x|Z|

f =


f1
f2
...

f|J |



Thus, our full integer linear program is written as

minimize
x

1Tx

subject to V x ≥ f ,

x ∈ {0, 1}|Z|L

CIRCULAR RESTRICTED 3 BODY PROBLEM

To leverage this formulation in cislunar space, a gravitational model of the region is needed. The
circular restricted three body problem (CR3BP) offers an accurate model for the dynamics of a
small satellite as it moves under the influence of two much larger bodies (in our case, the Earth and
Moon). The equations are given by,

ẍ− 2ẏ =
dU

dx

ÿ + 2ẋ =
dU

dy

z̈ =
dU

dz

where U is an effective potential of the rotating system, given by

U =
x2 + y2

2
+

1− µ
r1

+
µ

r2

Here, µ = m2
m1+m2

is the mass ratio of the primaries and r1 and r2 are the distances of the object
to each primary.

r1 =
√

(x+ µ)2 + y2 + z2

r2 =
√

(x− (1− µ))2 + y2 + z2

This formulation of the CR3BP uses normalized mass, distance, and time units which are aggre-
gated in Table 1 below. It is important to note that the CR3BP admits periodic orbits as solutions,
which is convenient for the integer linear program developed. Furthermore, the CR3BP admits 5

6



stationary points, called Lagrange points, where the acceleration and velocity of a satellite is zero.
They are commonly referrred to as L1 through L5.

For certain accessibility measures such as the apparent magnitude of the object, the position of
the sun is required in addition to that of the observer and target. In the rotating frame of the CR3BP,
the sun’s motion is clockwise with period equal to the synodic period of the Earth-Moon system. A
simplified model of the sun’s motion is a coplanar clockwise circular orbit of radius 1 AU around
the Earth-Moon barycenter. Note that the sun is only used as an illumination source in this model.
We do not consider the sun’s gravitational perturbation on the system. Parameters for the dynamics
of this system are gathered in Table 1 in the appendix.

UTILIZING THE FORMULATION IN CISLUNAR SPACE

A flow graph of the proposed formulation is shown in Figure 2 below. The first stage consists of
precomputation, where we determine the accessibility for each (target point, observer location) pair
in the entire constellation for the simulation period. Second, we construct the augmented circulant
matrix V by phasing the accessibility measures. This primarily consists of a simple circular shift
operation. Lastly, we provide the necessary variables to an optimizer in the form of an integer linear
program. The algorithm is outlined in pseudocode in the appendix. All orbits are discretized such
that successive position states are 0.015 TU ≈ 93 minutes apart.

Phase/Circular
Convolution 

Candidate
Orbit Set

Target
Point Set

Accessibility
Metric,

Threshold

Precompute
Seed Satellite

Access Profiles

Optimizer
Block Circulant
Access Profiles

Coverage
Requirement

Objective
Metric

Definition

Constellation
Pattern Vector

 

Figure 2: Optimizer Illustration

Target Point Set J

The set of target points to monitor is driven by points of interest. As traffic between the Earth
and the Moon is anticipated to increase, an attractive choice is a transfer orbit from L1 to geosyn-
chronous equatorial orbit (GEO). Figure 3 illustrates this transfer. It consists of a manifold insertion
from L1 followed by a high impulse manuever into a connecting orbit to GEO. The transfer takes
≈ 23.12 days. The discretized position history (i.e. the blue circles in the figure) are target points
comprising the set J . Note that although we define J as a set of points, it is actually a sequence.
Target point 1 is followed by target point 2 and so on, tracking the position of a hypothetical target
on this path from L1 to GEO.
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Figure 3: L1 to GEO transfer

Observer Orbit Set Z

There are a variety of periodic orbits in the CR3BP. Of these, the most attractive options offer
close approaches to L1 and GEO while moving through the majority of cislunar space. Furthermore,
as per an AFRL objective to monitor a 30 degree cone emanating from the Earth, orbits in this region
are also attractive. We choose a set of 6 orbits inspired by Gupta et al.,12 which are plotted in Figure
4 below. The initial conditions are shown in Table 3 in the appendix. All orbits were generated via
a single-shooting differential correction algorithm with initial guesses sampled from data provided
by NASA JPL15 and Broucke.16 All orbits have period T = 6.45 TU ≈ 28.008 days. It should
be noted that the L1 Lyapunov and L2 Halo have a fundamental period of T

2 = 3.225 TU which
means they are also T -periodic. The circular restricted problem does not admit many orbits with
period equal to the synodic period of the Earth-Moon system (approximately 29.05 days). As a
consequence, while the orbits themselves repeat, the illumination conditions will not. As such,
the results of the formalism apply on a case-by-case basis depending on the sun’s initial phase (in
radians) relative to the Earth-Moon axis, denoted as ϕ0. We stress that the candidate orbits are
chosen to have periods as close as possible to the synodic period and are still resonant in the CR3BP
sense. This ensures the difference in illumination conditions is small after t = 6.45 TU compared to
a randomly chosen constellation period. We aimed to approximately minimize this difference while
preserving candidate orbit diversity. In this work we choose ϕ0 = 0 for optimization (Earth-Moon-
Sun are collinear at simulation start). However, we investigate the robustness of the constellation to
different initial phase angles later in the Results section.
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Figure 4: Candidate Orbits

Accessibility Metric and Threshold

To quantify the the observability of a target from an observer’s position, we utilize the target
point’s apparent magnitude.14,9Consider an observer at position r, a spherical target with diameter
d at position p, and the sun at position s. Define the solar phase angle ψ,

ψ =
(p− r) · (p− s)

∥p− r∥∥p− s∥

It should be noted that ψ is the familiar angle used in the dot product formula between two
vectors, taking on values between 0 and π. The diffuse phase angle function can be written as a
function of ψ,

pdiff(ψ) =
2

3π
(sinψ + (π − ψ) cosψ)

On the interval (0, π), pdiff is a strictly decreasing function. The apparent magnitude of a target is
given by,

g(p, r, s) ≜ msun − 2.5 ∗ log10
[d2
ζ2
∗ (
aspec

4
+ adiff ∗ pdiff(ψ))

]
Where ζ = ∥p−r∥ is the distance between the oberver and target, and aspec, adiff are the specular

and diffuse reflection coefficients of said target, respectively. Values can be found in Table 2 in the
appendix. It should be noted that the solar phase angle ψ is distinct from the initial phase angle ϕ0
described in the Observer Orbits section above. ϕ0 descibes the initial orientation of the Sun relative
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to the Earth-Moon axis. ψ describes the orientation of an observer, a target point, and the Sun. The
value of g increases with ψ, meaning solar phase angles closer to π result in an unfavorably dim
target. Every unit increase in apparent magnitude corresponds to a 2.5 times dimmer target. In
addition to this, we consider the possibility that the Earth and Moon may occlude the target. If this
is the case, the accessibility measure is set to ∞, indicating an invisible target point. In practice,
the measure will be set to the largest floating point number (often denoted REALMAX) available
on the machine. We choose a threshold value of M = 17 as our access measure cutoff. Together, g
and M define our accessibility metric and threshold, respectively.

Coverage Requirement f

We seek a set F = {f1, f2, · · · , f|J |} of coverage requirements, one for each target point in the
set J . As our object of interest travels along the transfer, it travels through each target point in
order. Thus, the coverage requirement for target point j + 1 should be that of target point j, but
shifted (in fact, circularly shifted due to the periodicity of observer orbits) forward by one index.
Mathematically,

fj+1[i] = fj [(i− 1) mod L] (1)

Where [ ] symbolizes 0-based indexing into the coverage requirement array fj . This recursive
relation is convenient because we are only required to define the coverage requirement f1, with
subsequent fj defined by Eqn. 1. An example set F = {f1, f2, f3} is illustrated below in Figure 5.

Figure 5: Illustration of Equation 1

RESULTS

In the above image, there are two departure windows (shown as two impulses) in each coverage
requirement. We choose to investigate how this number of departure windows affects the satellite
constellation size. The number of requested departure windows reflects the amount of uncertainty
in launch time. With more departure windows, the constellation is optimized for robustness against
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target departure delays. However, this will come at the cost of increasing constellation size. We
specifically investigate N ∈ {1, 2, 4, 8, 16}, where the departure windows are uniformly separated
amongst the L time steps. The powers of two ensure that the indices where fj = 1 for k departure
windows are a subset of the indices where fj = 1 for 2k departure windows, all while keeping the
windows uniformly distributed in the interval [0, L]. Figure 6 illustrates the result of the optimizer
for N = 16 departure windows. The constellation consists of 15 satellites distributed on 3:1 and
2:1 resonant orbits. The majority of these (14/15) satellites sit on the 3:1 resonant orbit, likely
because of its close approaches to the moon, where a significant portion of the spatio-temporal
coverage requirement is located. Figure 14 in the appendix illustrates the results of the optimizer for
every element N ∈ {1, 2, 4, 8, 16}. Figure 7 illustrates the optimal number of satellites versus the
requested number of departure windows. The constellation size grows with the coverage demand.
This is intuitive, since coverage potential grows with the number of observers in the constellation.
We suspect linear growth in constellation size is not expected to hold as the coverage requirement
becomes continuous. At some finite constellation size, it is expected that coverage ability saturates.
Significantly stronger compute is necessary to analyze > 16 departure windows . A continuous
coverage requirement, i.e. f = 1, would require parallel computation for reasonable evaluation
time.

Figure 6: Optimal Constellation for 16 De-
parture Windows

Figure 7: Constellation Size vs. Number of
Departure Windows

Robustness to Delays

The constellation shows impressive robustness to delays in departure. Figures 8 and 9 show bi-
nary indicator maps for constellations optimized forN = 1 andN = 16 departure windows. Figure
15 in the appendix shows the maps for each N ∈ {1, 2, 4, 8, 16} requested departure windows. Ar-
eas shaded in green indicate a pair (Time Step, Target Point) which is observable by at least one
satellite in the constellation. Areas shaded in black are not observable. The red lines (shown as
diagonal streaks across Figures 8 and 9) illustrate the spatio-temporal coverage requirement sent to
the optimizer. These regions are always covered, as required by the formulation. We see that the
majority of the optimizer’s work attempts to cover the target points closer to GEO (target point No.
300 and onwards). As seen in Figure 3, these points are spaced further apart (the target is moving
quickly in this region), naturally making it more difficult to observe. With increasing N , we make
progress in closing the gap, with most of the binary map displaying green for N = 16.
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Figure 8: Coverage Robustness for 1 Depar-
ture Window

Figure 9: Coverage Robustness for 16 De-
parture Windows

Robustness to Initial Sun Phase Angle, ϕ0

We acknowledged earlier that because our candidate orbits are not resonant with the Earth-Moon
synodic period, after one simulation period, the illumination conditions will differ slightly at the
start of the second epoch (t = 6.45 TU). The orbits repeat but now with a slightly different initial
sun phase angle, ϕ0. As discussed above, we chose an initial sun phase angle of 0 rad, meaning that
at the start of the simulation, the Sun is on the positive x-axis at distance 1 AU. The constellations are
optimized for this phase angle, but they show impressive robustness against various initial sun phase
angles. We investigated numerous ϕ0 between 0 and 2π, given a constellation already optimized for
N = 1 departure windows (see Figure 14 in the appendix for an illustration of the constellation).
Figure 10 shows that despite changes in ϕ0, the constellation still satisfies a majority of the coverage
requirement. As such, the constellation’s effectiveness extends beyond just one simulation period.
For example, if mission requirements mandate a 70% coverage requirement satisfaction, then our
constellation meets the mandate.

Figure 10: Coverage Requirement Satisfac-
tion vs. ϕ0 for 1 Departure Window

Figure 11: Coverage Robustness for 1 De-
parture Window with ϕ0 = 169◦
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Furthermore, Figure 10 shows that there exist several values of ϕ0 still satisfying 100 % of the
coverage requirement. Figure 11 shows the coverage map for one such angle, ϕ0 = 169◦. Not only
is 100 % of the coverage requirement satisfied, the impressive ratio of green to black shows that
robustness to delay is still present.

Of all the investigated ϕ0 in the range [0, 2π], ϕ0 = 228◦ was the worst performing constellation.
However, it still satisfied 75.28 % of the coverage requirement. Figure 12 shows the coverage map
for this choice of ϕ0, illustrating that despite only satisfying 75 % of the coverage requirement, the
constellation still boasts impressive robustness to delays (shown via the ratio of green to black).
There is a band of invisibility (appearing as an hourglass figure in black) in the approximate time
step range 70 to 170. This is due to unfavorable solar phase angles ψ that are incurred in this region.
Figure 13 shows the position of the observers as well as the direction of the Sun’s rays at time step
135. We see that the positions of the Sun, target point, and observer on the Lyapunov orbit result in
solar phase angle> π

2 , and in fact closer to π. In this scenario the Sun’s rays are too direct, resulting
a poorly illuminated target, making it difficult for optical sensors to monitor.

Figure 12: Coverage Robustness for 1 De-
parture Window with ϕ0 = 228◦

Figure 13: Satellite Positions at Time Step
135

CONCLUSIONS AND FUTURE WORK

In this work we show the extension of the formulation provided by Lee et al.13 to the cislunar
regime. We show that the extension is viable in this regime due to periodic orbits present in the
CR3BP. Monitoring specific transfers (such as L1 to GEO presented in this work) is possible with
small constellation sizes. With more satellites, we get increasing coverage and thus, robustness to
delays. This formulation can be used with any set of target points, not a trajectory specifically. This
method is also fast, as illustrated by its implementation on personal computers. Significant compute
is not required until the coverage requirement becomes close to continuous.

Rerunning the simulation with higher fidelity models is left to future work. Instead of the Sun
on a coplanar orbit, we may incline it by ≈ 5◦ to reflect the Earth-Moon system’s tilt with respect
to the ecliptic. Furthermore, the Sun’s gravitational perturbation can be incorporated to determine
its effect on the stability and periodicity of candidate orbits in the CR3BP. Lastly, the objective
of optimization can incorporate more complex costs. We can penalize constellations that place
satellites on separate orbits and include a weighting term to reflect the degree of its importance.
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APPENDIX

CR3BP System Parameters and Candidate Orbit Initial Conditions

System parameters for the Earth-Moon CR3BP with the Sun as illumination source are presented
in Table 1. Initial conditions for candidate orbits are shown below in Table 3. Orbits were generated
via a single shooting differential corrections algorithm written in Julia. We use the Vern7 ODE
propagator (available in the Julia DifferentialEquations17 module) in this algorithm.

Table 1: CR3BP Parameters
Parameter Value
Mass parameter, µ 1.215058560962404e-02
Length scale, DU (km) 384400.0
Time scale, TU (s) 3.751902619517228e+05
Relative distance of Sun (DU) 389.17794
Angular velocity of Sun (rad/TU) -0.9253018261815922
Earth Radius, (km) 6371
Moon Radius, (km) 1737.4

Table 2: Illumination Parameters
Parameter Value
Sun apparent magnitude, msun -26.74
Target specular reflection coef., aspec 0.0
Target diffuse reflection coef., adiff 0.2
Target Diameter, d (km) 0.001

Table 3: Candidate Orbit Initial Conditions
3:1 Resonant 2:1 Resonant 1:1 L1 Lyapunov

x0 0.13603399956670137 0.9519486347314083 0.65457084231188
y0 0 0 0
z0 0 0 0
ẋ0 1.9130717669166003e-12 0 3.887957091335523e-13
ẏ0 3.202418276067991 -0.952445273435512 0.7413347560791179
ż0 0 0 0
T 6.45 6.45 6.45

1:1 L2 Lyapunov L1 Lyapunov L2 Halo
x0 0.9982702689023665 0.8027692908754149 1.1540242813087864
y0 0 0 0
z0 0 0 -0.1384196144071876
ẋ0 -2.5322340091977996e-14 -1.1309830924549648e-14 4.06530060663289e-15
ẏ0 1.5325475708886613 0.33765564334938736 -0.21493019200956867
ż0 0 0 8.48098638414804e-15
T 6.45 3.225 3.225
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Optimizing the Constellation Pattern Vector

Algorithm 1 presents pseudocode for the formulation. In this work, we utilize Gurobi MAT-
LAB for computation. Computation is done with an M1 Pro CPU using 8 high-performance cores.
Algorithm run time is < 300 seconds for each N ∈ {1, 2, 4, 8, 16}.

Algorithm 1
Require: Z , J , f , g, M , T , tstep

tspan← 0:tstep:T
L← length(tspan)
S ← suntrajectory(tspan)

V← zeros(L, |Z|, |J |) ▷ Precompute
for each zj ∈ Z do

[R,V]← cr3bp(zj , tspan)
for each (ri, si) ∈ {(rm, sn) ∈ R× S | n = m} do

for each pk ∈ J do
m← g(pk, ri, si)
V[i, j, k]← m ≤M ? 1 : 0

end for
end for

end for

V← [ ] ▷ Phase Orbits
for k = 1 to |J | do

C← [ ]
for j = 1 to |Z| do

A← V[: , j , k]
B← zeros(L, L)
for i = 1 to L do

B[: , i]← circshift(A, i− 1)
end for
C← horzcat(C, B)

end for
V← vertcat(V, C)

end for

c← ones(|Z| * L) ▷ Optimize
result← integer-linear-program(V, f , c)
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Extended Results

Figures 14 and 15 show the constellations and indicator maps of all the optimization runs for each
N ∈ {1, 2, 4, 8, 16}.

Figure 14: Constellation Size vs. Number of Departure Windows
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Figure 15: Constellation Robustness Binary Maps
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