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Abstract. Science images of the Moon and Mars are
often captured with pushbroom cameras. Craters with el-
liptical rims are common objects of interest within the the
images produced by such sensors. This work provides a
framework to analyze the appearance of crater rims in
pushbroom images. With knowledge of only common el-
lipse parameters describing the crater rim, explicit formu-
lations are developed and shown to be convenient for draw-
ing the apparent crater in pushbroom images. Implicit
forms are also developed and indicate the orbital condi-
tions under which craters form conics in images. Several
numerical examples are provided which demonstrate how
different ellipse formulations can be interpreted and used
in practice.

Introduction. Pushbroom cameras are common sci-
ence instruments. These sensors have a long history of
imaging the surfaces of many planetary bodies, such as
the Moon and Mars. Contemporary examples of pushb-
room cameras within the context of planetary exploration
include the Mars Express High Resolution Stereo cam-
era,! the Mars Reconnaissance Orbiter (MRO) High Res-
olution Imaging Science Experiment (HiRISE),2 and the
Lunar Reconnaissance Orbiter Camera’s (LROC) Narrow
Angle Camera (NAC).3 Pushbroom images are formed
as a sequence of projective one-dimensional (1-D) im-
ages captured by a linear array of detectors. The two-
dimensional (2-D) image is formed as the camera passes
over the terrain. The pushbroom camera is aptly named
for the sensor’s motion as it sweeps out the area it images.

Pushbroom cameras are not commonly used for real-
time applications (e.g., optical navigation) because of the
procedure required to assemble a sequence of 1-D scans
into a full 2-D image. They do, however, provide several
benefits for capturing scientific images for post-flight anal-
ysis. Historically, pushbroom cameras had an advantage
of not containing moving mechanical parts which may fail
during the mission lifetime. However, this oft-cited ad-
vantage is less important today with the widespread in-
corporation of digital shutter technologies in conventional
cameras. Instead, the most important modern advantage
is that pushbroom cameras tend to collect more radio-
metrically accurate images. Each detector in the linear
array is constantly exposed to the scene (compared to
digital cameras or whiskbroom cameras which have finite
exposure times). These longer exposure times (or “dwell
times”) can result in a larger scene radiance captured on
individual detectors—which is particularly important un-
der poor or variable illumination conditions.* In practice,
the raw pushbroom images are downlinked to Earth and
refined offline (e.g. radiometric correction and applying
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The construction of world
maps or digital elevation maps (DEMs) are two common
applications of pushbroom images.

standard map projections).

Nearly all pushbroom imagery is captured from a low
emission angle. One example is shown in Fig. 1, where
we see the raw pushbroom image of a terrain patch in
Mare Crisium across the top with a magnified view of
Curtis crater below. This is one example of the Moon’s
large population of craters. Many of these craters (as
well as those on Mars) have been cataloged.% " While no
crater is perfectly elliptical, analysis has shown that the

assumption fits well with current observations.®?

Now, the appearance of a planar conic (e.g. an ellipse)
in an image taken by a central perspective camera (mod-
eled as a pinhole camera) is known to be another conic.
The conic to conic mapping is governed by a homogra-
phy which is well understood from projective geometry.10
In fact, this result has been utilized for several types of
spacecraft optical navigation, such as crater-based® and
horizon-based!! methods. Unfortunately, the analytical
frameworks available for pushbroom cameras are not as
mature as those for central projection cameras. Full push-
broom camera models are intractable for analytical analy-
sis due to the complexities introduced by the spacecraft’s
orbital motion.'?> The linear pushbroom model was de-
veloped to address some of these complexities,l?’ and it

Figure 1. Pushbroom cameras tend to produce slen-
der images with the along-track dimension much
larger than the cross-track dimension due to the
orbital motion. For scale, Curtis crater is approx-
imately 2.9 km in diameter. (NASA PDS product

M1323712937RE).°



led to insights into the formation of pushbroom images
including the mapping of lines on a plane to hyperbolas
in an image.

In this work we describe an analytical framework to
interpret the appearance of ellipses (e.g. craters) in push-
broom cameras. We approach this work by first review-
ing several mathematical formulations of ellipses. Specif-
ically, explicit forms are developed for their convenient
mapping from world coordinates to the pushbroom image
plane as well as their practical use drawing ellipses us-
ing only common ellipse parameters (semi-major axis and
semi-minor axis). In addition, we utilize implicit forms to
1) show that in general ellipses map to 4th order polyno-
mials in pushbroom pixel coordinates u—v and 2) provide
a comprehensive treatment of the conditions under which
an ellipse maps to another conic in the image plane.

Linear Pushbroom Cameras. A pushbroom cam-
era is an optical sensor with a 1-D detector array following
perspective projection. Thus, at any instant in time, a 1-
D image is formed by the perspective projection of objects
residing within the instantaneous view plane (see Fig. 2).
The instantaneous view plane is formed by the union of
the camera location (a point) and the 1-D sensor strip (a
line). As the sensor moves, the instantaneous view plane
also moves and sweeps out a region of space. Stacking a
sequence of 1-D images one after another creates a 2-D
image.

Following the conventions of Hartley and Gup‘ca,13 we
define a linear pushbroom camera to describe the scenario
when the camera moves at a constant velocity and main-
tains a constant attitude. We will now develop the linear
pushbroom model.

Begin by defining the vector £ as the location of a world
point p relative to the camera at r,

(1)

We choose to express everything in the known (and con-
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Figure 2. The pushbroom camera’s instantaneous
view plane is the camera frame’s y-z plane and con-
tains the 1-D image formed at any instant in time.
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stant) basis vectors of the camera frame. This frame has
the z-direction along the boresight direction and the y-
direction along the 1-D sensor strip. Thus, the instan-
taneous view plane is the same as the camera frame y-z
plane (see Fig. 2).

Now, continue by considering the 1-D sensor at an in-
stant in time. Since the 1-D sensor follows perspective
projection, we find that

y 0 1 0

HREE
where y is the coordinate where the direction £ pierces
the z = 1 plane. We observe that [y, 1}T e PL.

We must now relate the point y to its corresponding
pixel location along the 1-D image. Define the v-direction
to have units of pixels and to be along the 1-D image
(and therefore parallel to the camera frame y-direction)
as shown in Fig. 2. We then have the a similarity trans-
formation (corresponding to part of the usual 2-D pin-
hole camera calibration matrix'!) to transform from im-

(2)

age plane coordinates to pixel coordinates

Gl

Hence, substituting Eq. (2) into Eq. (3),

v] [dy wp| 0 1 0
H‘Xo 1“001}Z

v 0 dy Up
HREN AL

We can remove the proportionality relation by introduc-
ing an explicit scaling, w,

[wv] . [0 dy vp} p)
w 0O 0 1
which happens to be w = z.

The unusual part of the pushbroom camera model is
how to handle the second dimension (u-direction) of the
2-D pushbroom image that is formed by the motion of the
camera relative to the observed scene. Suppose we collect
a sequence of 1-D images with a time 7 between each
image. Moreover, assume that each of these 1-D images

forms a column in the resulting 2-D pushbroom image. In
that case, the conversion from time to pixels is given by

(7)

3)

—_

(5)

(6)

u=(t—to)/T = At/T

where perfect timing produces integer values of u.

A world point only appears in a particular 1-D image if

it lies within the instantaneous view plane. Thus, if v is

the constant velocity of the observer, then the observer’s

instantaneous location at the time of a particular 1-D
image is

r=1rg+Atv

(8)



where r( is the observer location at time tg. Substituting
this result into Eq. (1),

L=p—r=p—(ro+Atv) =~£y— Atv 9)

where £9 = p — rg. Writing out the terms and constrain-
ing £ to the instantaneous view plane (i.e., the camera y-z
plane, where ¢; = 0),

0= |ty = |bo,| — At |V (10)
gz 60 Vz

z

The first row gives us a relation between time, position,
and velocity in the z-direction that allows us to determine
when a point will pass through the instantaneous view
plane

by, — AtV =0

— At=1ly, /Ve (11)

This can be transformed to the pushbroom image u coor-
dinate using Eq. (7)

u=At/T =14y, /(TVz) (12)
or, in matrix form,
u=[1/(rVz) 0 0] (13)

To complete the camera model, we may use a sim-
ilar scheme to analyze the w-coordinate of a moving
pushbroom camera. Substituting At from Eq. (11) into
Eq. (10),

0 Lo, l Ve
46 = éy = ﬁoy - VT Vy
ez éO :v V

z

0 0 0] (4

= |-W/Va 1 0| |Lo, (14)
|—Vz/Ve 0 1] |4o,
and further substituting into Eq. (6),
wv| _ |dy wvp| [-Vy/Ve 1 0
[w] - {0 1] {—vz/vx o 1/ (9

Therefore, stacking Egs. (13) and (15) yields one of the
key relationships for pushbroom cameras:

u 1/ 0 0 1/Vz 0 0
wv|=|0 dy wvp| |-Vy/Ve 1 0|%£ (16)
w 0 0 1 —Vo/Ve 0 1

We observe here that £y is the vector from the initial
camera location rg to the observed world point p, all
expressed in the camera frame. To write this explicitly
in another frame (e.g., a Moon-fixed frame M in which

elliptical crater rims are known),
M _
Lo=T¢ (ppr—ro) = [TY —T¥rolpy (17

where p,, is the point expressed in the Moon-fixed frame
and p2, = [p%;,1]. The 3 x 3 matrix TY is the attitude
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transformation matrix from the Moon-fixed frame M to
the pushbroom camera frame C. The relative position
and orientation (sometimes called pose) of the camera
relative to the Moon at time tg is given by the 3 x 4
frame transformation matrix

ey = [T4 —1¥r (18)
such that
L =TI 5y (19)
Therefore, substituting into Eq. (16),
u i/r 0 ol[1/Va 0 0
wol = | 0 dy wp| |-Vy/Ve 1 0|T¥ By
w 0 0 1 -Vz/Ve 0 1
(20)

When the velocity is not purely along the camera frame
z-direction and parallel to the ground, the camera mo-
tion will distort the resulting 2-D pushbroom image. In
the simplest case, a vertical velocity (non-zero V) causes
objects to appear larger or smaller and a horizontal ve-
locity (non-zero V) causes image shear. This effect is
illustrated in Fig. 3.

Craters as Conics on the Lunar Surface. The
pushbroom camera model developed in Eq. (20) describes
how a generic point p,,; in the world frame will project
into an image. Suppose now that this point happens
to belong to the rim of a crater. Since crater rims are
well-modeled as ellipses,&9
mate observed points belonging to a crater rim as points
constrained to lie on an ellipse—or, more generally, on a
conic. The elliptical (conic) crater rims are assumed to
be planar features.

Without loss of generality, we define the Moon frame
to have its origin at the center of the observed crater,
with the Z-axis perpendicular to the plane of the crater
and positive out of the surface (i.e., what someone sit-
ting on the lunar surface would call the “up” direction).
It follows that a point in the crater’s plane is given by
P%{ = [X,Y,0]. Writing the 2-D location of a point on
the elliptical crater rim in homogeneous coordinates as
57 = [X,Y,1] € P2, we see that

we can reasonably approxi-

s'Ccs=0 (21)
where C is a symmetric matrix of ambiguous scale (five
degrees-of-freedom) describing the conic locus. An equa-
tion of this from is true regardless of the orientation of the
X-axis and Y-axis within the plane of the crater. How-
ever, it is often helpful for analytical analysis, to choose
our basis vectors to simplify the problem. Thus, without
loss of generality, place the origin at the ellipse center and
define the X-axis to be in the direction of the elliptical
crater’s semi-major axis. In such a situation, points along
the elliptical crater rim satisfy the the constraint
X2 y?

T
a2+

W2 (22)



where a is the semi-major axis and b is the semi-minor
axis. This parameterization is general enough to describe
any ellipse and leads to a conic locus matrix of the form

¥ 0 0
Cx |0 a2 0 (23)
0 0 —a%?

The conic within the plane may be related to the 3-D
geometry in a few different ways. To develop some useful
relationships, begin by observing that

1 0 0

5=T5 (24)
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Figure 3. The geometry of the projection on the
image plane causes phenomena of shear and mag-
nification that contributes to the appearance of the
final pushbroom image.
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and, since T = I3x3, that

s=T"py (25)
Substituting this result into Eq. (21), we find that
T e _ =T T T -
5 Cs=pyI'CT" pyy =Py QP (26)

where @ is a 4x4 symmetric matrix of arbitrary scale that
defines a quadric surface in P2.14 Taking the intersection
of this quadric with the z = 0 plane (i.e., the plane of the
conic) leads to the conic section describing the crater rim.

The classical description of a planar conic in P? familiar
to most analysts was given in Eq. (21). However, there ex-
ists an alternative called the canonical parametric repre-
sentation which allows us to describe the 2-D coordinates
of a conic using a single parameter.14 This representation
is sometimes more convenient than Eq. (21).

We can arrive at the desired single parameter represen-
tation using a simple transformation (a homography) on
the projective plane P2. A homography is an isomorphism
describing the mapping P"* — P that is usually parame-
terized by an n X n matrix of arbitrary scale. Consider a
point s x [X,Y,1] € P2 belonging to the elliptical crater
rim and residing within the plane of the crater. Suppose
there is a homography that relates s to a corresponding
point 8 o [0, 0, 1] € P? in a transformed space. Thus, we
may write

5x HO (27)
where H is 3 x 3 invertable matrix of arbitrary scale.

We know that a homography maps a conic to a
conic.® 19 If the goal is to reduce the conic description
to a single parameter, a particularly convenient choice for
the transformed conic is the parabola 1) = 62. In this case
any point 87 [v,0,1] = [92 01] lies on the parabola and
depends only on the single parameter § € R. This sim-
ple parabola can be written in terms of the usual quadric

equation
07 Cyo=20> 29 =0 (28)
where the conic locus matrix C}y is given by
0 0 -1
Cox |0 2 0 (29)
-1 0 0

The objective, therefore, is to find the homography be-
tween the transformed conic locus Cy and the original
conic locus C'.

Substituting Eq. (27) into Eq. (21) yields

s7'cs=0"H " CHO=0" Cyo =0 (30)
so that the transformation we seek is given by
CoxH' CcH (31)

Given C from Eq. (23) and Cy from Eq. (31), it is
straightforward to show that the homography

a 0 -—a
Hox [0 20 0 (32)
1 0 1
4



will produce the desired anti-diagonal matrix Cy.
Substituting the homography from Eq. (32) into
Eq. (27) yields

X a(0® —1)
s=|Y| x 200 =Ho (33)
1 0% +1
or, equivalently,
_ 1 ~

This allows us to explicitly write the (X,Y) coordinates
belonging to the crater rim in terms of the parameter

a(0® —1)
X=—"-""
02 +1 (352)
2b6
=7 (35D)

A point around the ellipse may also be parameterized
by the angle ¢

X =acos¢ and Y =bsing (36)
which leads to
‘ 0% —1) . 26
cos ¢ = e and sin¢g = 71 (37)
Where we observe that
¢\ _ l+cosg
cot (2 = 7sin¢ (38)
and substitution from Eq. (37) shows that
0 = cot (¢/2) (39)

which provides a geometric understanding of how the pa-
rameter 6 is related to the angle around the ellipse.

To see these representations and transformations in ac-
tion, consider an ellipse with a = 15 and b = 10 as shown
in Fig. 4. Choose three points A, B,C around the el-
lipse occurring at angles ¢4 = 30 deg, ¢p = 150 deg,
and ¢ = 230 deg. Substitution into Eq. (36) gives the
(X,Y) coordinates of these three points, while substitu-
tion into Eq. (39) gives the parameter 6 for the same
three points. The reader may verify that substitution of
the values 64,0p,0c into Eq. (35a) and (35b) recovers
the corresponding (X,Y’) coordinates.

Conics in Pushbroom Images. Elliptical crater
rims project to image conics with conventional perspec-
tive projection cameras (i.e., those that follow the pinhole
camera model in both the z and y directions).® However,
elliptical crater rims on the lunar surface do not neces-
sarily project to conic features in a linear pushbroom im-
age. To obtain a non-degenerate conic crater rim (e.g.,
ellipse) in a pushbroom image, the plane spanned by the
camera y-axis and the velocity vector must be parallel
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to the plane of the crater. All other motion or orienta-
tions lead to either a degenerate conic or a more compli-
cated curve (generically a polynomial of degree four as
discussed in subsequent sections). That we only obtain
a non-degenerate image conic under the above conditions
will now be shown.

To begin, substitute Eq. (24) into Eq. (20) to find

U
wy| = Ms (40)
w
where M is the 3 X 3 matrix
1/r 0 0 1/Ve 0 0
M=|0 dy vp| |-Vy/Va 1 olm¥T (41)
0 0 1 -V2/Ve 0 1
Moreover, by introducing the diagonal matrix W,
U 1 0 O U
wo| =10 w 0| |[v|] =Wu (42)
w 0 0 w 1
we see that
s=M'Wau (43)

Observe that M is a constant matrix for any given push-
broom image, while W may be different for every point
(since w may be different for every point). Proceeding
undeterred, we find that

stecs=a’wrMTem*wa=0  (44)
Writing this more compactly,
a’ Aw =0 (45)
where
A=w'MTecMm'w (46)

When the matrix A is constant, the points u trace out
a conic. Since M and C are constants, one obtains a
conic when W is constant—and this occurs when w is
constant. Consequently, we see that an elliptical crater
will project to a conic in a pushbroom image when w is
constant. Recall from Eq. (16), that the scaling w is given
by

v

w=4{=—4, vz + Lo, (47)
x

The question at hand is: under what conditions is w
constant? The answer has two parts. The first part con-
siders points on the conic observed at any one instant in
time. The second part considers points observed at dif-
ferent times. Begin by considering two points observed at
the same time. When viewing a crater, the instantaneous
view plane can intersect the conic in no more than two
places. For the projection to be a conic in the pushbroom
image, the value of w for both of these points must be
the same. If two conic points are from the same instant
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Figure 4. The central angle which parameterizes the standard trigonometric form of an ellipse may be
converted to the canonical representation parameter using a simple one-to-one cotangent mapping, and

vice versa.

in time they have the same u coordinate. Thus, from the
first row of Eq. (16),

u = Koml /(TVx) = éow/(TVx) d 5011 = 6012 (48)
And so it follows from Eq. (47) that £y, = £o.,. Only
the £y, coordinates of the two points may be different.
Consequently, the line of intersection between the instan-
taneous view plane (i.e., camera y-z plane) and the crater
plane must be purely in the camera frame y-direction.
This only happens when the y-direction is parallel to the
plane of the crater (i.e., when the camera x-z plane is
perpendicular to the plane of the crater).

Next, consider two points observed at different times.
Recall that the linear pushbroom model assumes that
both the camera velocity and camera attitude are con-
stant. It follows, therefore, that the ratio V. /V, is con-
stant. Next, observe that for w to be constant from point
to point means that it must be the same for two arbi-
trary points p; and p, residing on the conic. Therefore,
as shown in Fig. 5, let £y, and £p, be the location of two
points on the conic crater rim (and residing within the
plane of the crater) relative to the camera’s initial posi-
tion. Substituting into Eq. (47) and assuming w is the
same for both yields

Vz VZ

—to,,, vt b, =w=—l,, vt lo., (49)
This can be rearranged to find
by, — 4

Ve | 205 700, tan a (50)

Vo lo,, — Lo

z2 x1

where the angle « is shown in Fig. 5. This constraint
states that the velocity vector must be parallel to the
plane of the crater.

Thus, the two constraints are that both the camera
frame y-direction and the velocity vector are parallel to
the plane of the crater. Since Vi # 0 if the pushbroom
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camera is to form a 2-D image, we know that the camera
y-direction and velocity vector span a plane parallel to
the crater plane. This same result may be arrived at
by simplification of the implicit equation for a generic
projection and is discussed in a later section.

{ Do N D2

world plane

Figure 5. Two points imaged at different time in-
stants will have same w only if the world plane and
the camera motion are parallel.

Generic Projection of a Conic into a Pushbroom
Image. We found in the prior section that an ellipti-
cal crater rim (or any other conic) will only project to
another conic in a pushbroom image under very specific
conditions. We now proceed to develop a more general de-
scription of the curve produced when a pushbroom cam-
era images a conic feature.

Recalling the parametric expression of points on the
conic given by Eq. (34), we now substitute this into the
pushbroom projection from Eq. (40):



which expands to

A0* + BO+C
R (52a)
DO?> + E6+ F
S — (52b)
GO+ HO+ I
_ 50 rHer. 2
w 71 (52¢)
The terms A, ..., I may be computed as
A B C
MH=|D E F (53)
G H I

where M is from Eq. (41) and H is from Eq. (32). The
explicit expression of these coefficients can be found in
the appendix. Finally, the parametric expression of the
imaged curve is

_A*+B9+C
STy (54a)
2
_ DO*+EO+F (54b)

YT Gy HO+ T

From these equations, we can derive the implicit equa-

tion of the apparent curve in the pushbroom image. From
Eq. (54a), we can write

(A—u)8* + BO+ (C—u) =0

and we can use it to express 2 as a linear function of u

and 0
02 — (w—C)— B¢

(A—u)
Substituting this expression for #% in Eq. (54b) and ma-

nipulating, we obtain the expression for 6 as a function of
u and v

(55)

(u—C)(wG — D)+ (vI — F)(A —u)
B(vG — D)+ (E—vH)(A—u)
Substituting Eq. (56) into Eq. (54a) and factoring out the

term (A —u) the final implicit expression of the curve can
can be written as a polynomial of degree 4 (a biquadric)

0=

(56)

of the form

au?v? + Buzv +’yu1)2 + uv + eu? + Q}Q +nu+w+k=0
(57)
where the coefficients «,...,x are only dependent on
A, ...,I. The complete expression of these coefficients is
written in the appendix.
Now, consider a point &7 « [uv,u,v,1] € P* x PL. In
this case, the polynomial from Eq. (57) can be written in
compact form as

£ Qe=0 (58)
where @ is the 4 x 4 matrix of arbitrary scale
o B/2 2 0
/2 ¢ 6/2 n/2
Qocln 52 ¢ o2 (59)
0 n/2 2 K
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From here, there are a few different interesting analyses
that may be performed. First is to show (again) the con-
ditions under which a world conic projects to a conic in
a pushbroom image. Second is to discuss finding the pro-
jection as an intersection of two surfaces.

Reduction to Pushbroom Conic. Consider the situation
where we set the coefficients «, 8 and v in Eq. (57) to zero.
In this case, @ collapses to

0 0 0 0

0 e 40/2 n/2 0 01x3
Q1o 52 ¢ 2| “loga a | ©0
0 n/2 /2 «
where A is a 3 X 3 matrix of arbitrary scale
e 0/2 n/2
Ax [6/2 ¢ /2 (61)
n/2 /2 kK
Recalling that @7 = [u,v,1] € P?, it follows that
=T z _T 4~
£ Qo =u Au=0 (62)

where A is a constant matrix since it is made up of the
constant coefficients from Eq. (57). Hence Eq. (62) de-
scribes a conic in u-v coordinates (i.e., in the pushbroom
image).

Recalling from Table 2 that o = H? + (G —I)?, we find
the condition for a = 0 is only satisfied when

H=0 and G=1I (63)
The reader may verify from Table 2 (see appendix) that
this same condition also forces f# = 0 and v = 0. Imposing
the two conditions of Eq. (63) is therefore necessary and
sufficient to guarantee that the curve in the pushbroom
image is a conic.

To better understand the meaning of Eq. (63), consider
the element-wise description of the rotation matrix TAC4
given by

. Ty T2 Tis
Te =[te ty t]=|To1 Too Tis (64)
T31 T32 Ti3

Using this notation, substitute the values for H, G and I
from Table 1 in the appendix into Eq. (63), then the two
conditions can be rewritten as

T32 Vz

H=0 — _— = — 65a
T2 Vg (652)
T31 Vs

G=1 —» ==-2= 65b
Ti1  Va (65b)

We can show that this pair of constraints for a world
conic to project to a pushbroom conic is the same as found
in earlier sections—namely that the velocity vector and
camera frame y-axis span a plane parallel to the plane
of the crater. This requires a few short steps. First, the



normal to the plane spanned by the velocity vector and
camera frame y-axis is in the direction given by

Ve 0 -V
vxy=|Vy| x|[1|=] 0 (66)
Vz O Vz

and normal to the crater plane (the Moon X-Y plane) is
in the direction given by

T51T32 — TooT31
T12T31 — T11T32
T11To2 — T12T21

tr X ty = (67)

If the planes are parallel then their normals are also par-
allel,

-V To1T32 — Th2T31
0 | =vXxgoctexty=|TiaTs —T11T52| (68)
Vi T11T22 — 112151

Since the second row is zero (i.e., the normal vector must
lie in the camera frame z-z plane) then

Ty19T31 —T11T32 =0 (69)
which certainly agrees with Eq. (65):
T3 Vy T3
82 Y2 231 o =TT 70
T — V.~ Ty 12731 11732 (70)

However, more can be done to separately arrive at the
two equations in Eq. (65). If v, §, tz, ty are all coplanar
then their cross products are all parallel. For example,

VX Yoty Xty Xty XvXtyXv (71)
It follows, therefore, that
T91 Ve —T31Vy -V
ty xv=|T31Vy —T11 V| x 0 (72)

T11Vy — To1 Ve Va

And so, from the second row, we directly reproduce
Eq. (65b)

T31 V.
T11Vz—T31Ve =0 = == 73
11Vz 31Vzx — Ti Vo (73)
Likewise, we see that
Too Ve — T32Vy —Vz
ty X v = T32VE — T12VZ X 0 (74)

T12Vy — TooVy Va
where the second row now directly reproduces Eq. (65a)

V. T:
T3oVe — TioVe =0 — = = =22

75
Ve o T1o (75)

Thus, we see that Eq. (65) describes the situation where
the velocity vector v and camera frame y-direction span
a plane parallel to the crater plane (which is spanned by
t: and ty).
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Figure 6. When the plane of the ellipse and the
plane spanned by the velocity vector and the y-axis
of the camera frame have the same normal vector,
the projection of the conic in the world frame is a
conic in the pushbroom image.

Generic Conic Projection as the Intersection of Curves.
We now return to studying the general conic projection
described by the curve of Eq. (58). First, note that since
the matrix Q is 4 x 4 and symmetric, we can always as-
sociate it to a quadric in P3 described by the equation

¢'qc=0 (76)
where ¢ = [z,u,v,1] € P3. The curve traced by the push-
broom camera can be formed by the intersection of this
quadric with the surface z = wv (i.e., the constraint on
the first component of ¢ to get ¢ = £). Orthographic pro-
jection of this 3-D curve down to the u-v plane provides
the 2-D curve we seek.

To show this relationship, consider 3-D scenario illus-
trated in Fig. 3. In Fig. 7 we show the intersection
between the quadric surface @ and the surface z = ww
obtained from the simulation. The intersection curve has
then been projected onto the u-v plane. The matching
between the projected curve and the explicit representa-
tion of Egs. (35a) and (35b) has been shown using 6 given
by Eq. (39) for values of ¢ € (027) sampled at intervals
of 30 deg. This provides a way to interpret the implicit
equation of the fourth degree polynomial curve given by
the projection of a conic provided by a linear pushbroom
camera and shows that it is equivalent to the explicit pa-
rameterization of the curve given above.

Conclusion. In this work we develop a framework to
analyze how elliptical craters project into a pushbroom
camera image. We consider multiple expressions for el-
lipses, each of which are useful in different contexts. In
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Figure 7. Interpretation of the implicit equation of
the projected curve. The projection of the inter-
section between the quadric and the surface z=uv
perfectly matches points sampled from the explicit
parameterization of the curve.

addition, we relate these forms to each other via straight-
forward conversions. Two representations are particularly
noteworthy. The first is a single-parameter explicit formu-
lation (canonical parametric representation) conveniently
maps to pushbroom space via matrix multiplication of
three basis vectors which are defined using common el-
lipse parameters (semi-major axis and semi-minor axis).
Further, the pixel coordinates of the ellipse projection are
easily obtained by varying the single canonical represen-
tation parameter which is shown via a practical numerical
example.

The second noteworthy representation is the implicit
form for the curve. In general a ellipse in the world (e.g.,
a crater rim) projects to a polynomial of degree four in
a pushbroom image. A thorough examination of the im-
plicit form indicates that the pushbroom projection hap-
pens to be another non-degenerate conic (a polynomial
of degree two) when both the 1-D pushbroom array (i.e.,
camera frame y-axis) and the camera velocity are paral-
lel to the surface. Finally, we tie the explicit and implicit
forms in the pushbroom camera frame together with a nu-
merical example. We do so by projecting the intersection
between the quadric surface associated with the matrix
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encoding the coefficients of the fourth order polynomial
and a saddle surface onto the plane of the pushbroom
image to obtain the same result as the explicit form.

In summary, this paper provides an analytical frame-
work for studying the projection of elliptical surface fea-
tures (e.g., crater rims) into a pushbroom camera image.
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Appendix.

Table 1. Coefficients for the explicit form. We are
using the element-wise description of Tgf as given
in Eq. (64). Note: 9. = Tg'ro

A - (aT11 — 702,0)

B - (20T12)

C %vm(—aTu —T0z,C)

D dy (*“%(GTII —Tox,c) +alz1 — ?"oy,c) + vp (*%(GTII —roz,c) +al31 — Toz,c>

E dy (—%QbTm + 2bT22) +up (—%Zleg n szBQ)

F ol dy (*“%(*GTH —roz,c) —alb1 — Toy,c) + vp (*%(*GTH = Toz,c) — al31 — 7"0z,c>
G — 17 (aT11 = roa,¢) + aT31 — 1oz

H — V26T 12 + 2bT5:

I V2 (aTi1 + 7og,0) — aT31 — Toz.¢

Table 2. Coefficients for the itmplicit form.

H?> +(G-1)?

“9FEH - 2(D - F)(G — 1)

2(AI — CG)(G—1)— CH? — AH?> + BGH + BHI

2AEH — 2(Al — CG)(D — F) — 2(AF — CD)(G — I) — BDH — BEG — BEI — BFH + 2CEH

E*+(D—-F)?

2(AF —CD)(D — F) — CE* — AE?> + BDE + BEF

C(AH? —2BGH) + (Al — CG)* + B°GI — ABHI + BOCGH

s [|S | a o [0

C(2BDH — 2AEH + 2BEG) — 2(AF — CD)(AI — CG) — B?DI — B’FG + ABEI + ABFH — BCDH — BCEG

=

C(AE? —2BDE) + (AF — CD)* + B’DF — ABEF + BCDE
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