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Optimal trajectories for soft landing on asteroids 
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Robotic exploration of asteroids has been identified by NASA as a major long-term goal.  
Central to many asteroid missions is a precise soft landing to enable surface exploration or 
exploitation. This paper describes a technique for computing optimal autonomous controlled 
trajectories for soft landing in an irregular gravity field of a rotating asteroid. We will first 
discuss the complexity of the forces that act on the spacecraft during a landing and how we can 
model them. Then, we will present the numerical method used to solve the optimal control 
problem, and typical results are shown on case studies at asteroids Vesta and Golevka. In each 
example, we will identify the best mission design scenarios, as well as some operational 
difficulties. Finally, we will investigate sensitivity to parameter uncertainties and the 
implementation of a real-time feedback controller to increase landing accuracy. 
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Nomenclature 
G = gravitational constant 
µ = gravitational parameter 
U = gravitational potential 
ρ = density  
w = rotation rate 
Vex = exhaust gas velocity 
m = mass of the spacecraft 

I Introduction 
NASA’s Solar System Exploration Roadmap,1 unveiled 
in 2004, outlines the major goals of the United States 
Solar System exploration program for the coming 
decades.  Among the most prominent goals is NASA’s 
mission to “explore […] asteroids, and other bodies to 
search for evidence of life, to understand the history of 
the solar system, and to search for resources.” In 
response to this interest, NASA and the other world’s 
space agencies have been planning and performing 
missions to small celestial objects.  
 
To explore effectively asteroids, landing is necessary 
since this allows to perform in situ measurements or to 
exploit resources. However, this is a challenging step 
due to the remoteness of these bodies, their wide range 
of shapes and their complex gravitational fields. 
 
To date, only two descents to an asteroid surface were 
successfully implemented : one by NASA’s Near Earth 

Asteroid Rendezvous (NEAR) spacecraft on Eros using 
a series of open-loop thrusts,2 the other by the Japan 
Aerospace Exploration Agency’s Hayabusa sample 
return mission on Itokawa. 
 
This study addresses some of the basic questions that 
must be dealt with in that situation, with an emphasis 
on parking orbit and trajectory design. An original 
combination of two direct and indirect techniques is 
used in this paper to find minimum time and minimum 
fuel optimal trajectories. 
 
Since extremely irregular and diverse asteroid shapes 
can be encountered, we need to pay special attention to 
their shape modeling. We chose to approximate a body 
by a homogeneous polyhedron with a variable number 
of triangular faces. This shape model can be obtained 
from terrestrial observations (photometric or radar data), 
as well as from spacecraft observations, and gives the 
radius of the asteroid at multiple locations. Also this 
approximation can be very accurate since very complex 
geometries (cliffs, holes...) can be simulated. 
 
After modeling the dynamical environment and 
presenting the way to solve the problem, we will study 
two practical examples with asteroids Vesta and 
Golevka. They are dramatically different and embrace a 
wide range of physical parameters. Fig. 1 shows their 
polyhedral shape models from data found on the NASA 
asteroid database website.3 Important parameters of 
these two asteroids are listed in Table 1. 
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                  Vesta                                 Golevka 

 
Fig. 1  Shapes of Vesta and Golevka 

 
 Vesta Golevka 

Category Main Belt Mars-crosser 
Mean diameter 530 km 0.53 km 

Mass 2.70 1020 kg 2.10 1011 kg 
Density 3.4 g/cm3 2.7 g/cm3 

Rotation period 5.34 h 6.03 h 
 

Table 1  Physical parameters of Vesta and Golevka 
 
While Vesta's shape is very close to a perfect triaxial 
ellipsoid, Golevka has a very strange and angular shape 
that will induce a very irregular gravity field. The 
magnitude of its gravity field will be also extremely 
low since it is a very small object (Vesta is one 
thousand times bigger). 

II Dynamical environment modeling 
In the vicinity of an asteroid, a spacecraft is subject to : 

- the central asteroid gravitational attraction 
- the solar radiation pressure 

The sun gravitational force is not taken into account 
because it is not expected to have a significant effect 
close to the asteroid. 

II.A Gravitational attraction 
There are several approaches to model the gravitational 
attraction of a non-spherical body, each of them with 
advantages and drawbacks. 

II.A.1 Polyhedron potential 
The exterior gravitational potential of a constant-
density polyhedron was derived analytically by Werner 
and Scheeres.4 

 
 
 
where re is a vector from the field point to an arbitrary 
point on each edge, Ee is a dyad defined in terms of the 
face and edge normal vectors associated with each edge, 
Le is a logarithmic term expressing the potential of a 1D 
straight wire, rf is a vector from the field point to an 

arbitrary point on each face, Ff is the outer product of 
face normal vectors, wf is the solid angle subtended by a 
face when viewed from the field point. 
 
The main advantage of this method is that it gives the 
exact potential of the polyhedron anywhere in space. 
The only possible sources of errors are then the 
adequacy of the polyhedral shape modeling and local 
variations in density. 
 
However, this formula involves the computation of 
sums over all the edges and all the faces of the 
polyhedron. Since an accurate shape model requires a 
large number of faces and edges, this approach is 
computational intensive, particularly when 
implemented in Matlab since it is very slow to execute 
loops. A way to limit this issue is to code this algorithm 
by running Mex-functions in Matlab written in C. To 
evaluate the efficiency of this method, we compared the 
computational time needed to integrate the body-fixed 
equations of motion over one period for a spacecraft in 
orbit around a sphere modeled by a 16,471-vertices 
polyhedron. The equations of motion are integrated 
using Matlab’s “ode45” function (Dormand–Prince 
method) with a relative tolerance of 10-6 (m) and an 
absolute tolerance of 10-8 (m). 
 

m-function Mex-function 
13 h 1 min 

 
Table 2  Comparison of computation times 

 
We can see that the implementation using a Mex-
function leads to a huge reduction in computation time 
(around one thousand times faster). However, as we 
will see later in the paper, highly nonlinear optimization 
problems require a very long optimization time with 
thousands of iterations, so this is still a significant time, 
and we may need a faster approach. 

II.A.2 Spherical Harmonic Expansion 
The exterior gravitational potential of any object can be 
classically expressed as an infinite series expansion in 
solid spherical harmonics. 
 
 
 
 
 
 
 
where M is the total mass of the body , Re is its largest 
equatorial radius, (r,λ,φ) are the radius, latitude and 
longitude of the field point, Pn,m are the associated 
Legendre functions, Cn,m and Sn,m are the harmonic 
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coefficients. They represent the mass distribution of the 
body. They are computed using a polyhedral shape and 
the recurrent relationships derived by Werner.5 

 

Finite truncations are often sufficient to get good 
accuracy, therefore this approach is easy and fast to use. 
The drawback is that severe divergence appears close to 
the body’s surface. Thus this model is not 
recommended to compute the asteroid’s gravity at close 
range. An example of this phenomenon applied at 
Golevka is displayed below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2  Error (%)  of the spherical harmonic 

potential relative to the polyhedral potential for 
Golevka (xy plane) 

 
As shown in Fig. 2, the spherical harmonic model 
begins to diverge at the 0.4 km radial distance. Since 
the polyhedron gravity model is computationally more 
intensive, we need to find a compromise between speed 
and accuracy.  One way is to perform a transition from 
the spherical harmonic model to the polyhedron model 
when the spacecraft's radial distance moves inside 0.4 
km. We applied a similar strategy at Vesta. 

II.B Solar radiation pressure 
We assume that the solar radiation pressure varies 
according to an inverse-square law with the distance 
from the sun and acts along the line joining the sun and 
the small body.  
 
 
 
where rg is the unit vector from the sun to the small 
body, R is the sun-small body distance, and B is the 
spacecraft mass to projected area ratio. We supposed in 
the following a value of 40 kg/m2 for B (approximate 
value for the NEAR spacecraft).6 

 
However, this force has a significant contribution only 
for very small asteroids with low gravity field, therefore 
we will neglect it in the study of Vesta. 

II.C Validation of the model 
Before solving the landing problem, we needed to 
ensure that our code worked as intended. Since the data 
of NEAR landing trajectory are published,2 this was a 
good opportunity to use it as a test case and compare 
the simulation output to the real trajectory. The 
spacecraft transitioned from an orbit about Eros into a 
ballistic trajectory and four maneuvers were used to 
deorbit and control the impact speed. Therefore, we 
propagated our work from the same initial conditions as 
the NEAR mission including maneuvers at the same 
time as NEAR. Fig. 3 gives the altitude profile for the 
NEAR mission and our computed trajectory. The 
results show very good agreement.  
 

 
Fig. 3  Comparison of descent profiles 

III Problem formulation 

III.A Governing equations 
The equations of motion are expressed in the small-
body-fixed Cartesian coordinate frame with origin at 
the body’s center of mass.  The trajectory is controlled 
by the spacecraft’s thrusters. 
 
 
 
 
 
 
 
 
 
 
 
                                                                                     (1) 
 
where T is the thrust magnitude (0≤T≤Tmax), β and θ are 
the latitude and longitude angle directions respectively. 
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Consider the state vector x = [x, y, z, Vx, Vy, Vz, m] and 
the control vector u = [T, β, θ]. The equations motions 
can then be summarized by a single formula : 

),,( tuxfx =&  

III.B Boundary conditions 
The spacecraft can start from a parking orbit or a 
specified location. Its initial mass is known. These 
conditions can be expressed at the initial time by :                                                            
 
 
                                                                                     (2) 
 
Regarding the final conditions, the coordinates of the 
landing site are fixed and the vehicle must land with 
zero velocity at the surface. The final mass is kept free 
but must stay above a minimum value (dry mass) : 
 
 
 
                                                                                     (3) 
                                                                                      

III.C Formulation of the optimization 
problem 

An optimization problem is any problem where it is 
desired to minimize a specified criterion, referred to as 
a cost function. In this study, we will use two criteria : 

- descent duration : during landing, the spacecraft 
is subject to perturbing forces (solar 
gravitational force, dust…). These forces and 
other parameter uncertainties will influence the 
motion of the lander. Therefore, the shorter the 
duration is, the greater the landing robustness 
with respect to model uncertainties. 

- fuel consumption to minimize the mass of 
propellant and therefore the cost of the mission. 

We will compare the optimal trajectories obtained with 
either criterion. 
 
In our study, the cost function is of the form                                   
 

 
where φ = t for optimal time strategy or φ = -m for 
optimal fuel strategy. The problem is to find a control 
function u* that minimizes J, subjected to the 
governing equations (1) and the boundary conditions 
(2) and (3) described in the previous sections.  
 
In summary, we have to deal with a complex nonlinear 
two-point boundary optimization problem. An approach 
for the solution is discussed in detail in the following 
sections. First, we present the optimal control theory 
that gives all the necessary information to find an exact 
solution. 

III.D Optimization theory 
The Pontryagin Principle is employed.7 According to 
this theory, the optimal control u* is obtained by 
minimizing the Hamiltonian H with respect to u : 
 
 
where H is expressed by : 

mVVVVVVH mzVzyVyxVxzzyyxx &&&& λλλλλλλ ++++++=

and mVzVyVxzyx λλλλλλλ ,,,,,,  are the components 
of the adjoint vector satisfying the differential equations 
(which are not given in detail here) : 
 

                                                                                                                                  (4) 
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called switching function (coefficient of T in the 
Hamiltonian). 
 
Applying the Pontryagin Principle, we obtain the 
following expressions of the optimal controls : 
     - optimal θ : 
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By this condition only, θ is not uniquely defined since 
0≤θ≤2π. The quadrant of θ in the trigonometric circle is 
found by using the following second order condition :  
 
                 . After calculations, we get sign θ = -sign λVy. 
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- optimal T : 
The situation is different than the two previous cases 
since H is linear in T, which is bounded. Application of 
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III.E Method of solution 
Numerical methods to solve optimal control problems 
fall into two distinct categories: direct and indirect. An 
indirect method uses information from the co-state 
differential equations, the Pontryagin principle, and the 
boundary conditions, to find the optimal solution. This 
is accurate and fast, but the domain of convergence is 
very low, i.e. convergency depends highly on the 
accuracy of an initial estimate. In addition, an estimate 
of the co-states is required a priori, which is difficult to 
figure out since they do not have physical significance. 
An easier approach is to use a direct method, which 
aims at directly optimizing the cost function. It is 
characterized by a robust convergency even against a 
poor initial estimate – and no estimates of co-states are 
required –, but computation time significantly increases 
with number of time steps to obtain more accuracy. 
 
From these characteristics, we chose to combine the 
two methods to solve the problem in a practical basis. 
First, we integrate the equations of motion backwards 
in time from the known landing site and using a 
‘common sense’ control law to obtain a rough estimate. 
Then we run the direct code with a small number of 
time steps. Finally, we use the result to run the indirect 
code with a large number of time steps to get a final 
estimate.  

III.F Implementation 
The Matlab software package DIDO8 is used to 
implement the direct method. It is easy to use and is 
capable of solving a wide variety of problems. More 
precisely, it employs the Legendre Pseudospectral 
Method which fits globally orthogonal polynomials to 
the discrete data over the entire time span. 
 
The Fortran routine BNDSCO9 is used to implement the 
indirect method. It is a multiple shooting method. 
Central to a shooting method is the ability to integrate 
the differential equations as an initial value problem 
with guesses for the unknown initial values. 
 
Typical computation time for solving the landing 
problem is plotted in Fig. 4 as a function of number of 
nodes. All calculations were conducted on a Pentium 4 
PC computer (1.9 MHz). In the combined method, 
initial estimates were calculated using the DIDO code 
with 100 time steps (minimum required for the indirect 
method to converge) and final estimates were obtained 
by the BNDSCO code. We can see in Fig. 4 that the 
computation time for the direct method significantly 
increases with number of time steps while it only 
slightly increases in the combined method. Therefore, 
our approach leads to huge save of computation time 
without spoiling accuracy and convergence. 

 
Fig. 4  Typical computation time for the landing 

problem 

IV Landing simulation on Vesta 

IV.A Assumptions 
Spacecraft characteristics similar to NEAR were chosen, 
which corresponds to an engine's maximum thrust limit 
of 650 N and a specific impulse of 330 s. The vehicle 
has a dry mass of 487 kg and we assume that it carries 
onboard 75 kg of propellant before landing. The solar 
panels are fixed relative to the spacecraft’s body. 
 
The spacecraft starts from a nearly circular parking 
orbit. However, since Vesta is not spherical, the 
existence of such orbit is not trivial and this is the 
object of the following section. 

IV.B Design of the parking orbit 

IV.B.1 Orbit stability analysis 
The question of orbit stability around Vesta has to be 
addressed. In fact, if it is unstable, the spacecraft might 
collide with Vesta or escape from orbit. 
 
Large energy variation over one orbit period often 
traduces instability. Therefore, we estimate the 
maximum change in energy over one orbit of semi-
major axis a and inclination i :10 
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and rS ≈ 550 km is the so-called resonance radius at 
which centripetal acceleration is equal and opposite to 
gravitational acceleration. 
 
This function is plotted in Fig. 5. It was found that the 
transition from stability to instability corresponds 
approximately to a 5% fluctuation in energy over one 
orbit.10 
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Fig. 5  Average Energy variation 

 
We can see that direct orbits between 400 and 600 km –
those close to the resonance radius – are likely to be 
unstable. In fact, instabilities are generally closely 
related to resonances between the central body’s 
rotation rate and the mean motion of the spacecraft. 
 
To have a stable orbit relatively close to the surface at 
any inclination, we selected a semi-major axis of 350 
km for our parking orbit. 

IV.B.2 Determination of circular periodic 
orbits 

In addition for being stable, the parking orbit needs to 
be preferably circular periodic – or at least nearly 
circular periodic – to predict easily the position of the 
spacecraft and have a simple function to describe the 
orbit. 
 
Since Vesta is not spherical, we cannot avoid a 
variation in the ascending node for any orbit due to the 
effect of zonal harmonics. Therefore, nearly circular 
periodic orbits can exist only in a reference frame 
regressing about the Z axis at the nodal regression rate 
(supposed constant). Following Wiesel11, we developed 
an algorithm to find these orbits for any inclination and 
orbital radius. First we take initial conditions on the X 
axis with a fixed initial inclination i and fixed initial 
radius r0 : 
 
 
 
The unknown parameters are the period τ , the radial 
velocity 0r&   , and the tangential speed Vt0. To find them, 
we state that the satellite must again be crossing the 
plane Z=0, be at the same distance from Vesta r0, and 
have the same flight path angle after one period, which 
corresponds to the following final conditions : 
 

This is a simple two-point boundary problem and was 
basically solved with the function fsolve in Matlab 
using the keplerian values as a first guess. 
 
A solution for r = 350 km and i = 80° is plotted after 10 
periods in Fig. 6. Its actual period is 187 min while the 
corresponding keplerian value is 189 min, which 
corresponds to a difference of 1 %. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  Orbit in inertial frame 
 
We can check if this orbit is really periodic in 
the ’nodal-fixed frame’. For that, we calculate the 
amount of rotation about the Z axis between the initial 
position and the position after one period : 
 
Then the regression rate of the ascending node is 

τθ /−=Ω&  
and the corresponding rotation matrix is 
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Using this rotation matrix, the trajectory in the nodal-
fixed frame is plotted in Fig. 7. After 10 periods, it still 
has a circular periodic shape, which proves the 
efficiency of the algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7  Orbit in nodal-fixed frame 
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Our strategy will then to use first keplerian values and 
run DIDO to find the optimal inclination. Then we use 
this algorithm to find the corresponding near circular 
periodic orbit and the corresponding velocity. Finally 
we run DIDO again with this new initial condition. 

IV.B.3 Mission constraints 
The most important mission constraint to satisfy relates 
to solar panel illumination. In general, the normal of the 
solar arrays must remain within 30° of the Sun direction 
to generate enough power. For any scientific mission, it 
is of course necessary to point the instruments and 
hence the spacecraft at the asteroid we want to study. 
Therefore, since we supposed that the solar panels are 
fixed relative to the spacecraft, the orbit plane must stay 
within 30° of the Sun Plane-Of-Sky (SPOS) whose 
normal is along the sun-asteroid line direction. Then 
from the inclination of the SPOS relative to the Z axis, 
we can deduce the range of allowed inclinations of the 
parking orbit. 

 
Fig. 8  SPOS inclination over one period of Vesta 

 
The mission is likely to take place when Vesta crosses 
the ecliptic plane. At that location, the inclination of 
SPOS is 86°. It follows that the inclination of the 
parking orbit must satisfy 56°≤i≤124°. 

IV.C Two-Point Boundary Value Problem 
formulation 

IV.C.1 Initial conditions 
The initial conditions must satisfy the following 
relations since powered braking starts from any position 
of a circular orbit : 
 
 
 
 
                                                                                     (8) 

These relations give information about the initial values 
of the state variables at the initial time ti. However the 
initial values for the co-state variables are still unknown 
and hence we need additional equations. For that, we 
introduce new parameters ν and we classically define 
the auxiliary function Φ as the following : 

ψνφ T+=Φ  
Then, from the optimal control theory,7 we can find that  
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IV.C.2 Final conditions 
The terminal conditions on the state variables are all 
specified by eq. (3) except on the mass. The Pontryagin 
Principle requires that the terminal value of a co-state 
variable corresponding to a free-state variable is to be 
equal to the derivative of the cost function relative to 
the corresponding state at the final instant of time. It 
follows that : 

0)( =fm tλ   in case of optimal time 

1)( −=fm tλ   in case of optimal fuel                     (12) 
The other co-state variables are free at the final time 
since the terminal conditions of corresponding state 
variables are fixed by eq. (3). 
 
Since the final time tf is not known, the transversality 
condition yields and states that the Hamiltonian must be 
equal to the opposite of the derivative of the cost 
function relative to time : 

1)( −=ftH   in case of optimal time 

0)( =ftH    in case of optimal fuel                       (13) 

IV.C.3 Summary 
The landing problem on Vesta is converted into a two-
point boundary value problem and is stated as follows : 
the differential equations (1) and (4) are to be solved 
with the boundary conditions (3) and (8)-(13), while the 
optimal controls are described by equations (5)-(7). 

0)0,(
0000000

22
0

2
0

2
0

22
0

2
0

2
0

=⇒

⎪
⎪
⎩

⎪⎪
⎨

⎧

=++
=++

=++

xψ
VzzVyyVxx

VVzVyVx

rzyx



 9

IV.D Simulation results 

IV.D.1 Optimal time strategy 
Details of the trajectory, including altitude, velocity, 
flight path angle, etc, are plotted in Figures 9 to 14. The 
direct solution is displayed with a dashed line and the 
indirect one with a solid line. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Optimal-time trajectory 
 

 
 

Fig. 10  Altitude 
 

 
 

Fig. 11  Velocity magnitude 
 

 

 
 

Fig. 12  Flight-Path angle 
 

 
 

Fig. 13 Thrust magnitude 
 

 
 

Fig. 14 Thrust directions 
 
The thrust magnitude has an expected bang bang profile. 
The initial de-orbit burn has a duration of 185 s, 
followed by a descent coast of 354 s, and a final 
braking burn of 369 s.  
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When the engine is off, the thrust direction angles do 
not play any role, which explains the large difference 
during the descent coast between direct and indirect 
methods for these parameters.  
 
The flight path angle starts at zero as the spacecraft is in 
a circular orbit about the Moon. It is seen to decrease 
linearly with slope discontinuities at thrust switches. 
The final relevant value of the flight path angle is 
approximately -70 deg, which suggests that the 
trajectory is largely vertical at landing, which is 
recommended from an operational standpoint. 
 
The optimality of this solution is investigated next. 
Since the Hamiltonian is not a function of time, it 
should be constant and equal to zero. The Hamiltonians 
of both methods are displayed in Fig. 15. The DIDO 
estimate is fairly flat and is small in magnitude, but it is 
not constant. In particular, large peaks are seen at the 
end points of the time span, and small fluctuations are 
seen at the locations of the control discontinuities. It 
confirms that the direct solution is not optimal.  

 
Fig. 15 Hamiltonian 

 
The entire 75 kg of fuel available is consumed. That 
explains the presence of the descent coast since there 
was not enough propellant to have a constant-thrust 
solution. In fact, if we increase the initial mass of 
propellant and run the simulation again, we observe that 
the descent coast phase is reduced until a critical value 
of the initial fuel mass of around 100 kg corresponding 
to a constant-thrust solution. Therefore, the shape of the 
solution can be very different depending on the initial 
fuel mass. This could be a problem because the initial 
available mass of propellant is difficult to predict before 
the mission due to unexpected additional maneuvers. 
 
From an operational point of view, it is also interesting 
to see if the vehicle will collide with the surface in case 
of an engine re-ignition failure – a common failure in 
space missions. The trajectory without final braking 
burn is displayed in Fig.16. We can observe that the 

vehicle is on a collision course with Vesta and therefore 
will be destroyed if the final burn is not initiated, which 
represents an operational issue. A possible area for 
future investigation is to include in the optimization 
process the operational constraint of an abort orbit in 
case of an engine failure. 

 
 

Fig. 16 Trajectory without final braking 

IV.D.2 Optimal fuel strategy 
The use of an optimal fuel strategy in decreasing the 
amount of propellant needed, as well as the sensitivity 
in initial mass, is discussed in this section. For clarity, 
only the trajectory and thrust magnitude are displayed 
in Fig. 17 and 18. As expected, this strategy is 
characterized by a longer descent coast and shorter 
braking phases. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17 Optimal fuel trajectory 
 

 
Fig. 18 Thrust magnitude 
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Table 3 summarizes the two main characteristics of 
each strategy. 
 

 Opt. time strategy Opt. fuel strategy 
Time 15 min 45 min 
Fuel 75 kg 50 kg 

 
Table 3  Comparison of the two optimal strategies 

 
The optimal fuel trajectory can save as much as 33 % of 
the propellant budget when compared to the optimal 
time trajectory. It is however 3 times longer. 
 
In addition, we tested different initial fuel mass from 
60kg to 100kg and very similar solutions were obtained 
contrary to the previous strategy. 

V Landing simulation on Golevka 

V.A Assumptions 
Interplanetary trajectories to asteroids often require 
low-thrust propulsion systems since they are far more 
efficient than conventional chemical propulsion 
systems. Therefore, it would be interesting to study 
landing using the same electrical propulsion to avoid 
having two different kinds of engines. This is a feasible 
option at Golevka since it has a very low gravitational 
attraction. In this section, we will consider a xenon ion 
propulsion system with three Boeing 702 Thrusters 
characterized by 165 mN of thrust and 3800 seconds 
Isp. 
 
Due to the high Isp, the fuel consumption will be very 
low, so we consider optimal time strategy only. Also to 
speed up the code, we suppose constant thrust at 
maximum magnitude – therefore no longer subject to 
optimization –, as well as constant mass. The equations 
of motion were modified in consequence. 
 
Due to the irregular shape of Golevka and the 
perturbing solar radiation pressure, an orbiting 
spacecraft may exhibit chaotic motion and stability is 
therefore not guaranteed. Hence the traditional orbiter-
type strategy is difficult to put in application. One 
alternative is body-fixed hovering, which fixes the 
spacecraft’s position relative to the body by using 
thrusters to null the nominal accelerations on the 
spacecraft. Again, this approach is feasible for Golevka 
because of the relatively weak gravitational forces 
involved. At the desired hovering point r0 =[x0, y0, z0]T, 
thrust is defined as 
 
 
 
 

V.B Hovering stability 
As the parking orbit in the Vesta case, hovering is not 
stable everywhere. Sawai et al.12 developed a set of 
criteria analytically that characterize the stability of a 
body-fixed hovering. These criteria were developed by 
linearizing the equations of motion about the hovering 
point : 
 
 
 
 
 
 
 
 
 
 
where α1, α2, α3 are the three eigenvalues of the Hessian 
matrix of the gravitational potential at r0 and v1, v2, v3 
are the corresponding eigenvectors. 
 
The region of stability around Golevka defined by these 
three inequalities is displayed in Fig. 19 by the blue 
area. The hovering point is then chosen to be inside this 
region and in the direction of the normal to the landing 
site surface. A radius of 0.7km was selected since we 
found it was in the stability area at any latitude and 
longitude. 

 
Fig. 19  Stability area of body-fixed hovering around 

Golevka (xy plane) 

V.C Two-Point Boundary Value Problem 
formulation 

The initial conditions are straightforward. All state 
variables are specified at the hovering point : 
 
                                                                     (14) 
 
It follows that all co-state variables are free. 
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The final conditions are the same as those considered 
for Vesta. 
 
The two-point boundary value problem is then stated as 
follows : the differential equations (1) and (4) (modified 
to suppose T=Tmax and m=m0) are to be solved with the 
boundary conditions (3) and (14), while the optimal 
controls are described by equations (5)-(7). 

V.D Simulation results 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18 Trajectory 
 

 
Fig. 19  Altitude 

 

 
Fig. 20  Velocity magnitude 

 
Fig. 21  Flight-Path angle 

 

 
Fig. 22 Thrust directions 

 
We can see that the trajectory is almost one-
dimensional (straight line) with two distinct 
acceleration and deceleration phases. 
 
Note in Fig. 19 that the final altitude value of the direct 
method is around 10m above the surface, which 
confirms that the direct solution is not exact. 

VI Robustness 

VI.A Parameter uncertainties 
In the previous section, optimal trajectories have been 
obtained. However, it is also important to analyze their 
sensitivity with respect to parameter uncertainties and 
errors on controls and initial conditions. In fact, a non-
robust optimal trajectory cannot be implemented for an 
operational standpoint. Here, the parameters affected by 
disturbances are : 

- the body parameters : density, rotation rate, gravity 
field 

- the initial orbit parameters 
- the control states : thrust magnitude and directions  
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We will study two sets of covariances corresponding to 
different levels of precision in thrusters calibration and 
navigation. The uncertainties we used for the body 
parameters (density, rotation rate, and gravity field) are 
those found during NEAR Mission.13 We assumed that 
the spacecraft visiting Vesta and Golevka can obtain the 
same level of certainty. 
 

Covariance set # 1 # 2 
Density 0.05 % 0.05 % 

Rotation rate 10-10 rad/s 10-10 rad/s 
Gravity field 1 % 1 % 

Initial Position 1 m 10 m 
Initial Velocity 0.1 mm/s 5 mm/s 

Thrust directions 0.1° 1° 
Thrust magnitude 0.1 % 1 % 
 

Table 4  One-sigma parameter uncertainties 
 
A Monte-Carlo procedure with 5000 tries is applied in 
order to simulate these two sets of perturbed cases for 
descent trajectories on Vesta and Golevka.  

VI.B Sensitivity simulations 

VI.B.1 Vesta 
Results for both optimal strategies are summarized in 
table 5. We considered only error in position for 
simplicity. 
 

Range Run description 
Opt. time Opt. fuel 

all 5.2 km 3.1 km 
Body parameters 2.5 km 3 km 

Controls 4 km 150 m 

#1 

Initial conditions 2 m 10 m 
all 8 km 4.5 km 

Body parameters 2.5 km 3 km 
Controls 6.5 km 1.7 km 

#2 

Initial conditions 13 m 80 m 
 
Table 5  Contribution of parameter uncertainties to 

errors in position 
 
A lot of interesting observations can be made from 
those results. First, errors due to parameter uncertainty 
in these descents are quite large, in the order of km. 
These errors are primarily due to body parameters and 
thrust errors. Because the necessary thrust is large to 
compensate the strong gravitational attraction of Vesta, 
any error in thrust magnitude or direction is causing a 
significant perturbing force leading to a high deviation 
from the nominal trajectory. 

Also, we can see that the optimal-fuel strategy is 
surprisingly less sensitive to errors. This is unexpected 
because the longer the landing duration is, the more 
time it is subjected to these uncertainties. This can be 
explained by the effect of thrust errors explained above. 
Thruster uncertainties are the largest contributor to the 
miss distance in the optimal-time case because it 
applies full-thrust almost all along the trajectory. In the 
case of optimal-fuel strategy however, the ballistic 
phase is very long compared to braking phases, so 
thrust errors are less significant. This is another strong 
asset of the optimal-fuel strategy. 
 
Moreover, regarding the sensitivity to errors in the 
initial conditions only, we can note that the magnitude 
of the error in final position is generally in the order of 
error in the initial position, which means that in this 
case the perturbed trajectory is similar to the nominal 
trajectory but starts at a slightly different location. 

VI.B.2 Golevka 
Range offsets and impact speeds are summarized in 
table 6. 
 

 Cross 
range 

Vertical 
range 

Cross 
speed 

Vertical 
speed 

#1 3 m 2.5 m 3.7 mm/s 2.9 mm/s 
#2 18.2 m 16.5 m 6.7 mm/s 10 mm/s 

 
Table 6  One-sigma covariances of final position and 

velocity 
 
Considering that this is applied in an open-loop manner, 
the magnitude of errors induced by covariance sets #1 
and #2 are quite reasonable but it may be significant for 
some missions where high accuracy is required. 

VI.C Real-time feedback control 
implementation 

To improve the accuracy of landing, we need a fast 
numerical method to compute the future course of the 
optimal control variables during descent so that 
optimality is preserved even in the presence of those 
disturbances. Of course, the adjusted optimal control 
cannot be re-solved using the same method as in the 
previous sections because it cannot be practically 
realized in real-time. A simple approach is to locally 
linearize the perturbed dynamics about the undisturbed 
optimal trajectory : 
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The objective is to find the optimal δu* so that the 
quadratic cost derived from the second variation of the 
problem is minimized. This method is called 
neighboring optimal control and the solution is the 
well-known feedback control.14 
 
 
where P verifies the Ricatti equation 
 
 
and fx, fu, Huu are computed along the undisturbed 
optimal trajectory. 
 
Since K does not depend on the disturbances and rely 
only on the unperturbed optimal trajectory data, it can 
be computed off-line and stored in an on-board 
computer.  
 
This strategy is represented by the following block 
diagram.  

 
 

Fig. 23 Block diagram of the active controlled 
strategy 

 
A case study for landing on Golevka with set #2 is 
presented in table 7. As expected, adding the controller 
improves the accuracy. 
 

 Cross range Vertical range 
Without controller 18.2 m 16.5 m 

With controller 2.5 m 3.5 m 
 

Table 7  Effect of the controller on miss distance 
 
However, we did not take into account the accuracy to 
which the spacecraft can estimate its position in the 
body-fixed frame (using optical navigation or altimetry). 
Large inaccuracy in those spacecraft-based 
measurements can cause severe error in final landing 
conditions. Future work will have to include those 
potential errors in the analysis. 

VII Conclusion 
We developed an efficient optimization algorithm to 
determine autonomous controlled landing trajectories 
on asteroids. It includes a precise and relatively fast 
model of the dynamical environment in the vicinity of 
asteroids. Then, two direct and indirect numerical 
methods have been combined to take advantage of both 

their merits and solve the optimal landing problem. 
Landing simulations on two very different asteroids 
Vesta and Golevka are shown as examples of the 
effectiveness of the code. A wide variety of options was 
investigated, including starting from a parking orbit or a 
hovering point, using liquid or electric propulsion, and 
two different optimal criteria – time or fuel. In 
particular, we have shown that the optimal-fuel strategy 
for Vesta is the most advantageous. It is efficient – 
lower amount of fuel necessary – and robust – lower 
dispersion and similar control law over a large range of 
initial conditions. More generally, any strategy 
involving long thrust maneuvers would probably be a 
bad choice for bodies as large as Vesta. Because a high 
thrust is necessary to compensate the gravitational 
attraction, any misalignment and magnitude error will 
perturb significantly the trajectory. 
 
Future work could explore the effect of certain 
parameters that were held fixed in this study, like 
coordinates of the landing site, or characteristics and 
number of engines. Also, as figured out by Werner and 
Scheeres,4 the algorithm to calculate the polyhedral 
gravity field can be readily coded using parallelization 
computations. Therefore, applying this idea in the 
future could make the code even faster and avoid the 
use of the approximate spherical harmonic gravity field. 
 
This study could be easily extended to landing 
trajectories on cometary bodies or small moons orbiting 
giant planets. For the former class of bodies, a model 
for the outgassing of the comet nucleus and the related 
drag forces needs to be developed, whereas for the 
latter a simple tidal force can be added to the dynamical 
environment. 
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