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CHARACTERIZING LOW-THRUST TRANSFERS FROM
NEAR-RECTILINEAR HALO ORBITS TO LOW LUNAR ORBITS

WITH Q-LAW

Yuri Shimane*, Dyllon Preston†, and Koki Ho‡

Near rectilinear halo orbits (NRHOs) are an integral orbital regime in humanity’s
permanent return to cislunar space. Traffic between the NRHO and low-lunar
orbit (LLO) is expected to increase dramatically, supporting cislunar activities.
Linking NRHOs and LLOs via low-thrust transfers will be a vital piece of trans-
portation infrastructure. This work provides an assessment of low-thrust transfers
from NRHOs to LLOs using Q-law, a Lyapyunov feedback controller based on
Keplerian elements, treating the Earth as a third-body perturbation. Leveraging
the deterministic nature of Q-law, low-thrust transfers between NRHOs and LLOs
are characterized for various propulsion systems, spacecraft mass, and departure
windows.

INTRODUCTION

Spearheaded by NASA’s Artemis program, substantial efforts are directed toward the Moon. This
is not limited to activities by traditional, space agencies and academia, but also extends to the
numerous private companies working towards building a cislunar infrastructure, through projects
such as the Commercial Lunar Payload Services (CLPS)1 and LunaNet.2 The Gateway, the first
human outpost beyond low Earth orbit, will take a central role in upcoming cislunar exploration
activities. Its nominal location, the 9:2 resonant L2 near-rectilinear halo orbit (NRHO), will see
significant traffic, with both crew and cargo frequenting the Gateway architecture.3–8 The near-
rectilinear halo orbit (NRHO) is of particular interest in the context of cislunar logistics as they
provide a relatively stable orbit around the Moon with a constant line of sight with the Earth. Besides
NRHOs, low lunar orbits (LLOs) are also critical locations for conducting activities in cislunar
space. Crewed and robotic surface expeditions utilize LLOs before proceeding to their final descent
to the target landing site. LLOs are also well-suited for science missions conducted from orbit due
to their proximity to the lunar surface.

Transfers between NRHOs and LLOs will bare increasing importance as the infrastructure in the
cislunar space continues to mature. The use of low-thrust propulsion for these transfers is particu-
larly attractive for applications that do not involve crew; while low-thrust propulsion requires longer
times of flight to accumulate enough control effort, rendering them unusable for typical crewed ap-
plications, the higher specific impulse results in significant propellant savings. These include the
transportation of scientific equipment and cargo to and from the lunar surface, as well as more ad-
vanced concepts such as on-orbit servicing (OOS) or space tugs; for example, Astroscale, a Japanese
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OOS startup, announced last year its intentions to extend its activities in lunar environments,9 while
Spaceflight, a US startup providing rideshare platforms and in-space transportation, has along its
planned product lineups a vehicle capable of tugging payloads to cislunar space.10

The use of low-thrust propulsion for transfers in cislunar space has been studied by multiple au-
thors; for example, Du and Starinova studied the use of low-thrust for orbit maintenance of NRHO
under perturbations by solving the corresponding optimal control problem via the indirect method.8

A popular approach for constructing low-thrust transfers between libration point orbits involves
“chaining” intermediate orbits to construct an initial guess as introduced by Pritchett et al,4 which
is then solved via a direct method.11 Pino and Howell12 explores an energy-informed approach for
providing these intermediate orbits in an adaptive manner. Das-Stuart et al13 considers a combi-
nation of periodic orbit databases and a graph-search approach to construct initial guesses that can
then be corrected and/or optimized to actual flyable trajectories. Kayama et al looked at low-thrust
transfers from a halo to an NRHO via successive convex optimization.14 In the context of transfers
between NRHOs and LLOs, Horton et al15 have conducted an analysis for a high-powered SEP tug
spacecraft application using NASA’s Copernicus software. Pino et al12 and Park et al16 studied this
problem for small spacecraft applications, such as the Lunar IceCube mission.

As highlighted by these works, low-thrust trajectory design in cislunar space remains difficult due
to the complexity of the dynamics combined with the low control authority of the spacecraft. This
makes optimizing a large number of transfers for various combinations of hyper-parameters pro-
hibitive. To circumvent this challenge, this work employs Q-law, a Lyapunov controller developed
in terms of two-body orbital elements,17–19 to generate large numbers of near-optimal NRHO-to-
LLO transfers. Compared to traditional indirect and direct approaches for low-thrust trajectory opti-
mization, Q-law is a feedback controller that can generate suboptimal transfers without the need for
any open-loop optimization. Note that due to the fundamentally two-body nature of Q-law, this de-
sign strategy cannot be applied for transfers between libration point orbits, or transfers that involve
an intermediate departure from the cislunar vicinity. Nonetheless, LLO can be defined in terms of
Keplerian elements making it suitable for targeting with Q-law, and typical low-thrust transfers from
NRHOs to LLOs may be conducted entirely within the cislunar regime, making Q-law an attractive
technique for this application.

As a feedback controller, initial implementations of Q-law only included the capability to thrust
at all times along the transfer. However, later implementations have incorporated heuristic-based
coasting mechanisms,18, 19 which allows for the spacecraft to choose to coast instead, if the applica-
tion of thrust at a given angular position along its osculating orbit is deemed too unfavorable. While
the resulting transfer is still suboptimal, this increases the solution space of transfers that can be ob-
tained; arguably, a Q-law-based trajectory with no coasting is a sub-optimal proxy of a bang-bang,
minimum time solution, while a trajectory with heuristic efficiency-based coasting is a sup-optimal
proxy of a minimum mass solution.

The feedback form is especially useful when multiple low-thrust transfers must be designed
within the scope of a single study. In the past, Q-law has been used in applications such as cis-
lunar campaign logistics, trade-study for transferring from GTO to GEO, or debris removal mission
designs.20–24 In the context of cislunar transfers, Jagannatha et al25 utilized Q-law and invariant
manifolds to design low-thrust transfers to Earth-Moon L1 periodic orbits. In Jagannatha et al25

as well as in this work, while the control law is obtained assuming pure two-body dynamics, the
perturbing effect of the Earth/Moon in the vicinity of the Moon/Earth is taken into account when
applying the control and propagating the spacecraft’s state. In addition, the Moon’s J2 effects are
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also included as a perturbing force. Thus, no simplifying compromise is made on the complexity of
the dynamics itself.

In this work, low-thrust transfers from the Gateway’s NRHO to LLOs are studied. This applica-
tion of Q-law in this context is distinguishable from other studies due to the strong influence of the
third-body perturbation at the early stages of the transfer. This necessitates high duty ratios on the
thrusters at the initial stages of the transfer in order to avoid being pulled away from the sphere of
influence of the Moon. Meanwhile, once the spacecraft is within some sufficient vicinity from the
Moon, a more economical coasting scheme may be more appropriate. To this end, we implement
Q-law with efficiency parameters that can be switched at some point along the transfer. This enables
the design via feedback control of transfers that can, in the first phase, aggressively apply control to
head towards the target orbit, then later switch to a frugal phase, where the spacecraft may choose
to coast more frequently.

We also devise a customized Runge-Kutta scheme that saves some of the expensive computation
related to the decision on whether to thrust or coast at the first evaluation of the equations of motion.
Furthermore, the integration is performed using an instantaneous Sundman transformation, thus
achieving approximately constant steps in eccentric anomaly; this idea is similar to the piecewise
Sundman transformation from Ottesen and Russel.26 The resulting Q-law implementation is well-
suited for exploring the considered trade space of low-thrust transfers from the NRHO to LLOs.

A multiobjective optimization problem minimizing both propellant and time of flight is con-
structed based on hyper-parameters of Q-law as well as departure location from the 9:2 resonant L2
NRHO. Multiple instances of this problem are solved for different values of spacecraft wet mass
and thruster parameters.

DYNAMICAL SYSTEMS

This work considers two dynamical systems; firstly, the NRHO is constructed in the Earth-Moon
circular restricted three-body problem (CR3BP). Then, the Gauss planetary equations with a third-
body perturbation and thrust are used within the framework of Q-law. In this section, the CR3BP
and the NRHO are first introduced. Then, the dynamics based on the Gauss planetary equations are
discussed. Finally, the conversion process from the state vector in the CR3BP to the state vector in
the Gauss planetary equations is shown.

Circular Restricted Three-Body Problem

The CR3BP equations of motion are commonly studied in the rotating frame; these are given by

ẍ− 2ẏ =
∂U

∂x
, ÿ + 2ẋ =

∂U

∂y
, z̈ =

∂U

∂z
(1)

Here, U is the pseudo-potential given by

U =
x2 + y2

2
+

1− µ
r1

+
µ

r2
(2)

where µ =M2/(M1 +M2) is the mass ratio, and r1, r2 are the distances from the spacecraft to the
two primary bodies

r1 =
√

(x+ µ)2 + y2 + z2, r2 =
√

(x− (1− µ))2 + y2 + z2 (3)

In the context of the Earth-Moon system, the subscript (·)1 corresponds to the Earth and the sub-
script (·)2 corresponds to the Moon.
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Near Rectilinear Halo Orbit The NRHOs are a subset of the halo orbit family, which exists as
sets of periodic orbits revolving around any of the five libration points. They are distinguished from
other members of halo orbits by their near rectilinear stability, characterized by stability indices
νstb,i defined by

νstb,i =
1

2

∣∣∣∣λi + 1

λi

∣∣∣∣ , i = 1, 2 (4)

that is close to unity.27, 28 Here, λ ∈ spec(Φ(PNRHO, 0)) where Φ(PNRHO, 0) is the state-transition
matrix over one period, also called the monodromy matrix. As indicated by the index i, the mon-
odromy matrix for periodic orbits in the CR3BP has two reciprocal pairs of eigenvalues, resulting in
two values of νCR3BP. From a practical perspective, NRHOs are attractive not only due to their sta-
bility but also due to the constant direct line of sight to the Earth, compared to other stable periodic
orbits such as distant retrograde orbits (DRO).29, 30

Gauss Planetary Equations

The Gauss planetary equations for the Keplerian elements œ = [a, e, i,Ω, ω, θ] with respect to
the Moon are given by

œ̇ = Bf +D (5)

where

B =



2a2e sin θ

h

2a2p

rh
0

p sin θ

h

(p+ r) cos θ + re

h
0

0 0
r cos(θ + ω)

h

0 0
r sin(θ + ω)

h sin i

−p cos θ
eh

(p+ r) sin θ

eh
−r sin(θ + ω) cos i

h sin i
p cos θ

eh
−(p+ r) sin θ

eh
0



, D =



0
0
0
0
0
h

r2



The vector f = [fr, ft, fn] are the radial, tangential, and normal components of the perturbing force
acting on the Keplerian orbit. In this work, the perturbation comes from the spacecraft’s low-thrust
engine, fLT, the third-body perturbation of the Earth on the Moon-centered spacecraft orbit, f⊕,
and the J2 effect of the Moon, fJ2,

f = fLT + f⊕ + fJ2 (6)

To simplify the notation in (5), the following quantities have been defined as functions of the Kep-
lerian elements

h =
√
aµ(1− e2), p =

h2

µ
, rp = a(1− e), r =

p

1 + e cos θ

where µ is the gravitational parameter of the Moon.
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Thrust Force The thrust force in the RTN frame for a thrust magnitude c1 and spacecraft mass
m is given by

fLT =
τc1
m

cosβ sinαcosβ cosα
sinβ

 (7)

where τ ∈ {0, 1} is the on/off throttle, α is the in-plane, and β is the out-of-plane angle of the
thrust vector in the RTN frame. In addition to the six orbital elements, the mass of the spacecraft is
propagated with the equation

ṁ = −τc2 (8)

where c2 = c1/(g0Isp) is the mass-flow rate of the engine.

Thrid-Body Perturbation The third-body perturbation force in the RTN frame is given by

f⊕ = µ⊕
(

r⊕ − r

∥r⊕ − r∥3
−

r⊕
∥r3⊕∥

)
(9)

where r = [r, 0, 0] is the position of the spacecraft in RTN frame, and r⊕ is the position of the
Earth in the RTN frame, given by

r⊕ = a⊕
 cos θ̃ cos

(
λ⊕ − Ω

)
+ cos i sin θ sin

(
λΩ − Ω

)
− sin θ̃ cos

(
λ⊕ − Ω

)
+ cos i cos θ sin

(
λ⊕ − Ω

)
− sin i sin

(
λ⊕ − Ω

)
 (10)

where θ̃ = ω+θ is the argument of latitude, a⊕ is the semimajor axis of the Moon’s orbit about the
Earth, µ⊕ is the gravitational parameter of the Earth, and λ⊕ is the angular position of the Earth
with respect to the inertial x-axis of the Moon-centered frame. This angle is time-dependent with
the motion of the Earth and is given by

λ⊕ = λ⊕,0 + n⊕t (11)

where λ⊕,0 is the initial angular position.

J2 Effect The J2 effect in the RTN frame is given by31

fJ2 =
3µJ2R

2
e

2r4

3 sin2 i sin2 θ̃ − 1

− sin2 i sin 2θ̃

− sin 2i sin θ̃

 (12)

where J2 is the J2 coefficient,Re is the reference radius of the body, and θ̃ is the argument of latitude
with the same definition as in equation (10).

Conversion from CR3BP to Keplerian Elements

The state vector of the NRHO in the CR3BP must be converted to Keplerian elements to be
propagated with the Gauss planetary equations. We first discuss the canonical scales used in the two
representations of the dynamical system, then present the procedure for converting from the CR3BP
representation to the Gauss planetary equations representation.
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Table 1. Canonoical scales for the CR3BP and the Gauss planetary equations

Parameter CR3BP (C) Gauss planetary equations (G)

Length unit LU, km 3.847479920112920× 105 1738

Time unit TU, s 3.756998590849907× 105 1034.5587359766118
Earth gravitational parameter µ⊕ 0.98784941573006 81.26410601427115

Moon gravitational parameter µ 0.012150584269940354 1.0
System angular rate n⊕, rad/TU 1.0 0.0027369035713274096

Canonical Scales The use of canonical scales is prevalent in astrodynamics to avoid numerical
difficulties. In the CR3BP, the mass is normalized such that the gravitational parameters of the two
celestial bodies add up to unity. This is useful as the rotational speed of the system, nC , becomes
unity as well. Then, the canonical unit for time can naturally be defined such that the CR3BP
system’s period PCR3BP = 2π × TUC , leading to the canonical length unit being the semi-major
axis of the CR3BP system.

While this definition is useful for integrating the CR3BP equations of motion (1), it is preferable
to have a different set of scales for integrating motions near the Moon, such as for LLOs, with the
Gauss planetary equations (5). This is particularly important for numerical stability using Q-law,
which we will introduce in the subsequent Section. As such, we define a different set of canonical
scales for working with equation (5). Specifically, we define the gravitational parameter of the
Moon to be unity and set the length unit LUG to coincide with the lunar radius. Then, the time unit
follows that the period of a hypothetical lunar circular orbit with a radius equal to the lunar radius
PLunar radius = 2π × TUG. These canonical scales are summarized in Table 1.

Conversion Procedure The conversion from CR3BP to Keplerian elements first involves con-
verting the state in the Earth-Moon rotating frame to the Moon-centered inertial frame, then con-
verting the inertial state to Keplerian elements with respect to the Moon. In particular, given the
Cartesian state xR(t) ∈ R6 of the NRHO at time t0 ∈ [0, PNRHO], the following four operations
are to be conducted:

1. Shift center from the Earth-Moon barycenter to the Moon by subtracting [1−µ, 0, 0, 0, 0, 0, 0]

2. Convert Cartesian state in the rotating frame xR to a Cartesian state in the inertial frame xI
via the transformation

xI = C(ψ)xR =



cosψ − sinψ 0 0 0 0
sinψ cosψ 0 0 0 0
0 0 1 0 0 0

−nC sinψ −nC cosψ 0 cosψ − sinψ 0
nC cosψ −nC sinψ 0 sinψ cosψ 0

0 0 0 0 0 1

xR (13)

where ψ = ψ0 + nCt0, where t0 is in TUC

3. Re-scale position by LUC/LUG and velocity by (LU/TU)C/(LU/TU)G
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4. Convert Cartesian state to Keplerian elements using µG, and set

λ⊕,0 = π + nG

(
t0
TUC

TUG

)
(14)

ORBIT TRANSFER DESIGN WITH Q-LAW

While Q-law may be defined in any arbitrary orbital elements, we use the formulation based on
the Keplerian elements in this work. This choice would not be appropriate if an inclination close
to i = 0 or i = π is likely to occur during the transfer due to the sin i terms in denominators of
the Gauss planetary equations (5). However, the NRHO has its apse largely along the pole of the
Moon, and LLOs of interest are typically near-polar, with i ≈ π/2; hence, the sin i-singularities are
unlikely to occur during the transfer. Meanwhile, the singularity for e = 0 is avoided by setting a
tolerance on the final target LLO’s e at some small value above 0.

As shown in equations (5), the Keplerian dynamics of the spacecraft is propagated with both the
thrust force fLT as well as the third-body perturbation f⊕ and the J2 effect of the Moon fJ2. Note
however that the controller is only exposed to the pure Keplerian dynamics, and the thrust vector
fLT is deduced assuming no other perturbations are acting on the spacecraft.

In this section, Q-law is discussed in two-fold; first, the Lyapunov function which is at the core
of the controller is introduced. Then, the efficiency-based coasting mechanism by Petropoulos19

is presented. Finally, the procedure for implementing Q-law in the context of the transfer in the
cislunar region is discussed.

Lyapunov Function

Let the five slow Keplerian elements excluding θ be expressed as œ̃ = {a, e, i,Ω, ω}. The Lya-
punov function for the controller is given by

Q = (1 +WpΘp)
∑

œ̃

Sœ̃Wœ̃

(
œ̃− œ̃T

˙̃œxx

)2

(15)

where œ is the osculating elements of the spacecraft and œ̃T is the targeted elements. Note that Q
essentially quantifies the separation of the osculating slow orbital elements of the spacecraft from
the desired orbital elements from the numerator œ̃ − œ̃T . The denominator ˙̃œxx represents the
maximum achievable rate of change of each orbital element on the osculating orbit. Expressions for
˙̃œxx are given in Petropoulos.19

Element-wise, each orbital element difference is multiplied by a weight Wœ̃. If only some of the
elements need to be targeted, the weight Wœ̃ corresponding to the negligible element may be set
to 0; for example, if a circular orbit with e = 0 is to be targeted, the weight for the argument of
periapsis Wω may be set to 0. In addition, the Sœ̃ is an additional scaling factor given by

Sœ̃ =


[
1 +

(
|a− aT |
σaT

)ν]1/ζ
, œ̃ = a

1, otherwise
(16)

where σ, ν and ζ are scalar coefficients; the role of Sœ̃ is to prevent converging towards a→∞.

7



Figure 1. Periapsis penalty function Θp against periapsis rp with rpmin = 1

Outside the sum, Θp is a penalty term on the periapsis, multiplied by the scalar weight Wp, and
is given by

Θp = exp

[
krp

(
1− rp

rpmin

)]
(17)

Effectively, this imposes a penalty on the periapsis radius rp against a user-defined, minimum al-
lowed radius rpmin. While the weight Wp simply scales the relative importance placed on the
minimum periapsis, krp tunes the sensitivity of this penalty with respect to how close the osculating
rp is to the threshold rpmin. This is illustrated in Figure 1, where the penalty Θp increases at a faster
rate for larger krp .

Applying Lyapunov stability theory in the control context and assuming full throttle such that
τ = 1, we seek the optimal control angles α∗ and β∗ such that

[α∗, β∗] = argmin
α,β

Q̇ (18)

Expressing Q̇ in terms of α and β,

Q̇ = D1 cosβ cosα+D2 cosβ sinα+D3 sinβ (19)

where

D1 =
∑

œ

∂Q

∂œ̃
∂ ˙̃œ
∂ft

, D2 =
∑

œ

∂Q

∂œ̃
∂ ˙̃œ
∂fr

, D3 =
∑

œ

∂Q

∂œ̃
∂ ˙̃œ
∂fn

(20)

Expressions for ∂Q/∂œ̃, while cumbersome, may be obtained with ease through the use of a sym-
bolic toolbox. Meanwhile, ∂ ˙̃œ/∂fr, ∂ ˙̃œ/∂ft, and ∂ ˙̃œ/∂fn are simply column vectors consisting of
the first 5 entries of each column in matrix B from equation (5). Differentiating equation (19) with
respect to α and β and setting the system to zero, the optimal angles are given by

α∗ = arctan (−D2,−D1) (21)

β∗ = arctan

(
−D3√
D2

1 +D2
2

)
(22)

8



Note that α∗ is found via the four-quadrant arc-tangent function in the range [−π, π], while β∗ is
found via the normal arc-tangent function in the range [−π/2, π/2].

It is worthwhile to consider what type of solution a transfer with τ = 1 at all times represents;
from classical analysis of optimal control theory, it is known that the optimal solution to a minimum-
time problem requires a bang-bang control profile making use of the control at all times; thus, a
τ = 1 solution is a suboptimal feedback-controlled analog of a minimum-time transfer.

Coasting Mechanism

The mechanism for coasting is based on two quantities, ηa and ηr, representing the absolute and
relative effectiveness of applying the thrust at the current location on the osculating orbit. These are
given by

ηa =
Q̇n

Q̇nn

(23)

ηr =
Q̇n − Q̇nx

Q̇nn − Q̇nx

(24)

where

Q̇n = min
α,β

Q̇ (25)

Q̇nn = min
θ

(
min
α,β

Q̇

)
(26)

Q̇nx = max
θ

(
min
α,β

Q̇

)
(27)

The minimum Q̇ for a given θ, Q̇n, is computed by obtaining the optimal angles α∗ and β∗ from
equations (21) and (22), and substituting them back to equation (19). Computing the exact values
of Q̇nn and Q̇nx via minimizing against θ are impractical; instead, Q̇n is computed over Nθ points
along the orbit, and the minimum/maximum values are taken as approximations of Q̇n and Q̇nx,
respectively. While increasing Nθ would result in more accurate approximations, the computation
of Q̇n is costly and should not be conducted too many times.

By setting cut-off effectiveness thresholds ηamin and ηrmin, the throttle τ is chosen such that

τ =

{
1 ηa ≥ ηamin and ηr ≥ ηrmin

0 otherwise
(28)

Effectively, this formulation enables the control to be applied only at locations along the orbit where
the relative and absolute efficiency of thrusting at that θ is beyond the predefined thresholds. Again,
referring to optimal control theory, thrust profiles involving only full-throttle arcs with τ = 1 and
coasting arcs with τ = 0, or a so-called bang-off-bang strategy, arise as solutions to mass-optimal
problems. As such, a Q-law solution with coasting may be understood as a suboptimal feedback-
controlled analog of a minimum-mass transfer.

Two-Stage Efficiency Scheme In some applications, modifying the efficiency along the transfer
may be desirable. For example, in the context of NRHO to LLO transfers, the earlier half of the
transfer necessitates more thrusting effort to reduce the spacecraft energy before being perturbed
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out of the lunar sphere of influence, while the latter half may be able to accept a more reserved
thrusting strategy, with higher values of ηamin and/or ηrmin. To this end, we implement a two-stage
efficiency scheme, where an energy threshold-based switch is used to alter the values of ηamin and
ηrmin. This variant of Q-law thus requires a pair of efficiency thresholds ηamin,i and ηrmin, i for
i = {1, 2}, such that

[
ηamin ηrmin

]
=


[
ηamin, 1 ηrmin, 1

]
E ≥ Ethres[

ηamin, 2 ηrmin, 2

]
E < Ethres

(29)

We note that, ideally, it is desirable to adjust the efficiency as a function of, for example, the
current states and targeted states. This is the idea behind the reinforcement learning agent trained in
Holt et al.23 In the scope of this work, we prefer to maintain a low number of parameters in favor of
development and implementation speed. The two-stage efficiency scheme is thus a compromise to
achieve the desired complexity of the coasting mechanism with a minimal number of parameters.

Customization of Integration Scheme

The previously discussed dynamics and feedback control law are numerically integrated to yield
transfers. At this point, we would bring our attention to two critical aspects of this process: the
speed and stability of the numerical integration. We note that, for the sake of speed, variable time-
step integrators are typically suited for reducing the integration time while also maintaining the error
under a user-defined threshold; however, for the sake of numerical stability, the feedback controller
along with the discrete nature of the throttle (28) makes them inadequate.

To tackle these challenges, two modifications are made to a naive integration scheme. Firstly,
the computational cost of a single integration step is reduced by limiting the evaluation of Q̇n from
equation (25) to be done only once across Nθ points. Secondly, a piecewise Sundman transfor-
mation is leveraged in order to determine step sizes that are fixed in anomaly angle, resulting in
variable time steps without the need for a higher-order correction step. Figure 2 illustrates these two
modifications, adopted to a 4th order Runge-Kutta scheme.

Economic Runge-Kutta Scheme for Computation of the Efficiencies Runge-Kutta schemes in-
volve evaluating the equations of motion multiple times over each iteration. For example, a 4th

order Runge-Kutta scheme (RK4) requires 4 evaluations of the equations of motion, such that the
state at step k is updated via

xk+1 = xk +
1

6
(k1 + 2k2 + 2k3 + k4) (30)

where k1 through k4 are the well-known four evaluations of the equations of motion for RK4.
The main computational cost of dx/dt in Q-law comes from the Nθ evaluations of Q̇n to obtain
approximate expressions of Q̇nn and Q̇nx. With RK4, this amounts to 4Nθ evaluation of Q̇n.

Assuming the elements vary only slowly, the values of Q̇nn and Q̇nx are nearly constant between
two successive steps in the integration. With this assumption, it is possible to reduce the computa-
tional cost of integrating the equations of motion by saving and reusing Q̇nn and Q̇nx. Thus, using
RK4 as an example, while the evaluation of k1 requires Nθ evaluations of Q̇n to determine whether
to thrust or coast according to equation (28), the remaining evaluations of k2, k3, and k4 each re-
quire at most a single evaluation of equation (18) to obtain the thrust angles, if thrust is applied at
the considered integration step.
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Economic equations of motion 
evaluation, with at most 1 
evaluations of 

Spacecraft path

Regular equations of motion 
evaluation, with       evaluations of 

Figure 2. Custom integration based on 4th order Runge-Kutta scheme, with economic
evaluation of the equations of motion and fixed angle-based step size ∆s.

Supposing again that the integration is done with RK4, this amounts to Nθ evaluations when
τ = 0, or Nθ + 3 evaluations when τ = 1. The resulting gain in computational speed is significant;
for example, with Nθ = 12, the computational cost of the equations of motion is reduced to approx-
imately 12/48 = 0.25 times for an integration step when τ = 0, and 15/48 = 0.315 times for an
integration step when τ = 1. The benefit of this approach is scalable if a higher-order Runge-Kutta
scheme is to be used to improve the integration accuracy as well.

Piecewise Sundman Transformation When involving a controller in the equations of motion, it is
preferable to use a fixed-step integrator to avoid numerical issues. On the other hand, integrating the
spacecraft motion on elliptical orbits with constant time steps is inefficient, since the rapid dynamics
near periapsis necessitates a small time step. In contrast, near apoapsis where the dynamics are
slower, larger time steps are preferable. As a remedy, the Sundman transformation provides a
regularization scheme, where the time step is adapted based on the angular position along the ellipse.

The idea of the piecewise Sundman transformation is to indirectly apply the well-known trans-
formation of the form

dt = crnds (31)

while maintaining the ODE in terms of time derivatives. The resulting algorithm can still utilize
a fixed-step Runge-Kutta scheme, while the actual step size of integration in the time domain is
adjusted accordingly. We begin by assigning a fixed angular step size ∆s. Given the current semi-
major axis a0, eccentricity e0, and true anomaly f0, the current eccentric anomaly of the spacecraft
as E0, given by

tan
E0

2
=

√
1− e0
1 + e0

tan
f0
2

(32)

The time-step ∆t should be chosen such that the spacecraft’s eccentric anomaly at the next time-
step is given by E1 = E0+∆s. For E0 and E1, the corresponding mean anomalies M0 and M1 are
given by

Mi = Ei − e0 sinEi , i = 1, 2 (33)

Note that here, we assume e0 remains constant across the integration step; this approximation holds
as the perturbations only act slowly on the state of the spacecraft.
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Then, at each step of the integration, the time-step of the integration is chosen at each step of the
integration as

∆t(∆s) =


(
M1

2π
− M0

2π

)
P0 M1 > M0(

M1

2π
+ 1− M0

2π

)
P0 M1 < M0

(34)

where P0 = 2π
√
a30/µ is the period of the orbit at the current time. Again, it is assumed that the

a0 remains constant across the integration step. The two cases in equation (34) is required because
M0,M1 ∈ [0, 2π]. Algorithm 1 summarizes a single integration step using the economic evaluation
of equations of motion and the piecewise Sundman transformation.

Algorithm 1 Integration step in custom RK4 scheme
Require: tk, xk, ∆s
E0 ← equation (32)
E1 ← E0 +∆s
Convert E0 and E1 to M0, M1 via equation (33)
∆t← equation (34)
k1 ← regular equations of motion at time tk and state xk

k2 ← economic equations of motion at time tk +∆t/2 and state xk + (∆t/2)k1

k3 ← economic equations of motion at time tk +∆t/2 and state xk + (∆t/2)k2

k4 ← economic equations of motion at time tk +∆t and state xk + (∆t)k3

xk+1 ← RK4 update via equation (30)

Algorithmic Procedure

To implement Q-law, the ODE corresponding to the Gauss planetary equations must first be im-
plemented. At its core, the ODE function takes in the current state [œ,m] and returns the derivative
of the states [œ̇, ṁ] at time t. This ODE is used within a generic initial value problem (IVP) solver
as the dynamics to be integrated. While an IVP is solved over some time-span (t0, tf ), the inte-
gration must be terminated prematurely if the orbital elements converge, or if the propellant of the
spacecraft depletes. For this purpose, event functions are used. Event functions can effectively
check for the occurrence of user-defined “events” based on a true/false boolean, and trigger user-
defined actions, such as the premature termination of the integration. Two events, one checking for
convergence and the other checking for propellant depletion, are defined as follows:

checkconvergence =

{
1 |Wœ̃(œ̃− œ̃T )| ≤ tolœ̃ ∀œ̃
0 otherwise

(35)

checkpropellant =

{
1 m(t) < mmin

0 m(t) ≥ mmin

(36)

where tolœ̃ are the tolerances on convergence along each slow Keplerian element, set to 0.005.
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MULTIOBJECTIVE OPTIMIZATION PROBLEM FORMULATION

In order to characterize low-thrust transfers from NRHO to LLO, we formulate a multiobjective
optimization problem that embeds Q-law within to evaluate both the transfer time and fuel cost.
Furthermore, the spacecraft parameters, namely the initial mass m0, maximum thrust c1, and Isp
are varied as hyper-parameters to this problem.

The multiobjective problem aims to maximize the final mass mf and minimize the transfer time
∆t, and is given by

min
X

(−mf , TOF) (37)

The decision vector X for a free-epoch problem is given by

X =

[
t0,x t0,y

We

Wa

Wi

Wa
Wp krp ηamin, 1 ηamin, 2 ηrmin, 1 ηrmin, 2 Ethres

]
(38)

If the departure epoch is fixed, the first two variables t0x and t0,y are removed from X. Bounds on
each value of the decision vector are given in Table 2. Here, t0,x ∈ [−1, 1] and t0,y ∈ [−1, 1] denote
the departure time from the NRHO, expressed in terms of phase angles, such that the departure time
t0 is given by

t0 =


atan2(t0,y, t0,x)

2π
× PNRHO atan2(t0,y, t0,x) ≥ 0

2π + atan2(t0,y, t0,x)

2π
× PNRHO atan2(t0,y, t0,x) < 0

(39)

While the use of t0,x and t0,y increases the dimension of the problem, it provides a way to en-
capsulate the periodicity of the t0 variable without any discontinuity. Algorithm 2 summarizes the
evaluation of the two objectives (37).

Algorithm 2 Fitness function for low-thrust NRHO to LLO transfer
Require: X, xR,0, œ̃T , m0, c1, c2, ∆tmax, rpmin

xR(t0)← ivp(xR,0, t0) ▷ Propagate NRHO state in CR3BP
xI(t0)← C(ψ)xR(t0) ▷ Inertialize state
œ0 ← cart2kep(xI(t0)) ▷ Convert to Keplerian elements
λ⊕,0 ← π + n⊕,G

(
t0

TUC
TUG

)
▷ Initialize Earth angular position

[mf , ∆t, converged]← Q-law(œ0, œ̃T ,m0, c1, c2,∆tmax,X, λ⊕,0) ▷ Solve Q-law
if converged then

return [−mf ,∆t] ▷ Return objectives
else

return [1e12, 1e12] ▷ Return large penalty
end if

RESULTS

The presented Q-law algorithm and optimization problem are deployed to study low-thrust trans-
fers from NRHO to LLOs. Before exploring the design space of the transfers, we begin by eval-
uating the performance of the customized integration scheme against a conventional, adaptive-step
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Table 2. Bounds on optimization variables

Variables Lower bound Upper bound

t0,x, t0,y -1. 1.
We/Wa 0.1 1.5
Wi/Wa 0.1 1.5
WP 0.05 0.3
krp 1. 50
ηamin, 1 0. 0.4
ηamin, 2 0. 0.5
ηrmin, 1 0. 0.02
ηrmin, 2 0. 0.05
Ethres -0.5 -0.02

Table 3. Hyper-parameters of the spacecraft, dynamics, and Q-Law

Hyper-parameter Values

Spacecraft configuration
(m0, c1, Isp), (kg, N, s)

(1500, 0.4, 2500)

rpmin, km 1738
g0, m/s2 9.81
J2 202.7× 10−6

R2, km 1737

Weights on a, Ω and ω [Wa,WΩ,Wω] [1.0, 0.0, 0.0]
Sœ̃ Parameters, [σ, ν, ζ] [3, 4, 2]
Integration angular step size ∆s, deg 2
Nθ 12

Runge-Kutta method. Then, we proceed to solve the optimization problems, which are formulated
using the Metaheuristics.jl library in Julia.32 Firstly, the departure-phase-free problem, where the
departure epoch is part of the variable, is solved. Then, the departure-phase-fixed problem is con-
sidered for a grid of departure epochs. Hyper-parameters for the numerical experiments are given
in Table 3. The initial conditions and the period of the NRHO in the Earth-Moon rotating frame are
given in Table 4.

Integration Scheme Performance

The performance of the customized RK4 integration scheme is evaluated against using an imple-
mentation of the RK4 with 5th order step correction. Specifically, the Tsit5 algorithm33 from the
DifferentialEquations.jl package34 is used as a point of comparison.

Firstly, the accuracy of the custom integration scheme is evaluated for various angular step size
∆s. To this end, the NRHO to LLO transfer problem is solved using ηa/r min, 1/2 = 0. A relative
and absolute tolerance of 10−6 is used for the Tsit5 algorithm. Figure 3 shows the solve time as well
as the relative difference in final mass and time of flight obtained from the custom RK4 compared
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Table 4. Non-zero initial states and period of the NRHO in the Earth-Moon rotating frame centered
at their common barycenter

NRHO parameter Value

x0, LUC 1.0213350196144284
z0, LUC -0.18161940230517748
ẏ0, (LU/TU)C -0.10175605810056816
PNRHO, TUC 1.502061
PNRHO, day 6.531529005059

Figure 3. Q-Law solve time and solution accuracy using custom RK4 integrator for
varying step-size ∆s, compared against adaptive-step integrator (Tsit5)

to Tsit5. As expected, the computational cost of the custom integration scheme reduces drastically
as the step size is decreased. Meanwhile, the difference in final mass and time of flight is within
fractions of a percent for all cases with step sizes under 10◦. In the remainder of this work, we use
a step size of ∆s = 2◦ as it provides a good trade-off between integration time and error.

Next, the effect of increasing Nθ is tested. This time, the NRHO to LLO transfer problem is
solved using ηa min, 1/2 = 0.2 and ηr min, 1/2 = 0. For the custom RK4 integrator, a step size of
∆s = 2◦ is used, and the tolerances for Tsit5 are set again to 10−6. Figure 4 shows the solve time
for various values of Nθ using the two integration schemes. Again, as expected, the solve time
grows much slower with the custom RK4; for the same computational budget, we can use larger
values of Nθ, hence enabling better approximations of Q̇nn and Q̇nx from equations (26) and (27).

Free Departure Phase Angle

We first consider the multiobjective problem with free departure epoch. This enables us to dis-
cover the optimal departure location along NRHO for the type of low-thrust transfers considered in
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Figure 4. Q-Law solve time using adaptive-step integrator (Tsit5) and custom RK4
integration scheme with step size ∆s = 2◦

Figure 5. Pareto solutions from free departure epochs. Red markers indicate selected
representative solutions for further analysis.

this work. Figure 5 shows the Pareto front discovered through the method presented thus far. Along
the detected Pareto front, a variation in time of flight of about 20 days has been observed, for a
propellant mass trade-off of 5 kg.

Insight can also be drawn by looking at the spacecraft trajectory in terms of osculating Keplerian
elements with respect to the Moon. This is shown in Figure 7 for a select number of solutions along
the Pareto front. It is possible to see that the Pareto solutions initially prioritize reduction in semi-
major axis, followed by reduction in eccentricity as well. This follows the need for the spacecraft
to initially reduce its energy in order to get fully-captured by the Moon.

Fixed Departure Phase Angle

We now bring our attention to the fixed departure epoch cases. We consider a departure epoch
grid t0 ∈ [0, PNRHO) discretized by 60. This allows us to obtain an analog to pork-chop plots,
a useful “map” for mission planners to determine the trajectory options concurrently with other
operational or programmatic constraints. Figure 8 shows the Pareto solutions solved over multiple
instances, where in each instance the departure is fixed to a specific time along the NRHO.

It is possible to observe that leaving at perilune results in overall higher propellant cost. This may
seem counter-intuitive when considering two-body transfers, as in a two-body setting, the reduction
of energy is most efficiently done at perilune. However, the presence of strong perturbation force,
as well as the Lyapunov function’s penalty term on the periapsis (17), renders it a not-as-attractive
starting location. Coincidentally, the region near perilune also coincides with the portion of the
NRHO that is known to be highly sensitive, and therefore to be avoided for proximity operation
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Figure 6. Example NRHO to Low-Thrust Transfer with departure phase angle t0 =
0.2PNRHO. The lime green line is the NRHO in the Earth-Moon rotating plane defined
at t0 = 0, and the black line is the NRHO in the inertial frame. The red and blue arcs
represent thrusting and coasting arcs along the transfer, respectively.

Figure 7. a-e history for selected free-epoch Pareto solutions
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Figure 8. Pareto solutions from fixed departure epochs along NRHO. A phase angle
of 0◦ corresponds to perilune, and a phase angle of ±180◦ corresponds to apolune.

with the Gateway.35

The shortest time-of-flight coincides to a departure angle of around −120◦, or 60◦ from apolune.
Meanwhile, solutions with low-propellant mass are available across most of the departure epoch.
This is a simple consequence that, given a long enough loitering time along the transfer, near-mass-
optimal orbit transfers can be found regardless of the departure phase. As an exception, fewer
propellant-conserving solutions are observed for departure phase angles of between −30◦ to about
60◦. This is reflective of the aforementioned high sensitivity of the dynamics around perilune, where
starting the low-thrust transfer going into this portion of the NRHO is more likely to be disturbed
out of the cislunar vicinity when using the feedback controller.

CONCLUSION

In this work, we developed a customized Q-law algorithm for designing many-revolution low-
thrust transfers from the Gateway’s baseline NRHO to LLOs. The Lyapunov controller is designed
to deduce a control based solely on two-body dynamics, while perturbations are added into the dy-
namics used for propagating the spacecraft state. To incorporate coasting mechanisms efficiently,
a custom Runge-Kutta scheme with an economic evaluation of the coasting heuristics and a piece-
wise Sundman Transformation is implemented. The resulting algorithm can compute the many-
revolution transfer within a few seconds, rendering itself well for large-scale trade-study.

This formulation is used within a dual objective optimization problem to design fuel and time of
flight efficient transfers. Specifically, the optimization problem is solved with a free departure phase
angle scenario and a grid-based fixed phase angle scenario. Pareto solutions trading off propellant
mass and time of flight have been uncovered for a plausible cislunar low-thrust transfer vehicle. The
obtained trends can be further analyzed through transfer designs in higher-fidelity models, while also
providing crucial insights into the feasibility of low-thrust-based space transportation architecture
in the NRHO-LLO interval.
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