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One of the most important metrics characterizing anatmospheric entry trajectory in
preliminary design is the size of its predicted lading ellipse. Often, requirements for this
ellipse are set early in design and significantlynfluence both the expected scientific return
from a particular mission and the cost of developm&. Requirements typically specify a
certain probability level (o-level) for the prescribed ellipse, and frequentlythis latter
requirement is taken at . However, searches for the justification of @ as a robustness
requirement suggest it is an empirical rule of thurb borrowed from non-aerospace fields.
This paper presents an investigation into the sertstrity of trajectory performance to varying
robustness g-level) requirements. The treatment of robustnessis a distinct objective is
discussed, and an analysis framework is presentedviolving the manipulation of design
variables to effect trades between performance anebbustness objectives. The scenario for
which this method is illustrated is the ballistic atry of an MSL-class Mars entry vehicle.
Here, the design variable is entry flight path angt, and objectives are parachute deploy
altitude performance and error ellipse robustness. Resulting plots show the sensitivities
between these objectives and trends in the entryight path angles required to design to these
objectives. Relevance to the trajectory designersidiscussed, as are potential steps for
further development and use of this type of analysi

Nomenclature

Ca = vehicle axial force coefficient X = given random variable
CDF = Cumulative Distribution Function Vi = sampled value of a parameter
k = standard deviation multiplier Yiarget = target value of a parameter
MSD = Mean Squared Deviation /ADOR = Delta-Differential One-way Ranging
M = Mars Science Laboratory PVertry = entry flight path angle
n = number of samples U = distribution mean
TCM = Trajectory Correction Maneuver o = distribution standard deviation
I.  Introduction

RGUABLY, two of the most important metrics in theefiminary design of atmospheric entry trajectoraes

the lengths of the major and minor axes of theipted landing ellipse. For robotic Mars missiodsaring
early trajectory design these dimensions servaiasgate measures of the probability of reachirsgiantifically
interesting — or at least a low-hazard — landingda Additionally, these dimensions continue &important
throughout the entire design process since fimmalitey site selection may not occur until just a feanths prior to
landing. Typically, requirements for this ellipaee set very early in design. For example, theirement for
precision landing on the 2011 Mars Science LaboygtdSL) mission was introduced a decade beforeutsently
planned launch date. As a result, the stringericshese requirements can have a large influencéabh the
scientific return from a particular mission (pawtarly if the landed vehicle is not mobile) and thest of
development (particularly if precision guidance aagigation techniques must be implemented).

In order to completely specify a landing ellipsguigement, not only must major and minor axis lasgbe

specified, but the probability level (i.exlevel) for the ellipse must also be specified. eduently this latter
requirement is taken at3 For example, the MSL mission has a precisioditapnrequirement to land within 10 km
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of its target with a 99.87% ¢3 probability’* While a physical reason may exist for the chaiteange or axis
length (e.g., limits on the rover’s lifetime anaebgnd range capability or, in future applicatiom size of particular
surface features or distances to pre-emplacedsasteés unclear whether studies have been peddrta assess the
sensitivity of mission performance metrics to mordess stringent probability levels (i.e., lowerhigher levels of
risk in reaching the desired target). That is, dbestion exists, “What performance benefits cdddealized by
designing the error ellipse at, for exampleg283.% instead of 3?”

The objectives of this paper are to introduce tlogon of robustness as simply another variablthéndesign of
entry trajectories and to provide a practical exemifustrating how this objective could be tradaghainst other
performance metrics.

A. Why 367

The popularity of 3 as a trajectory robustness goal -
difficult to trace, and the simplicity of this nueab
suggests that it has developed as a rule of thathier 55
than through rigorous analysis. Evidence in t

literature supports the hypothesis that the gdal is g
largely an empirical one. 45
One potential source for the popularity of thegdal =
is the well-known “& Rule” in statistics. This rule, 5 4
which was initially empirical, states that Eq. (i9lds b 35
“for the overwhelming majority of commonly '
encountered random variabl®®.? The Vys@anski- 3

Petunin inequaliy generalizes this for any unimode
distribution via Eq. (2) (see also Fig."1)If k = 3 is

inserted into Eqg. (2), it can be seen that drawsag
limits about any unimodal distribution will at mos
exclude 4/81 (4.94%) of the potential valuesxofThe

significance of 5% is attributed to the fact thhist Figure 1. Worst-case cumulative probabilities (see
percentile is widely used in applied science fiesdsh Eq. (2)) for unimodal distributions.

as biology and medicirfe.
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Another potential — and perhaps more likely — origfi the 3 goal lies in the field of quality engineering ahe
seminal work of Drs. Walter Shewhart and W. Edwdpdsiing. In 1931, Shewhart suggested the use obBtrol
limits as a way of economically selecting failedtamces of a given process for examinalidfor example, control
charts are graphical methods of representing stalislata on the performance of a given proéé$s.Users of
control charts typically set upper and lower conlirits that are three standard deviations frora thean of the
data and use these limits to identify cases whiely itmave resulted from special causes (as opposedntaon
causes) of variation. ldentifying these speciailses allows a decision-maker to take action to vensach outliers
from future operations of the process. In thisterty control limits that are too stringent (i.¢.lew o-levels)
simultaneously allow large numbers of special catisde identified and incur a high cost in termhthe resources
required to investigate each outlier. Shewhareadhat, from experience, choosing @ntrol limit provides an
economic balance between the value gained fronsiigating outliers and the cost of conducting tinesstigation.
It is difficult to justify, however, that this balae would not be scenario-dependent (e.g. in swEnavhere

" Because the required MSL landing ellipse is abtugtcular, the 3 requirement is implemented in terms of
distance from the target site, resulting in a 9%8¥finition of ¥ (under the assumption that the data is normally
distributed) instead of the 98.89% definition assmd with 3 for a bivariate normal distribution.

* The Vys@anski-Petunin inequality, which is true only for a unidad distribution (i.e., a distribution with a sieg|
mode, or peak), is a more restrictive version eflibtter-known Chebyshev inequality.
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investigations are inexpensive, lowetevels might be easily justified). Even as Shewkaote, “Obviously, the
basis for such limits must be, in the last anajysispirical.?

In summary, the author has not been successfidih@l any rigorous justification for usingr performance as
a strict statistical indicator. The popular stated “30 Rule” only guarantees that the conversion fromt@
percentage probability will not result in probaldds less than 95.06% for any unimodal distributidhshould be
emphasized that this conversion frerfevel to a worst-case probability can be perforfaedany givens-level (not
just 3, e.g., see Fig. ). The field of quality engineering uses &s an empirical economic guideline by which to
decide whether to investigate outliers in an exgstprocess, which has little relationship to the 0§ 35 as a
trajectory design requirement.

B. Robustness as an Objective

The basic notion that this paper highlights is tteatment of robustness as a distinct objectivieerathan a
constraint or a component of a weighted “macro&otiye. An example of the former would be a rigiduirement
for a trajectory’s 3 error ellipse major axis to be smaller than amilength. The disadvantage to this approach is
that it permits no trades to be made on whethds & reasonable robustness goal for the givepselliength. An
example of the latter is Taguchi’s mean squaredatiem (MSD)! As shown in Eq. (3), MSD combines the
variance (i.e. robustness) of a distribution with mean (i.e. average performance) into a singl#icn® be
minimized for a given problem. Thus, the two objes of robustness and performance are implieitiyghted
within the MSD metric.

M3D = %i (yl - ytarget)2 =o'+ (y N ytar96t)2 ©

A simple example of performance vs. robustnessetrad
can be easily visualized in the cumulative distityu
function (CDF) for a given Mars entry trajectory Me
Carlo simulation. As shown in Fig. 2, parachutglog
altitudes in this simulation range from 5.3 km t@& &m.
Often, and particularly in scenarios where higlttate
landing sites or high-ballistic-coefficient, lowitito-drag
vehicles are involved, it is desirable to deplog trehicle’s
supersonic parachute as high as possible. Thisgir2, the
left tail of the distribution is much more prefelalbhan the
right tail, and for performance purposes when axéng
with other disciplines, a designer would prefer qoote
altitudes as high as possible without making lar
compromises in risk (i.e., the chance that his egiatititude : : : :
will be too high). Figure 2 can be helpful becauke 0 20 40 B0 B0 100

Parachute Deploy Altitude (km)

presence of steep slopes indicates that a smaifieadn Percentile (Law)
risk can allow one to quote much higher deploytuadis. Figure 2. CDF for a sample Mars trajectory
Shallow slopes indicate that a large gain can bédema Parachute Deploy Altitude.

certainty with only a small sacrifice in quotedtalie.

In fact, as can be more clearly seen in Fig. ¥pstdopes exist as the quoted percentile approdbe.
Parachute deploy altitude at thel@vel (97.72%) is 5.50 km, while it is 5.40 at elevel (99.87%). Thus, in this
region, every 0.4 sacrificed results in approximately 10 m of altéughin. Knowledge such as this can allow the
trajectory designer to make more informed decisionsthe level of risk and performance to which atqd
trajectory should be designed.

It should be emphasized that this example is vienple (executing it is trivial if Monte Carlo datsavailable)
and is meant as an introduction to the concepoblaiistness as a distinct objective. The body &f plaper focuses
on a more complex multiobjective problem where gante deploy altitude (performance) is traded agjatine
deploy location error ellipse (robustness). Moezpwecisions on these robustness and performesmbestgovern
the values that design variables will take (suchkrasy flight path angles and bank angle profiles).

8 For example, if a guaranteed 97% probability isgbt, Eq. (2) indicates that 388 an appropriate sigma-level
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Figure 3. Magnified versions of Figure 1 in terms bPercentile (left) ande Level (right).
Note that the blue line represents the 2¢ level in both plots, and the red line represents 3c.

II. Data Analysis Method

A. Analysis Process

Figure 4 shows the distinctions between input antpud variables in a generic Monte Carlo simulation
Typically, inputs include design variables that tiser can choose in advancas well as dispersion variables that
account for various uncertainties (often these ratdies are in external factors, such as a velsiabperating
environment). Outputs of interest are the distidms on variables that define the fitness of a&gidesign, or how
well the design fulfills its objectives.

If it is assumed that the input dispersions ar@eriies of the operating environment which areaoattrollable
by the designer, then the question for the desitire#remains is of how to choose the design viesaduch that an
“optimal” set of output distributions results. Evi only one objective output exists, this is Hicllt problem to
solve since optimality involves trading the objees of the mean or average of the distribution., (iies
representative performance) and its variance é.egasure of its robustne$5)This problem becomes even more
difficult when multiple objective outputs exist.

Figure 5 shows the generic process in Fig. 4 aghplighe example ballistic Mars entry problem usedhe rest
of this paper. In this case, selection of entighti path angle has implications on the distribugidor both
parachute deployment location and parachute degoymititude (both with respect to the Martian aoef). From
the trajectory designer’s perspective, these arbaps the two most important metrics characterizireg overall
performance of a Mars entry trajectdfy. Since landing site selection typically does netus until very late in
design (in fact, often after launch), the meanrhef parachute deployment location distribution (Wwhga bivariate
error ellipse) is not as important as the varian&g.llustrated in Fig. 6, this leaves three nestiio trade: parachute
deployment location robustness, parachute deployrakitude performance, and parachute deploymetittic@é
robustness. An important altitude-related paramistaltitude performance since change in the efigit path
angle design variable produces competing effedisat is, a steeper entry flight path angle for Hidte entry
lowers the Mach-triggered parachute deploymentudli but reduces landing ellipse size. Furthermirés
desirable to have a high parachute deploymentidéiin order to maximize the amount of accessibiéase area

” In an ideal scenario, the user would be able tthese parameters in advance with zero uncertaidtwever, it
may be that only a central tendency (e.g. the mg¢d&ithe design variable may be set in advandéehis is the
case, the design variable would refer to the getifrthe central tendency, over which the userdir@st control.

™ When more than one objective is involved, optityatias litle meaning unless weights on the objestiare
defined. In general, only the recognition of Pavgptimal (non-dominated) designs can be accomgdish

** Note, however, that these are not the only perdoire metrics of interest. For example, maximunt teta and
heat load are also important and in some caselsectajectory design drivers.
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and to provide timeline margin. Thus, althougheotttrades can be made, consideration is currently given in
this paper to the key trade between parachute geglot location robustness and altitude performance.

Figure 7 shows the basic process to properly etalinee desired location robustness vs. altitudéopeance
trade. The process begins with previously-execstd of Monte Carlo runs at varying entry fliglatip angle
(yemry).8 Each Monte Carlo set contains 1001 runs, andesédsfor 11 different entry flight path anglesgulting in
just over 11,000 trajectory runs for this analysiRecall that the flight path angle distinctionrgportant because
this is the design variable for this problem, adidated in Fig. 5. The output of the process & ltlest altitude
performance attainable as a function of desigevels at a given (e.g., 30 km) major axis requieat. The term
“best” is used to describe the altitude performabeeause entry flight path angle is left as a frammeter via
which altitude may be maximized (as long as theomaxis requirement is not violated). This prodesdivided
into three basic steps as indicated on Fig. 7:

1. Raw Data Generation. In the first step, the raw trajectory data for each is processed
such that the vehicle state (in particular, lagtutbngitude, and altitude) at the parachute
deployment condition is extracted.

2. Data Extraction as a Function of Design Variable(s) In the second step, robustness and
performance data are computed as a function of dight path angle (the design variable for
this problem). For a 1001-run data set at a geemy flight path angle, the error ellipse
major axis length is first computed over a range-tdvels. Next, the altitude performance is
computed for that data set. Since an altitudeiligion exists, altitude performance can in
principle be quoted at any desired percentile leB#cause here the central tendency of the
altitude distribution is desired, the"5percentile (median) altitude is quoted, althoutsp
will be shown later in this paper of the G™Bercentile low altitude as well.

3. Data Extraction in the Objective Space.In the third and final step, the data from the seco
step are used as a basis for interpolation fofitia¢ plots in the performance vs. robustness
space. For eaditlevel from Step 2 (i.e., each row of the tabld=ig. 7), a value of th@uy
design variable is selected to provide the bestiblesquoted altitude (i.e., the last row in Fig.
7) subject to an ellipse length constraint (e.§.k®1). Thus, the last two columns of Fig. 7
are generated. The left column shows the beseduaititude that can be achieved for a given
o-level, and the right column shows the value of thg, design variable that the designer
must select to allow achieve this. These datdh@subject of the remainder of this paper.

Design Variables

Design Variable #1 . I—

Design Variable #2 °

Design Variable #3 . Objective Outputs
Monte Carlo Simulation

Objective Output #1 /",

] g@ Deterministic Objective Output #2
Simulation Code
Dispersions 1 Objective Output #3
Dispersion Input #1 /" I—
Dispersion Input #2 /" I—
(o]
(o]
(o]

Dispersion Input #3 /"

Figure 4. Definition of Monte Carlo input and output terms.
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Design Variables

Entry Flt. Path Angle o f—

Dispersions

Ca Multiplier AR Monte Carlo Simulation Objective Outputs

Entry Mass AN Parachute Dep. Loc. /™
= ™ Deterministic Traj. _[:—ﬁ

Atmos. Disp. Seed /% | Simulation Code Parachute Dep. Alt. /™

Atmos. Update Dist. /"

Dust Tau FAN
Parachute Drag FAN
Entry State FAN

Figure 5. Definition of Monte Carlo input and output terms in the context of this study.

Parachute Deployment Location Robustness
Parachute Deployment Altitude Performance

Parachute Deployment Altitude Robustness

Parachute Deployment Altitude Robustness

Figure 6. Possible combinations of two-objective &des in the context of this study’s setup.

Monte Carlo Simulation Results
Yenty = 20.7° Yeutry = -19.7° Yenty = -18.7°
b= eoe
Deploy
Monte Carlo Post-Processed Data
Best Quoted Alt. for | Associated
Yenty 20.7° 19.7° -18.7° oo0 -10.7° Major Axis 30 km Vorts
20 Major Axis 12.87 km 13.19 km 13.59 km oo00o 46.09 km 7.114 km -11.52°
(o] (o] (o] Q o Q o] o]
(o] o o o O(_\ o o o
® © © © o © o) o]
4o Major Axis 2573 km 26.39 km 2718 km 000 3219 km 2924 km -16.31°
Cucted Alt. 0.237 km 0.778 km 1.350 km 000 7.707 km

Figure 7. Data Processing and Analysis Procedurerfthis study.
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B. Scenario Definition

For convenience in conducting this study, raw MoB&elo data is taken from a previous study of thiidtic
entry, descent, and landing of an MSL-class vefficlehe nominal entry mass is 2196 kg, and the hypérs
ballistic coefficient is 84 kg/m2. Entry is assuirte occur on July 26, 2010 at -40.6° latitude &6#19° longitude.
The nominal initial state at entry is at an altéuof 120 km with a relative velocity of 5.39 km/sdarelative
azimuth of 73.5°. Dispersed inputs are indicatgdrig. 5, and details on dispersion ranges carobed in Ref. 8.
For example, the atmospheric dust tau dispersiomogeled as uniform between 0.1 and 0.9. Alsogtitey state
dispersion is modeled from NASA Jet Propulsion Labary entry state covariance assuming that statieesart
delta differential one-way rangind\DOR) is used and that the fifth trajectory correatmaneuver (TCM-5) has
been performed. As a result, the éntry flight path angle uncertainty is 0.1°. Thigcertainty is taken to be the
same regardless of the nominal entry flight pathleuithe design variable in the present study)teNdso that all
flight path angles referenced in this paper refereiative (not inertial) flight path angles. Atdnal details on
simulation setup parameters can be found in Ref. 8.

1. Results and Discussion

A. Primary (50" Percentile) Altitude Plots

The result of plotting the data from Step 3 in ta¢a processing procedure described earlier (afdgin?) is
shown in the six plots in Fig. 8 below. The firstv of plots in Fig. 8 show the median altitudeagsinction of the
robustness required of the parachute deploy ellipser axis. The second row of Fig. 8 shows tirévdtve of the
first row of curves, and the third row shows thérefflight path angle selections that allowed tlit#wles in the
first row to be achieved. The left plot in eaclwvrghows this median altitude as a functiom-tével, while the right
plot shows this median altitude as a function atpetile®® In all plots, the 3 robustness level is denoted by a
vertical red line. Note that the 30 km major asgguirement suggested by Figure 7 is representetidogyan
curve; other notional requirements (which mightdemsidered as allowable depending on, for exanrpleer
ground range abilities) are shown by additional/esr A discussion of these plots follows.

1. Altitude Performance Plots

The first row of plots is perhaps the most imparta@cause it shows the fundamental trade thatselketiveen
designing the trajectory for error ellipse robusgiand designing it for altitude performance. &aiven ellipse
length, median altitude performance decreases mtliteasing robustness requirements as expecteda B0 km
ellipse length requirement (e.g., if a rover weesigned to have a maximum ground range of 15 Kme)difference
between designing for 2:895.61%) and 3£(98.89%) is a decrease in median parachute defiltyde by 930 m.
Thus, in this example, a 3% increase in the riskaliing outside the 30 km ellipse results in a 16#in in
parachute deploy altitude. This illustrates hoatplsuch as in Fig. 8 may be used to trade altipetéormance
with error ellipse robustness.

Also regarding the first row of Fig. 8, an intenegtnote to make is that, because of the nonlingationship
betweens-level and percentile, curves take a very differgmape when plotted againstevel compared to when
plotted against percentile (despite the fact thatdame data is plotted). In particular, the vestical slopes near
the 100% robustness requirement show that largeltein altitude occur as the parachute deplogtion success
requirement approaches 100%. Conversely, thesstellslopes at lower percentiles indicate thatdangreases in
robustness are possible with little penalty in patge deploy altitude.

2. Altitude Performance Derivative Plots

The second row of plots shows the derivatives effitst row. These plots are of interest becahsg directly
show the sensitivities of altitude to small chanigesrror ellipse robustness requirements. Fomgle, it can be
seen in the left plot of the second row that fo80akm ellipse length requirement, small deviatiahsut a 3
requirement result in 2.15 km of altitude for evésyof relaxation in error ellipse robustness (or, enconceptually
accurate, 215 m of altitude for every &df relaxation in error ellipse robustness). Thyhtiplot of the second row
shows that for a 30 km ellipse length requiremsemiall deviations about ar398.89%) requirement result in 640 m
of altitude for every 1% of relaxation in erroripfle robustness.

Of particular interest in these plots is the faetttthese derivatives become larger in magnitudheaparachute
deploy location success requirement approaches 10Q%act, the derivatives with respect to perderdppear to

%8 Note that the percentile shown is converted frogwtlevel assuming bivariate normally-distributed data
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Figure 8. 50" Percentile Altitude Plots.

Each row of plots shows identical data; the left column shows data as a function of robustness expressed in o-levels,
while the right column shows the same data expressed as a function of robustnessin terms of percentile. Thefirst
row shows the performance vs. robustness trade, and the second row shows the derivative of this. Thethird row
shows the entry flight path angle (design variable) required to achieve the altitude given in the first row.
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asymptote near 100%, indicating that if a robustmeguirement is set too high, very large bene#ts be obtained
in terms of performance if even a small relaxationobustness is permitted. This highlights theeptal value of
conducting sensitivity studies with respect to sthess. In the case of a 30 km error ellipse aBdraquirement
for this scenario, these derivative plots do nawsh compelling case for a change from theejuirement, but it is
easy to see from Fig. 8 how a larger initial robest requirement (e.gs)Mor smaller required ellipse length (e.g.
20 km) could indeed involve high sensitivitiesiie robustness requirement.

3. Entry Flight Path Angle Plots

The third row of plots in Fig. 8 shows the entriglit path angles required to achieve the altitugiesn in the
first row (recall that this is the design variakit@t could be manipulated to yield the maximumirdiale altitude
for a given robustness requirement). These platsnaportant because they indicate to a desigoerto design a
trajectory to achieve the altitudes given in thstfrow. For example, achieving the maximum pdegi6.8 km)
median deploy altitude for a 30 km ellipse at thée®el requires an entry flight path angle of -12.9°

Of some interest is the fact that, much like thieeptsets of plots, the entry flight path angle diss an
asymptote near the 10(ercentile in deploy ellipse robustness. Thaassexpected, the vehicle must enter the
Martian atmosphere much steeper as the deplogeltigbustness requirement becomes more stringent.

B. Secondary (99.87 Percentile) Altitude Plots

It was indicated earlier in this paper that thetgdaltitude performance was nominally chosen tthbanedian
(50" percentile) value associated with the Monte Cselofor a given entry flight path angle. Howedepending
on the user, it may be more appropriate to quatege conservative altitude. Although this now besgio touch
upon the trade between ellipse robustness andiddtitobustness (see Fig. 6), a different quotdtu@dt can
certainly be accommodated within the frameworkfegh here. For the design of MSL trajectoriex 89.87
percentile (low) parachute deploy altitude is tgtlie quoted (i.e. nearly the lowest altitude detdcthroughout all
Monte Carlo simulations). For demonstration pugsoshis 99.87 percentile result is tracked in Fig. 9, which ke
the same format as Fig. 8.

1. Altitude Performance Plots

Again, in Fig. 9, the first row of plots shows thendamental trade between designing the trajedtmryerror
ellipse robustness and designing it for altituddquenance. The shapes of the curves in the fowt are virtually
identical to those in Fig. 8 but are shifted dowrdvan altitude by roughly 800 m. For a 30 km ediplength
requirement, the difference between designing f& 295.61%) and 3® (98.89%) is a decrease in 99'87
percentile parachute deploy altitude by 940 mthis example, a 3% increase in the risk of fallmgside the 30
km ellipse results in a 18% gain in parachute deplttude. Note that the 940 m altitude gainhistcase is nearly
identical to the 930 m gain for the median altitudentioned earlier; however, this results in ahsliglarger
percentage increase because the 9&Fcentile altitudes are shifted downward by saiveundred meters with
respect to the S0percentile altitudes.

2. Altitude Performance Derivative Plots

Interestingly, the derivative curves in the secomd of plots in Fig. 9 show little deviation frorhdse of Fig. 8.
This is significant because it suggests that tteslabe sensitivities to robustness requirementsralependent of
the quoted altitude percentile. This is reflearedhe example above where the difference in aétperformance
between 2.5 and 3.6- was 940 m for the 99.87percentile altitude and 930 m for the"5@ercentile altitude. In
other words, in the example above, thissQ3%) relaxation produces roughly a 930 m altitudengegardless of
the quoted percentile.

3. Entry Flight Path Angle Plots

As should be expected, the third row of plots ig.F is identical to the corresponding row in F8g. As
described earlier in this paper, the proceduresébecting the proper entry flight path angle ineshselecting the
angle which produces the highest parachute deplityde while still meeting a given ellipse lengthguirement.
However, for this scenario (and for all practicallistic entry scenarios), a steepening entry flighth angle
simultaneously produces a monotonically decreaslhigse length and monotonically decreasing deplitiyude.
As a result, the entry flight path angle chosealigays the angle that produces exactly the maximliowable
ellipse length (e.g. 30 km). Thus, for this scemathis selection does not involve consideratibraltitude (the
altitude is automatically maximized when the maximallowable ellipse length is met) and, as a resié entry
flight path angle is not dependent on the quotetide percentile.
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Figure 9. 99.8% Percentile (Low) Altitude Plots.

Each row of plots shows identical data; the left column shows data as a function of robustness expressed in o-levels,
while the right column shows the same data expressed as a function of robustnessin terms of percentile. Thefirst
row shows the performance vs. robustness trade, and the second row shows the derivative of this. Thethird row
shows the entry flight path angle (design variable) required to achieve the altitude given in the first row.
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IV. Conclusions and Implications

This paper has presented an approach and a meastimple application for evaluating the perfornganc
implications of robustness requirements for Marssion entry trajectory design. The study begah witliscussion
of the potential origins of@3as a robustness requirement and highlighted th@real “rule of thumb” nature of
this requirement from non-aerospace applicatighgliscussion was also included on the treatmenolofistness as
a distinct objective. An analysis framework andtmd was presented which involved the manipulatibdesign
variables to effect trades between performancerabastness objectives. The scenario for whichriteghod was
illustrated was the ballistic entry of an MSL-cladars entry vehicle. In this case, the designalde was entry
flight path angle and parachute deploy altitudefquerance and error ellipse robustness were thectgs of
interest. Resulting plots show the sensitivitiesaeen these objectives and trends in the engtfipath angles
required to design to these objectives.

A. Choosing the “Best” Trajectory

As discussed earlier, trajectory performance shbeldecognized as distinct from trajectory robussneThe
implication of this is that robustness should leated as a tradable parameter in trajectory d¢grmexample, not
stringently set to @ without traceable justification). As a result thiis tradability, the definition of a “best”
trajectory depends on the designer. However, giath as in Figs. 8 and 9 can facilitate the namgwf the trade
space by allowing the designer to visualize perforoe vs. robustness trades. Key features of dothgre near-
vertical or near-horizontal lines, which indicatgions of the trade space where small sacrificesni objective
can produce large gains in another. In the casehef scenario examined here, the requirement38 &m, ¥
parachute deploy error ellipse fell in a regionhaf trade space without a clear, compelling reé@omodification;
that is, modest decreases in the robustness stopgroduced modest increases in the parachuteyafiitude.
Thus, in the example case, one might consides aeg§uirement reasonable. However, it was clear shene
regions of the trade-space exist — particularlgraall-ellipse, high-robustness regions — where Ismakxations in
the robustness requirement produce large gainsiacpute deploy altitude. Overall, this suggets twhen
robustness requirements are too stringent, laripe gaperformance can be made for small sacrificesbustness.
Plots such as Figs. 8 and 9 allow the designeteiotify on a mission-by-mission basis how stringém stringent”
actually is.

Additionally, a note should be made regarding krtid the relaxation of robustness. In realityisihighly
unlikely that a designer would relax robustnesd pasertain point even if large performance gaieseapossible.
In part, this is because entry is one of a sefievents involved in mission success; even if thial mission chain
were as short as five events, an 80% probabilityuatess for each event would result in an overabbability of
success of just 33%. No reputable entry trajeati@signer would design to the"8percentile (i.e., that one in five
cases would fall outside the error ellipse), arid itnlikely that the 90 percentile would be acceptable. Of course,
this is the nature of objectives — if robustnesdade relaxed without bound, it would not be aigie®bjective. A
more realistic lower bound might be thé"gercentile, but the exact limit is likely a softeothat depends on what
performance gains can be obtained, the visualizatm analysis of which have been outlined here.

B. Future Considerations

Demonstrated here was a realistic but relativatypté example of trading performance and robustndsss
example is considered realistic in the sense timatvast majority of past missions to the surfacéMafs have
utilized a ballistic entry, and this procedure cblle easily re-executed for any ballistic entry.lthBugh
conceptually nearly identical, practical complioas increase as the number of free design variabtesases (e.g.,
in lifting entry trajectories). For example, threig MSL entry will involve hypersonic guidance usia three-
segment bank profile as a reference. Severalblesaare required to define this bank profile, #mese design
variables must be included when constructing taméwork of Fig. 5. In order to execute the procedwutlined to
construct Figs. 8 and 9, Monte Carlo simulationsinie executed for many combinations of these desigables
(constructed in the form of a grid or, more intgintly, through a design of experiments). The agdjonal power
that this requires could place practical limits the complexity of the problem that is considerddowever, a
simple next step might be the analysis of a twagptesariable problem. For example, the Viking noss of the
1970s utilized a lifting entry but with a full-lftp bank profile. In this case, the two designialdes would be
entry flight path angle (just as in this study) amthicle lift-to-drag ratio (controlled by the dgser through, for
example, center-of-gravity placement).

Another avenue for pursuit farther in the futureyniee the addition of objectives to the trade-spaéar
example, altitude robustness was not explicitlysidered here, and considerations such as heaamdtbeat load
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objectives were not addressed. Finally, it shdaa@demphasized that the concepts and frameworksrgessin this
paper are applicable not only to Mars entry bugrttsy at other planets and moons as well.

Overall, this study has accomplished its originahlgof tracing inherent trades between performazrce
robustness in Mars entry trajectory design. In fghecess, a general analysis framework was dewtlape a
realistic example case was evaluated. It is hdpatlthese methods and ideas will find use withia broader
trajectory design community.
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