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RECONSTRUCTION OF PARTICLE DISPERSION EVENTS WITH
OPTICAL MEASUREMENTS

Anonto Zaman* and John A. Christian®

Discrete particle ejection events are known to periodically occur on the asteroid Bennu. Sim-
ilar phenomena may also occur on other small bodies in our Solar System. If these particle
events are observed by the camera aboard an exploration spacecraft, as was the case with
the OSIRIS-REx spacecraft during its visit to Bennu, then the apparent motion of particles
may be used to reconstruct the event. This work explores the utility of algebraic projec-
tive geometry for performing this reconstruction and the resulting algorithms are shown to
have many practical advantages when compared to earlier methods. The algorithms are fur-
ther tested through numerical simulation, including cases with varying numbers of particle
observations.

INTRODUCTION

The OSIRIS-REx mission to asteroid Bennu [1] serendipitously witnessed a number of discrete particle
ejection events on the asteroid’s surface [2]. These unexpected events occur through a natural process, where
particles of diameters < 10 cm are energetically expelled from a point on the body’s surface. If the individual
ejected particles can be observed and tracked from a spacecraft camera, it is possible to reconstruct their
trajectories and determine the point of origin on the asteroid surface [3]. It is reasonable to conjecture that
such events may occur on other small bodies within our solar system—thus, techniques to model such events
are important for future missions.

In this work, we seek to deploy concepts from algebraic projective geometry [4] to enhance our ability to
interpret particle dispersion events observed by a spacecraft camera. This same mathematical framework has
recently yielded impressive results for horizon-based optical navigation (OPNAV) [5], lunar crater identifi-
cation [6], star pattern identification [7], and absolute triangulation [8]. An introductory tutorial aimed at the
spacecraft navigator may be found in Ref. [5] and some of the foundational theory may be found in Ref. [4].
As compared to the method developed for OSIRIS-REx in Ref. [3], the approach shown here results in a
simpler algorithm and enhanced geometric insight. We note that the procedure discussed here bears many
similarities to the concept of “dynamic triangulation” recently introduced by Henry and Christian [8].

GEOMETRY OF LINEAR PARTICLE EVENTS

Suppose a particle event occurs at an unknown time ¢y and produces n particles. Let the location of this
event in an inertial frame be p, € R3, such that all particles are located at p,, at time to. Note that neither
P, nor tg are known beforehand. Now, suppose that the kth particle departs p, with a constant velocity wk)
such that the particle position at some time ¢; > ¢y is given by

P = (t; — to)w™® +p, (1)

Like p, and ¢, the all of the particle velocities {w(*)}7_, are unknown beforehand. A constant velocity is
a reasonable assumption for energetic trajectories over short time intervals for many small bodies with low
gravity.
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Now, consider a spacecraft traveling at a constant velocity v that observes this particle event with a camera.
It follows, then, that the position of the spacecraft at time ¢; is given by

ri = (t; —to)v +ro )
We assume that the spacecraft position and velocity are known. However, since we do not know ¢ before-
hand, we cannot retrieve the position r( until we first solve for the event time #.

If a particle appears as a point in an image, then the corresponding image-derived measurement is a simply
bearing measurement. We assume that this bearing is known in a specified inertial frame (e.g., ICRF) since
we determine the camera attitude using stars in each image [7]. Thus, a camera produces an inertial bearing
measurement to each particle at each measurement time. The bearing measurement simply describes a direc-
tion (it is a point in ??), which lies along the line connecting the camera and particle. The vector from the
camera to the particle is given by

Pl == (= t0) (W —v) + (py 1) ®

Letting bgk) = pz(-k) — r; be the particle’s camera-relative position and a*) = w(*) — y be the the particle’s
camera-relative velocity, this is simply

b = (t; — to)a® + by 4)
such that the direction of the bearing measurement we seek is
€7 o (t; — to)a™ + by (5)

where e§’“> has arbitrary scale since eﬁ’” € P2. We observe here that a*) is constant since both camera and
particle have constant inertial velocities and that by is the camera-relative position of the particle event. The
geometry of the camera relative motion is shown in Fig. 1.

PROCEDURE FOR EVENT RECONSTRUCTION WITH ONLY BEARING MEASUREMENTS

Assume the geometry from the prior section, it is possible to reconstruct the event to an unknown scale
using only bearing measurements. The scale ambiguity may be removed if a reasonable 3D model of the
observed body is available. The procedure consists of three separable steps: first compute the event camera-
relative direction £y o< by, second compute the event time ¢, third compute the camera-relative velocity of
each particle a(*).

Finding Direction to Particle Event

We begin with finding the camera-relative direction to the particle event. This can be achieved by observing
(at least) two particles in two images.

Consider the bearings to the kth particle at times ¢; and ¢;. Taking the cross-product of these bearings and
substituting from Eq. (5) yields

Egk) X Egk) X (ti — tj) (a(k') X bo) (6)
From the right-hand side, we see that this cross-product must be orthogonal to by, thus
T
(69 x ) by =0 (7)

We see here that any vector in the direction of b, also satisfies this equation. Hence, let £y € P? be defined
as the direction £y o< by and
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Figure 1. Tllustration of camera-relative particle trajectory, with three bearing mea-
surements to the particle shown in black (£, £-,£3). The particle emanates from

camera-relative location b, with a constant camera-relative velocity a(*). The time
of the particle event 75 and the bearing £, are not known a priori.

where £, has arbitrary scale.

If we have n > 2 images, we may stack Eq. (8) into the linear system
T
1 1
(e < £)
: £y =0nx1 )
T
(e €5

This is a standard null space problem, and we find the optimal value of £j in the least-squares sense by using
the singular value decomposition (SVD).

Finding Time of Particle Event (Three Observations)

We may obtain a linear equation for the event time ¢y directly from the cross-ratio. The cross-ratio—one
of the most fundamental concepts from algebraic projective geometry [4]—is defined as

D'B’  sinCVB

AC’/AD B A’C’/A’D’ sinAVC’/sinAVD (10)

ABC,D)=— /| — =
CriABOD) ==F | DB~ B sin DV B
where A, B, C, D are four collinear points as described in Fig. 2.

To make things simple, we also labeled the particle points with A, B, C, D in Fig. 1. Thus, we immediately
recognize this particle event problem as a cross-ratio problem. We may compute the cross-ratio ¢ along the
particle’s path

a(k) (tg - to) Cl(k) (t3 - tl) (tg - to)(t3 - tl)

= Pt — ) a® (ts —to)  (ta—t1)(ts — to) (i

Cc



Figure 2. Illustration of cross-ratio.

which is linear in the unknown %,. Likewise, we may compute the cross-ratio c using the angles

€0 < £a|| [[£1 x £
c= 12
12 % &[] o % £ (12

where we have made use of the cross-product identity ||€; X €3]] = ¢1¢2 sin 015.

Now, since Eq. (11) is linear in the unknown %y, we may rearrange to find

t2(t3 — tl) — Ctg(tQ — tl)
(ts —t1) —c(t2 —t1)

where we compute c directly from the bearing measurements using Eq. (12).

to =

13)

Finding Particle Velocity

Once the event time ¢ is known, it is possible to solve for each particle velocity up to an unknown scale.
To see, this, take the cross product of Eq. (5) with the bearing,

(t: — to) [e§k>><] a® + b, [35’” x} Lo = 031 (14)
where by = ||bo||. If there are n > 2 observations, then

(b — o) [4@ X} (Egk) x EO) 2
: : { by ] = 03,,x1 (15)
(tn — to) [e;’“)x} (z&jﬂ X EO)

and we can a*) and b in the least squares sense using the SVD. Since the right-hand side is zero, a'*) and
bo may only be found up to an unknown scale.

To remove the unknown scale, we can cast a ray along the direction £ at time ¢( to see where it intersects
the body. In general, there will be two intersection points—one closer to the camera where the ray intersects
the body and one farther away from the camera where the ray exits the body on the other side. The closer
intersection point is the only one that would be visible at ¢y, as any other intersection points are occulded
by the body. The correct intersection point may usually be disambiguated by ensuring the particle velocity
doesn’t pass through the body.



Finding More Particles

Once we’ve found at least one particle track, we may compute the cross-ratio from Eq. (12). We also
observe from Eq. (11) that the cross-ratio for a particle with constant velocity is only a function of the
observation times. Hence we can look at any set of three observations that are (nearly) collinear with £, and
immediately determine if they could have come from the same particle event by checking their cross-ratio.
This may allow us to quickly find more candidate particles in an automated way.

THE SPECIAL CASE OF ONLY TWO OBSERVATIONS

It is impossible to solve for the event time and location with only two observations of each particle under
the assumed (linear) dynamics. However, it is possible to limit the range of possible event times and the
corresponding locus of possible event locations. This may be done my intersecting the reference direction
£y with the body at a range of plausible times. When the observed body is modeled as a triaxial ellipsoid,
finding the intersection points at any hypothesized event time is analytic.

Consider a body modeled as a triaxial ellipsoid with principal axis lengths {a, b, c}. The body’s shape
matrix in the principal axis frame is

Ap=| 0 1/82 0 (16)

Now, if T I(’;’“ is describes the rotation from the inertial frame to spacecraft camera frame at time ¢;, to the
body’s principal axis frame, then

Ac, =TE ApTG (17)

If the camera-relative center of the body is given by b, then a point b lies on the ellipsoidal bodies surface
when

(b—b.)"Ac, (b —b.) =1 (18)
Since the point by = b€ lies on the surface,
(bolo — be)"Ac, (bolo —be) =1 (19)

which is quadratic in the unknown bg. This results in the scalar quadratic equation
(ZOTAckZO) B -2 (bCTAckEO) b + (bfAckﬁc - 1) =0 (20)

which may be solved analytically for by. If the direction £; intersects the body then there will be two positive
real roots, describing the two points where the ray pierces the ellipsoid. If the direction £ is tangent to the
body, it describes a horizon point and then there are a pair of repeated, positive, real roots. If the direction £
does not intersect the body, the roots are a complex conjugate pair.

SIMULATION

A simulation of particle events was developed to test the three-observation and two-observation event re-
construction methods. The simulation parameters were chosen to roughly align with particle events observed
about the asteroid Bennu by the OSIRIS-REx spacecraft [3], though they are not exactly the same. The as-
teroid was approximated as an oblate spheroid, with principal axes lengths a = b > c. The asteroid was
modeled to rotate about its third principal axis (one with largest moment of inertia) with a constant angular
velocity and was assumed to translate in the inertial frame with a constant velocity. The body parameters
used in the simulation are summarized in Table 1.



Table 1. The particle body was roughly modelled on the physical parameters of Bennu.

Parameter Value
Semi-Major Axis 300 m
Semi-Minor Axis 250 m
Angular Velocity 4.06 x 10~% rad/s

Velocity (inertial frame) [0.4082, —0.8162,0.4082] m/s

The simulation starts at time ¢ = 0 with the body and spacecraft moving relative to each other. At the
event time %, the particles are released from the body at a constant velocity. The particle velocities roughly
corresponded to those measured by OSIRIS-REx [3]. The spacecraft then collects images at times ¢;, where
7 > 0. Each image captures the direction to the observed particles at that instant in time. The full simulation
parameters are outlined in Table 2.

Table 2. The simulation parameters were based off of observations from OSIRIS-REX, providing a
physical grounding for the results.

Parameter Value

Event time, ¢, 150 sec

First observation, t; 450 sec
Second observation, o 1650 sec
Third observation, t3 2850 sec
Observation interval, 6t 1200 sec
Observer velocity (inertial frame) [0.0254, 0.1270, 0.1524] m/s
Particle source (body frame) [198.8,224.7,0] m
Mean Particle Speed 14.37 cm/s
Min Particle Speed 11.4 cm/s
Max Particle Speed 18.4 cm/s

Three-Observation Case

In the three observation case, the spacecraft recorded n particle bearings at times ¢y, t2, and t3. The
bearings from the first two observations were used to estimate the direction to the particle origin, £y, as
shown in Eq. (9). The cross-ratio for each particle was then calculated using Eq. (12). Because each particle
follows a distinct path, n cross-ratios were determined, using the three observations of each particle and the
estimated origin direction. Thereafter, the estimated event time, ¢(, was calculated for each cross-ratio using
Eq. (13). The t, estimates from all of the particles were then averaged to calculate a single estimate of the
event time.

For a spacecraft with noiseless measurements of the particles’ position and observation time, the three-
observation method yielded perfect estimates of the particle event time. The time estimates were identical
and perfect across particles, meaning the event time could be correctly determined from three observations
of only a single particle.

A Monte Carlo simulation was performed to test the robustness of the cross-ratio method in the presence
of measurement noise. The simulation introduced measurement errors in the particles’ bearing directions
and observation times. The simulation started by randomly generating trajectories from the particle source,
following the same parameters outlined in Table 2. The particle directions were selected from a 45-degree
ejecta cone oriented perpendicular to the asteroid’s surface. At every observation time, the true particle
bearings perturbed using the QUEST measurement model (QMM) [9, 10] with a standard deviation of 5
arcsec. Similarly, a normally distributed timing error was applied to each measurement with a standard
deviation of 5 ms. The timing errors were the same for each particle particles, as they were assumed to
be collected from a common image (and hence all have the same timetag error). After the errors were



introduced to the observation times and bearings, the event was reconstructed using the technique described
in this manuscript.

The number of particles was varied from 5 to 100 to see the effect of this on reconstruction performance.
A total of 10,000 trials were completed for each scenario. The ¢, estimate results with only bearing errors are
shown in Fig. 3. The ¢ estimate results with both bearing and time measurement errors are shown in Fig. 4,
and a comparison of Figs. 3 and 4 shows that the small 5 ms timing error has no meaningful effect on the
quality of the reconstruction (as compared to the 5 arcsec bearing error). The errors in the estimated event
direction with both timing and bearing errors are shown in Fig. 5. The errors in both event time and event
direction decrease as more particles are observed. Moreover, these errors decrease as 1/sqrtn as one would
expect from averaging.

351 ®

25T

Time Error Standard Deviation (ms)
(=]

0.5 I I | I I I I I I I

Number of Particles

Figure 3. Error in estimated event time with only noise on bearing measurements (no time noise).

25T

Time Error Standard Deviation (ms)

| 'y 'Y
1 * e, e,
o
L ]

0.5 L L . L L L L L L |
0 10 20 30 40 50 B0 70 80 90 100

Number of Particles

Figure 4. Error in estimated event time with both noisy bearing measurements and noisy time tags.
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Figure 5. Error in estimated event direction with both noisy bearing measurements
and noisy time tags.

Two-Observation Case

In the two-observation case, unambiguous estimation of event time is not possible. Despite this, a number
of interesting results may still be produced. Therefore, consider the situation where particle observations are
collected only at times ¢; and ¢5. The bearings may be used to calculate the camera-relative direction to the
event, £y, using Eq. (8). However, we cannot complete the reconstruction process since we cannot uniquely
solve for ¢y with just two observation times.

While we cannot explicitly estimate ¢y, we may bound it. First, we know that the event had to occur before
the first observation at ¢;—and so ¢; serves as a natural upper bound on the possible event times. Second,
if images are taken at regular intervals (e.g, 0t = ¢;;.1 — ;) and no particles were observed until the image
at t1, then a natural lower bound is ¢; — t. Therefore, we restrict the possible event times to be on the
interval [t; — dt,¢1]. We then perform a single-parameter sweep in to across this range and complete the
reconstruction with each possible event time.

Because the observed body is translating and rotating relative to the camera, the location where £, changes
with every different choice of ¢y. In some cases within the range of possible times, the direction £, may not
intersect the observed body at all and these times may be discarded.

To see how this works in practice, consider a scenario with only four particles (still following the pa-
rameters outlined in Table 2). The particle directions of motion were chosen arbitrarily and the scenario is
illustrated in Fig. 6. The observations of the particles at times ¢t; = 450sec and to = 1650sec were used
to generate the estimates of the possible event locations. The event locations and their associated times are
shown in Figs. 7 and 8, superimposed on the body and represented as a ground-track. The figures illustrate
that the true particle source and its associated event time lie along the path found by the approach described
here.

If we further restrict the cases to only allow scenarios where the body does not obstruct particle observa-
tions, then we find that not the entire path is not a physically valid solution. Using only the physically valid
times greatly reduces the plausible times and locations of the event, as can be seen in Figs. 9 and 10. In this
specific example, the valid range of event times is only 341 seconds, representing a large reduction over the
original 1200 second search space. Though the two-particle method does not yield a unique estimate, it is an
effective tool to reduce the search space of possible particle sources and times. In practice, the valid ground
track could be interrogated in search of visible evidence of a past event.
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Figure 6. Illustration of the four-particle scenario used to demonstrate the two-
observation event reconstruction scheme.
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Figure 7. The 3D path of potential event locations is dependent on the assumed
particle event time. This is due to the relative motion between the body and camera.
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Figure 8. The ground track of potential event locations is dependent on the assumed
particle event time.
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Figure 9. The relative geometry can be used to eliminate potential event times and
locations. Only the blue portion of the 3D path is valid.
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Figure 10. The plausible portion of the ground track of particle may be greatly
reduced using the body’s physical properties. Only the blue portion of the ground
track is valid.

CONCLUSION

The observation of discrete particle ejection events on the asteroid Bennu motivates the development of
techniques to efficiently reconstruct such events. Algebraic projective geometry is an effective tool for this
task, as the cross-ratio of particle tracks may be used to simplify the analysis. Furthermore, analyzing the
particles using the cross-ratio allows for greater insight into the event’s geometry. In general, at least three
observations of each particle (usually from three images, each containing all of the particles) is necessary
to arrive at a unique solution for the event time and location. The three-observation case produces a perfect
solution in the noise-free case and continues to function well in the presence of noise. For situations where
only two observations (e.g., two images) are available, we may constraint the plausible locations on the body’s
surface where the event may have occurred.
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