
Performance of a Model Predictive Control Based Autonomous
Rendezvous and Docking Algorithm for CubeSats using

Hardware Emulation

Andrew Fear ∗

Georgia Institute of Technology, Atlanta, Georgia

E. Glenn Lightsey†

Georgia Institute of Technology, Atlanta, Georgia

Hardware emulation of typical CubeSat flight computers is utilized to benchmark the

performance of a three-phase Model Predictive Control (MPC) algorithm for autonomous

rendezvous and docking (AR&D). The length of the MPC prediction horizons affects the

computational complexity and therefore the solution time of finding an optimal control sequence.

This study investigates the limitations, if any, of current state-of-the-art CubeSat flight systems

regarding the ability to take advantage of this type of guidance algorithm. A virtual machine

with an ARM processor typical of CubeSat available hardware is used to test the performance of

the algorithm. Monte Carlo simulations are run to calculate the average computation time per

optimal control solution and compare these values across varying prediction horizon lengths.

I. Introduction
Autonomous Rendezvous and Docking (AR&D) is a key enabling technology for missions involving spacecraft

repair, re-supply and crew exchanges, object retrieval, and on-orbit assembly of larger structures [1]. Of interest to this

paper is AR&D using CubeSat class small satellites. For example, [2] explores using CubeSats for on-orbit assembly of

a telescope structure. Performing on-orbit assembly using CubeSats lowers costs associated with individual launches

and repairs. CubeSats are typically considered secondary payloads and are launched as rideshare opportunities, which

is less expensive than buying a launch opportunity as a primary payload. As for repair, the in-space repair of a large

spacecraft is not always possible and may be costly. In an assembled structure, if one elementary unit has malfunctioned,

only a single replacement unit needs to be launched to take the place of the malfunctioned unit. However, this requires

complex un-docking and docking maneuvers to be performed.

There are additional challenges to utilizing CubeSats for AR&D that stem from the small form factor and low

production cost. There are limited commercial options available for CubeSat hardware that meets volume constraints

and in effect constrains the performance available. An MPC algorithm for CubeSat AR&D that considers the restricted
∗Ph.D. Candidate, Department of Aerospace Engineering, Student AIAA Member.
†Professor, Department of Aerospace Engineering, AIAA Member

available actuation that minimizes fuel was developed in [3]. While it was shown that the guidance can be performed

while adhering to the actuation limits, the computational load on CubeSat flight hardware was not calculated. This paper

uses hardware emulation to remain agnostic to specific CubeSat implementations while investigating the computation

load and times needed to run the guidance algorithm to test its efficacy on these flight systems.

The paper is organized as follows. First a brief description of the MPC AR&D guidance algorithm is presented.

Next, a discussion of tools and setup, as well as the parameters chosen for the hardware emulation. Finally, the resulting

computation times for varying algorithm parameters, such as the prediction horizon length and sampling times, is

investigated.

II. Problem Scneario
The problem scenario investigated involves two 6U CubeSats in Low Earth Orbit (LEO). One CubeSat, dubbed the

chaser, is active and performs the AR&D maneuver using a 6-DOF propulsion system. The other Cubesat is the passive

target of the maneuver. The dynamics is restricted to the motion of the center of mass (CoM) of the chaser spacecraft

relative to the docking port located on the target spacecraft. The chaser is assumed to be controllable, which is not

addressed further in this paper.

Fig. 1 LVLH Reference frame of the target

The relative motion is defined by the classic Clohessy-Wiltshire (CW) equations [4]. The reference frame, shown in

Fig. 1, is centered at the target’s center of mass. The 𝑥-axis is radially outwards from Earth, the �̂�-axis in the velocity

direction, and the 𝑧-axis is in the direction of the target orbit angular velocity completing the right-hand rule.

The state vector 𝒙(𝑘) ∈ R6 is defined as 𝒙(𝑘) = [𝝆(𝑘) ¤𝝆(𝑘)], where 𝝆(𝑘) ∈ R3 describes the components of the

relative position in the CW frame, while ¤𝝆(𝑘) ∈ R3 describes the components of the relative velocity in the CW frame.

2

The applied control to the chaser is defined by the vector 𝒖(𝑘) ∈ R3. The equations of motion are linearized with a

sample interval 𝑡𝑠 ∈ R+ to obtain discrete linear CW state equations at time index 𝑘 ∈ N0:

𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝒖𝑘 (1)

III. AR&D MPC Algorithm
The objective of the AR&D algorithm is to guide the relative position of the chaser, 𝒙𝑘 to the docking point located

on the target body, 𝒙𝑑
𝑘
. The strategy presented in [3] splits the scenario into 3 phases based on the relative distance of

the chaser to the target’s CoM: Rendezvous (> 150 m), Approach (10-150 m), and Docking (< 10 m). During each

phase, a receding horizon MPC law is performed as follows. At every sample instance 𝑡𝑠 ∈ R+, a constrained linear

quadratic (LQ) optimization problem is solved for the control sequence 𝒖𝑘 over a prediction horizon of length 𝑁 ∈ N0.

The first element of the control sequence, 𝒖0
𝑘
, is applied to the system. The full algorithm can be seen in Algorithm 1.

The corresponding LQ optimal control problem for the rendezvous phase MPC is given by

min
𝒖𝑘

𝐽 (𝒙𝑘 , 𝒖𝑘) =
𝑁−1∑︁
𝑖=0

(

𝒙𝑖 |𝑘

2
𝑄
+

𝒖𝑖 |𝑘

2
𝑅

)
+

𝒙𝑁 |𝑘

2
𝑄 𝑓
+ 𝜆1T (

𝑯𝒙𝑁 |𝑘
)
+

s.t. 𝒙0 |𝑘 = 𝒙(𝑡𝑘)

𝒙𝑖+1 |𝑘 = 𝑨𝒙𝑖 |𝑘 + 𝑩𝒖𝑖 |𝑘

�̂�𝑇𝑘 𝒙𝑘 ≥ 𝑟1 𝑘 = 0, ..., 𝑁

|𝒖𝑘 |∞ ≤ 𝑢𝑚𝑎𝑥

(2)

with prediction horizon 𝑁1 and control intervals of 𝑡𝑠,1. The constraint �̂�𝑇𝑘 𝒙𝑘 ≥ 𝑟1 𝑘 = 0, ..., 𝑁 describes a convexified

"keep-out zone" (KOZ) to avoid solutions where the chaser would fly close by the target to reach the docking point.

The end condition for this phase is when the chaser position has reached the approach cone, approximated as an

𝑛-dimensional polyhedron defined by P =
{
𝒙 ∈ R3 : 𝑯𝒙 ≤ 0

}
, where 𝑯 ∈ R𝑛×3.

Upon reaching the approach cone, the approach phase finds the optimal control sequence by solving Eq. 3. The

control response is quicker with a shorter prediction horizon 𝑁2 and sample time 𝑡𝑠,2. The approach phase ends once

chaser reaches the 𝑟2 = 10 m separation distance within the docking cone.

3

min
𝒖𝑘

𝐽 (𝒙𝑘 , 𝒖𝑘) =
𝑁−1∑︁
𝑖=0

(

𝒙𝑖 |𝑘

2
𝑄
+

𝒖𝑖 |𝑘

2
𝑅

)
+

𝒙𝑁 |𝑘

2
𝑄 𝑓
+ 𝜆

𝑁∑︁
𝑖=1

1𝑇
(
𝑯𝒙𝑖 |𝑘

)
+

s.t. 𝒙0 |𝑘 = 𝒙(𝑡𝑘)

𝒙𝑖+1 |𝑘 = 𝑨𝒙𝑖 |𝑘 + 𝑩𝒖𝑖 |𝑘

�̂�𝑇
𝑖 |𝑘𝒙𝑖 |𝑘 ≥ 𝑟2 𝑖 = 0, ..., 𝑁

|𝒖𝑘 |∞ ≤ 𝑢𝑚𝑎𝑥

(3)

The docking phase solves Eq. 4 for the optimal control sequence with prediction horizon 𝑁3 at sample interval 𝑡𝑠,3.

min
𝒖𝑘

𝐽 (𝒙𝑘 , 𝒖𝑘) =
𝑁−1∑︁
𝑖=0

(

𝒙𝑖 |𝑘 − 𝒙𝑑𝑖 |𝑘

2

𝑄
+

𝒖𝑖 |𝑘

2
𝑅

)
+

𝒙𝑁 |𝑘 − 𝒙𝑑𝑁 |𝑘

2

𝑄 𝑓

+ 𝜆
𝑁∑︁
𝑖=1

1𝑇𝑯
(
𝒙𝑖 |𝑘 − 𝒙𝑑𝑁 |𝑘

)
+

s.t. 𝒙0 |𝑘 = 𝒙(𝑡𝑘)

𝑥𝑖+1 |𝑘 = 𝑨𝒙𝑖 |𝑘 + 𝑩𝒖𝑖 |𝑘

− �̂�𝑖 |𝑘 · 𝒙𝑖 |𝑘 ≤ 0 𝑖 = 0, ..., 𝑁��𝒖𝑖 |𝑘
��
∞ ≤ 𝑢𝑚𝑎𝑥

(4)

IV. Simulation Strategy

A. Convex Optimization Problem Solver

The convex LQ optimal control problems are solved using the CVXGEN [5] code generation tool. The mathematical

descriptions of the optimal control problems Eqs. 2, 3, and 4 are input into the online solver to obtain an optimized C

code solver.

B. 42 Spacecraft Simulator

The 42 Spacecraft Simulation tool [6] is an open-source framework written in C for testing spacecraft controllers

and proximity flight operations. A GUI is included in the 42 framework as a visual aid. This work uses 42 to propagate

the chaser and target state dynamics with Earth as a central body including perturbing forces from aerodynamic drag and

Earth’s oblateness. The simulation also contains a thruster model that is used to perform the control efforts calculated.

42 can be compiled to run as a single simulation executable as well as separate client-server instances. In this

configuration, the server instance handles the environment and dynamics updates while passing off necessary information

to the client connection which runs only the controller instance. This separation allows the testing of the MPC guidance

4

Algorithm 1: AR&D Guidance
Initialize 𝑡𝑘 = 𝑡 (0), 𝒙𝑘 = 𝒙(0)
begin phase 1 Rendezvous

Set rendezvous prediction horizon parameters
𝑁 ← 𝑁1
𝑡𝑠 ← 𝑡𝑠,1
repeat

Solve (2) for optimal control sequence 𝒖𝑘

Apply first control element, 𝑢0
𝑘

𝑘 ← 𝑘 + 1
Update state estimate, 𝒙𝑘

until 𝒙𝑘 <= 𝐻𝒙𝑘 and ∥𝒙𝑘 ∥ ≤ 𝑟1 // End Rendezvous if inside approach cone

end
begin phase 2 Approach

Set approach prediction horizon parameters
𝑁 ← 𝑁2
𝑡𝑠 ← 𝑡𝑠,2
repeat

Solve (3) for optimal control sequence 𝒖𝑘

Apply first control element, 𝑢0
𝑘

𝑘 ← 𝑘 + 1
Update state estimate, 𝒙𝑘

until 𝒙𝑘 ≤ 𝑟2 // End Approach Phase

end
begin phase 3 Docking

Set docking prediction horizon parameters
𝑁 ← 𝑁3
𝑡𝑠 ← 𝑡𝑠,3
repeat

Solve (4) for optimal control sequence 𝒖𝑘

Apply first control element, 𝑢0
𝑘

𝑘 ← 𝑘 + 1
Update state estimate, 𝒙𝑘

until 𝒙𝑘 ≤ 𝑟3 // End Maneuver

end

5

algorithm separate from the environment simulation as if it was running on a spacecraft.

C. ARM Emulation

In order to verify the control algorithm’s efficiency in a flight-like setting, a virtual machine is be used to run the 42

client portion of the simulation. The open-source machine virtualizer, QEMU [7], is used to create the target platform.

A virtual machine is chosen instead of performing a real hardware-in-the-loop test to remain agnostic to the hardware

chosen. This allows for different board specification testing as needed. As most CubeSat available flight computers

contain ARM processors, this type was chosen as the generic processor to use for emulation.

As shown in Fig. 2, the 42 simulation server runs on the host machine, while the 42 client runs on the virtualized

ARM machine. A socket connection passes necessary state and actuation effort between the server-client programs.

The limitations of QEMU are that it may not be entirely cycle-accurate. However, it provides a preliminary evaluation

of running the developed algorithm on an appropriate system.

Fig. 2 Diagram showing the interprocess communication between the environment simulation server and the
flight software client running on a virtual machine.

V. Algorithm Benchmarking
The length of the prediction horizon, 𝑁 , in the optimal control problem affects the response and performance of

the guidance algorithm. However, increasing the prediction horizon also increases the complexity of the solver and

therefore the computation time needed to find a solution. As the guidance algorithm is intended to be flown in onboard

a spacecraft in real-time, this computation time must be much less than the MPC sample time. Additionally, a faster

solution time equates to less delay in the applied actuation effort.

6

Fig. 3 Algorithm computation time test plan.

Using the aforementioned simulation setup, Monte Carlo analysis was performed with randomized chaser initial

conditions. During the individual simulation runs, the computation time of the CVXGEN calls made to solve for the

optimal control at each time step was logged. The average solution computation time for the phases is calculated after

completion of the run. Overall computation time statistics are compiled from the 100 simulation runs. The test plan,

shown in Fig. 3, involves Monte Carlo sets for varying values of prediction horizon lengths for the rendezvous and

approach phases to investigate how this parameter affects the computation time. Another parameter of interest are the

MPC control interval times. From the resulting data, an informed decision on the efficacy of running the guidance

algorithm on currently available hardware, and the amount of control delay to expect is inferred.

A. Rendezvous Phase

For the rendezvous phase, the prediction horizon varies between 𝑁1 = 30, 35, 40, while the approach and docking

phase prediction horizons were kept constant at 𝑁2 = 15 and 𝑁3 = 12, respectively.

7

Fig. 4 Solution time counts for Rendezvous phase with varying prediction lengths.

In Fig. 4, the bin width of the rendezvous optimal control problem is 25 ms. As expected, the computation time is

increased alongside the prediction horizon length. However, there is more spread and unpredictability with the lower

end of the prediction horizon tests. The average computation time for the rendezvous phase prediction horizons of

30, 35, and 40 was 151.75 ms, 650.21 ms, and 748.25 ms, respectively. It should be noted that even with the longer

prediction horizons the computation times are all less than a second, which gives ample time between control updates

during the rendezvous phase.

Additionally, the rendezvous phase control intervals were tested to determine if there was an unexpected contribution

to the computation time. A set of 100 scenarios were run for rendezvous control times of 𝑇𝑠 = 30, 45, 60 s with a

prediction length of 𝑁1 = 30. Fig. 5 confirms that the distribution of computation times is similar for all control interval

times.

8

Fig. 5 Solution time counts for Rendezvous phase with varying control intervals.

B. Approach Phase

The prediction horizon values tested for the approach phase were 𝑁2 = 10, 15, 25, 30. For the analysis, the

rendezvous phase prediction length was kept to 𝑁1 = 30.

9

Fig. 6 Solution time counts for Approach phase with varying prediction lengths.

The results of the approach analysis are much less spread out than for the rendezvous phase. However, it does still

show the general trend of greater computation with longer prediction length. The exception to this rule is 𝑁2 = 20,

which has greater spread. Similar to the rendezvous analysis, the computation times for the approach phase optimal

control problem are all less than a second, again a good performance for an onboard system.

10

Fig. 7 Solution time counts for Approach phase with varying prediction lengths.

Additionally, the approach phase also shows the same insensitivity to control interval time as the rendezvous phase.

VI. Conclusion
The performance of a MPC guidance algorithm for the autonomous rendezvous and docking for small satellites

was evaluated. The algorithm was run on emulated hardware similar in capabilities to those available for use on small

satellites, specifically ARM architecture processors running a 64-bit Linux OS.

The analysis showed that although longer prediction horizon lengths in the optimal control problems in the rendezvous

and approach phases of the tested algorithm resulted in longer computation times, the times remained under a second.

These quick computations times are promising for the possibility of running such a guidance algorithm onboard. Future

work will consist of finding improved emulation techniques that are cycle-accurate to confirm the findings of this report.

References
[1] Fehse, W., Automated rendezvous and docking of spacecraft, Cambridge University Press, Cambridge; New York, 2003.

[2] Pirat, C., “Toward the Autonomous Assembly of Large Telescopes Using CubeSat Rendezvous and Docking,” Journal of

Spacecraft and Rockets, Vol. 59, No. 2, 2021. https://doi.org/10.2514/1.A34945.

[3] Fear, A., and Lightsey, E. G., “Implementation of Small Satellite Autonomous Rendezvous Using Model Predictive Control,” AIAA

11

https://doi.org/10.2514/1.A34945

SCITECH 2022 Forum, American Institute of Aeronautics and Astronautics, 2021, p. 0. https://doi.org/10.2514/6.2022-0838,

URL https://arc.aiaa.org/doi/10.2514/6.2022-0838.

[4] Clohessy, W. H., and Wiltshire, R. S., “Terminal Guidance System for Satellite Rendezvous,” Journal of the Aerospace Sciences,

Vol. 27, No. 9, 1960, pp. 653–658. https://doi.org/10.2514/8.8704.

[5] Mattingley, J., and Boyd, S., “CVXGEN: a code generator for embedded convex optimization,” Optimization and Engineering,

Vol. 13, No. 1, 2012. https://doi.org/10.1007/s11081-011-9176-9.

[6] Stoneking, E. T., “42 - Spacecraft Simulation,” , Dec. 2021. URL https://github.com/ericstoneking/42.

[7] “QEMU,” , Sep. 2022. URL https://www.qemu.org/.

12

https://doi.org/10.2514/6.2022-0838
https://arc.aiaa.org/doi/10.2514/6.2022-0838
https://doi.org/10.2514/8.8704
https://doi.org/10.1007/s11081-011-9176-9
https://github.com/ericstoneking/42
https://www.qemu.org/

	Introduction
	Problem Scneario
	AR&D MPC Algorithm
	Simulation Strategy
	Convex Optimization Problem Solver
	42 Spacecraft Simulator
	ARM Emulation

	Algorithm Benchmarking
	Rendezvous Phase
	Approach Phase

	Conclusion

