

Georgia Tech Small Satellite Real-Time Hardware-in-

the-Loop Simulation Environment: SoftSim6D

Sean B. Chait

Advisor: Dr. David Spencer

AE 8900: Special Problems

Fall 2015

Georgia Institute of Technology

School of Aerospace Engineering

Space Systems Design Lab

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 1 of

80

THIS PAGE IS INTENTIONALY LEFT BLANK

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 2 of

80

ñWell, actually, we have a lot better rockets than the coyote.ò

-Dan Truman, Armageddon

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 3 of

80

Acknowledgements

To my fiancé, Jessica, for her unwavering support while enduring

the many late nights, long hours, and extended trips in pursuit of rockets.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 4 of

80

Abstract

The capabilities of small satellites produced by the university and small business community have

seen a sharp rise in recent years. With this growth in capabilities has come an increase in mission

complexity to encompass those architectures previously only found in well-funded government

programs, including proximity operations. The inherent complexity of proximity operations-based

missions introduces a great deal of risk to the missionôs success. The low-budget nature of the

small satellite community has limited the development of relevant testing infrastructure to match

the pace of mission complexity increase to adequately mitigate risk. This research will leverage

the standardization of CubeSat components to develop a highly adaptable hardware-in-the-loop

testing capability for the verification and validation of small satellite avionics boards and flight

software. MATLAB © Simulink Real-Time will be utilized to create a user friendly framework that

can easily be adapted to support a wide range of small satellite mission architectures. This

architecture, known as SoftSim6D, has been designed to thoroughly exercise the robustness of a

satellite with the primary aim of minimizing mission risk to ensure full mission success. An

examination of the overall framework, verified capabilities, and current variants will be discussed.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 5 of

80

Acronyms

6DOF
Six degrees of

freedom

ADACS
Analog to Digital

Acquisition System

ADC
analog to digital

converter

CML
Communication

Management Layer

COTS
Commercial-off-

the-Shelf

CPM
Communication

Processing Module

DBM
Data Buffer

Module

DDOS
Distributed Denial

of Service

DPL
Data Preparation

Layer

DTL
Data Transmission

Layer

ECEF
Earth Centered

Earth Fixed

ECI
Earth Centered

Inertial

EGSE
Electrical ground

support equipment

ENV
Environment data

bus

FIFO First In First Out

FOV Field of view

GB Gigabyte

GN&C

Guidance,

navigation, and

control

GPS
Global Positioning

System

HWITL
Hardware-in-the-

Loop

I/O Input/output

IBLE
Integrated Base

Level Environment

IMU
Inertial

measurement unit

INIT
Initialization data

bus

LEO Low Earth Orbit

LOS Line of sight

LSB
Least Significant

Bit

MADS

Modular Attitude

Determination

System

MEO Middle Earth Orbit

MSFC
Marshall Space

Flight Center

PCI

Peripheral

Component

Interconnect

RAM
Random access

memory

SSF Sensor fixed frame

SICD
Software interface

control document

SSIP

Spacecraft and

Simulation

Initialization File

STATE State data bus

STK Systems Tool Kit

TAB Test avionics board

UART

Universal

asynchronous

receiver/transmitter

VDF
Variant Definition

File

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 6 of

80

Table of Contents

Acknowledgements ... 3

Abstract ... 4

Acronyms .. 5

Table of Contents .. 6

Table of Figures .. 9

Table of Tables ... 11

1. Introduction ... 12

1.1. The Growing Need of HWITL Testing .. 12

1.2. Previous Approaches .. 13

2. Methodology .. 15

2.1. Approach Selection .. 15

2.2. Framework Requirements .. 16

2.3. System Architecture ... 17

3. Simulink Real-Time Implementation .. 19

3.1. Overview .. 19

3.2. Data Bus Formulation .. 20

3.3. Variable Models ... 21

3.4. Data Visualization and Storage .. 23

3.5. Adaptability and Expansion ... 26

3.6. Target Machine and Hardware IO .. 27

4. System Modelling .. 29

4.1. Simulation Layer .. 29

 Overview ... 29

 Environment Models ... 29

 Dynamic Modelling .. 30

 Perturbation Models .. 32

4.1.4.1. Third Body Effects .. 33

4.1.4.2. Atmospheric Drag.. 33

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 7 of

80

4.1.4.3. Solar Radiation Pressure .. 35

4.1.4.4. Gravity Gradient Torques .. 36

4.2. Emulation Layer ... 36

 Overview ... 36

 Sensor Models ... 37

4.2.2.1. Magnetometer Models ... 38

4.2.2.2. Gyro Models .. 38

4.2.2.3. Sun Sensor Models .. 39

4.2.2.4. Accelerometer Models ... 39

4.2.2.5. Inertial Measurement Units ... 40

4.2.2.6. Global Positioning System .. 40

4.2.2.7. Star Trackers .. 40

 Actuator Models.. 40

4.2.3.1. Reaction Wheel .. 41

4.2.3.2. Magnetic Torque Rods .. 42

4.3. Interface Layer ... 42

 Overview ... 42

 Data Preparation Layer ... 43

 Communication Management Layer... 44

4.3.3.1. Data Buffer Module ... 45

4.3.3.2. Communication Processing Module .. 46

 Data Transmission Layer .. 49

 MATLAB and Simulink Algorithm Testing... 50

5. Integrated Base Level Environment .. 51

5.1. Overview .. 51

5.2. Configuring a Simulation ... 52

 Simulation Layer ... 52

5.3. Support Software .. 54

 ExecuteTest ... 55

 ConfigExec ... 56

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 8 of

80

 IO_Killer ... 57

 PlotRun ... 59

5.4. Validation ... 60

6. Hardware-in-the-Loop Testing .. 62

6.1. Overview .. 62

6.2. Verifying HWITL IO Capability ... 62

6.3. Test Case: Modular Attitude Determination System ... 63

 Overview ... 63

 Configured Emulation Layer .. 63

 Configured Interface Layer ... 64

 Hardware Set-Up .. 66

 Testing Results .. 68

7. Proximity Operations Scenario Mission Simulation ... 72

7.1. Updated Capabilities .. 72

7.2. Testing and Expandability Limitations .. 74

8. Current Development and Forward Work ... 76

8.1. Martian System Simulation: SoftSim6D-Mars .. 76

8.2. Generic Central Body Implementation: SoftSim6D-Universal 76

8.3. Additional IO Capability .. 77

9. Conclusion ... 78

References ... 79

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 9 of

80

Table of Figures

Figure 1: DART Concept Visualization [13] .. 12

Figure 2: Prox-1 Mission Visualization .. 13

Figure 3: ITU-PSAT II Test Setup [5] .. 13

Figure 4: High Level Architecture Overview ... 18

Figure 5: Framework Hardware Implementation ... 19

Figure 6: Variant Subsystem Example: Spherical Harmonics .. 22

Figure 7: File Scope Example: HWITL Testing ... 23

Figure 8: Host Scope Implementation Example ... 24

Figure 9: File Scope Implementation Example .. 25

Figure 10: Generic Model Variant: Magnetic Field Model Example ... 26

Figure 11: Georgia Tech Target Machine ... 27

Figure 12: Target Machine PCI Expansion Bus ... 28

Figure 13: Environment Model Simulink Implementation ... 30

Figure 14: Dynamics Model Implementation ... 32

Figure 15: Perturbation Model Implementation ... 33

Figure 16: Example Sensor Model Implementation: DaVID CubeSat ... 38

Figure 17: Sensor Interface Layer Work Flow ... 42

Figure 18: Data Preparation Layer Example: EPSON MG350 IMU ... 44

Figure 19: Communication Management Layer Example: EPSON MG350 IMU 45

Figure 20: Data Buffer Module Example: EPSON MG350 IMU .. 46

Figure 21: Command Processing Module Example: EPSON MG350 IMU 48

Figure 22: Data Transmission Layer Example: Honeywell HMR2300 .. 49

Figure 23: Algorithms Only Interface Layer Work Flow ... 50

Figure 24: Standard IBLE for Single Spacecraft Mission Development 52

Figure 25: Spacecraft and Simulation Initialization File .. 53

Figure 26: Variant Definition File .. 54

Figure 27: ExecuteTest User Interface ... 56

Figure 28: IO_Killer Simulink Implementation ... 58

Figure 29: IO_Killer Settings Prompt ... 58

Figure 30: Results Data Structure ... 59

Figure 31: PlotRun Generated State Time-Histories .. 60

Figure 32: MADS Emulation Layer Implementation ... 64

Figure 33: MADS Data Preparation and Communication Layer Implementation 65

Figure 34: MADS Data Transmission Layer Implementation .. 66

Figure 35: MADS HWITL Test Set Up .. 67

Figure 36: MADS Calculated Solution Output ... 68

Figure 37: MADS Inertial Translational State Estimation Results ... 69

file:///C:/Users/Sean/Dropbox/AE%208900/draft4.docx%23_Toc436738001
file:///C:/Users/Sean/Dropbox/AE%208900/draft4.docx%23_Toc436738002
file:///C:/Users/Sean/Dropbox/AE%208900/draft4.docx%23_Toc436738003

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 10 of

80

Figure 38: MADS Angular Velocity Estimation Test Results.. 70

Figure 39: MADS Attitude Estimation Test Results .. 70

Figure 40: Proximity Operations SoftSim6D Implementation ... 72

Figure 41: Proximity Operations Relative Motion Calculation Subsystem 73

Figure 42: Proximity Operations Test Case: Spacecraft 1 Inertial State 74

Figure 43: Proximity Operations Test Case: Spacecraft 2 Inertial State 75

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 11 of

80

Table of Tables

Table 1: Current IO Capabilities of Target Machine .. 28

Table 2: STK Verification Position Testing Results... 61

Table 3: STK Verification Velocity Testing Results .. 61

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 12 of

80

1. Introduction

1.1. The Growing Need of HWITL Testing

Throughout the history of spaceflight, relative proximity operations and rendezvous have

undergone a significant evolution from human-in-the-loop to ground-in-the-loop to varying levels

of autonomy. Due to the inherent complexity of automated proximity operations, the development

of such a system presents a high operational and cost risk to developing organizations. Errors in

algorithms or flight coding that are not caught through testing have the potential to result in a

mission failure. This reality is what makes it difficult for mission designers to truly remove the

ground from on-orbit maneuver planning and allow the system complete autonomy. The only way

to guarantee the system is robust enough to be able to operate on a completely autonomous basis

is to have a comprehensive ground test program designed specifically to exercise the system in

such a way that faults in the system (if any) will present themselves in a laboratory environment

as opposed to during mission critical operations.

Autonomous proximity operations-based missions are by

definition inherently risk prone as they involve at least one

spacecraft maneuvering in close quarters to another space

object. A slight miscalculation or incorrect reaction can

create the potential for a collision resulting in a mission

failure and possibly result in the loss of both space assets.

This inherent risk further backs the needs for a system

dedicated to the comprehensive check out of a satelliteôs

guidance, navigation, and control (GN&C) system so as to

verify the robustness of the system. Multi-million dollar

class missions often undergo extensive testing regimes but

without a system independently designed to reach these testing goals, mission failure is still a

possibility. This was shown in the NASA DART mission (illustrated in Figure 1) where inadequate

software requirements and software failures resulted in a collision with the MUBLCOM spacecraft

and the loss of a $110 million mission [1]. The MUBLCOM spacecraft was not critically damaged

by the collision, but loss of the DART mission shows the risk involved in autonomous relative

operations even for well-funded programs. The high profile Orbital Express mission was also

plagued with failures due to incorrect software implementation. Although the mission was

recovered through on-orbit software updates, it further stresses the potential for these types of

failures even in the best-funded situations [2]. The possibility of failure is not an option if such

autonomous systems wish to be used to service high-value assets or in support of manned

spaceflight.

Figure 1: DART Concept Visualization

Invalid source specified.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 13 of

80

With the rising popularity of CubeSats and small satellite platforms, the cost of producing these

spacecraft has decreased drastically allowing complicated missions to be developed on the scale

of hundreds of thousands of dollars as opposed to tens of millions. This has resulted in the addition

of large numbers of universities and start-up

companies to the small satellite community. As

these organizations operate on very restricted

budgets, they often do not have in-house test

capabilities that are capable of fully testing complex

GN&C systems. Although they do not have this

capability, it has not deterred them from developing

proximity operations-based missions such as Tyvak

Nano-Satellite Systems CubeSat Proximity

Operations Demonstration (CPOD) and Georgia

Techôs Prox-1 mission [3] (see Figure 2), [4]. These missions, by design, are high-risk operations

but these risks are further increased by limited capability and funding to perform extensive testing

prior to operations. It is thus desirable for there to exist a highly adaptable test capability to reduce

operational risk but also at minimal expense such that low-budget missions can still afford to adopt

more in depth test programs.

1.2. Previous Approaches

There are several universities and organizations that

have developed various levels of such a capability

but there are limitations to many of these

approaches. One prevalent method is the physical

augmentation of an integrated spacecraft to measure

system performance. This involves the use of rate

tables, Helmholtz cages, image simulators, as well

as other devices to emulate the on-orbit spacecraft

performance. A prime example of this is MITôs

testing system designed for testing the attitude

determination and control system used with the

ITU-PSAT II mission which utilized an air bearing

table and Helmholtz cage [5] (shown in Figure 3). Although it has been proven to verify certain

portions of ITU-PSAT IIôs ACS system, it is limited in scope and not easily reconfigurable for

additional scenarios. Similar approaches can be found at other institutions, but they all present the

issue that they cannot be easily reconfigured for additional scenarios without extensive time and

cost [6], [7], [8], [9].

Figure 2: Prox-1 Mission Visualization

Figure 3: ITU -PSAT II Test Setup [5]

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 14 of

80

Another approach removes hardware actuation from the loop and focusses on software emulation

of sensors and actuators [10], [11], [12]. This approach has been successfully utilized in the

development in Marshall Space Flight Centerôs SPRITE tool for HWITL testing of CubeSats. Here

the plant dynamics of a spacecraft are simulated and resulting sensor readings are generated to be

fed into a spacecraftôs flight computer [11]. The benefit to this approach is that the primary

adaptations required between different testing scenarios are software based, not hardware, and thus

reduce the complexity and cost of a reconfiguration. In the small satellite community, this is

desirable as cost and schedule are often limiting factors in the extent of testing which will be

conducted. Although this approach does not verify individual sensor and actuator performance and

rather focusses on the spacecraftôs avionics, it can be argued that this approach is highly valuable.

Multiple approaches have been used in the past in order to tackle the problem of thoroughly testing

complicated mission architectures. However, capabilities that have been developed have either

been limited in scope or lacked the capability to be easily adapted for other mission architectures.

The need clearly exists for the development of a reconfigurable system that can test a wide range

of mission profiles for different spacecraft while still remaining cost effective for the small satellite

community.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 15 of

80

2. Methodology

2.1. Approach Selection

After conducting a survey of pre-existing testing environments it was determined that a framework

which would achieve the most utility throughout the entire lifecycle of the mission and provide

the greatest platform for fully exercising a spacecraftôs avionics system should focus on the

avionics of the spacecraft. Physical actuation of an integrated spacecraft was considered as a

possible option, however it was decided that this would only have limited utility in fully verifying

the system. Physical actuation (rate tables, Helmholtz cageôs, etc.) would provide the ability to

partially test nominal mission performance but would not give testing engineers the ability to

adequately introduce off-nominal scenarios to fully characterize the system. These systems also

often require significant modification between spacecraft which introduce large cost and schedule

implications making the system less desirable. However, a testing environment based on integrated

avionics testing can both fully exercise the systemôs performance and be adaptable enough to make

it a viable ñgenericò testing environment.

In the small satellite community, the vast majority of sensors and actuators used on-board satellites

originate from commercial vendors as opposed to custom-designed, mission-specific solutions. As

these Commercial-Off-The-Shelf (COTS) components gain more flight heritage, the validity of

the performance specifications for these units has increased dramatically. It is for this reason that

oftentimes it is safe to take these specifications at ñfaceò value and not invest extensive resources

in verifying individual sensor performance. This is especially the case for university-based and

other low-budget missions where this sort of testing is not within the budgetary allowances of the

program. Since these components have a high probability of meeting performance specification

during operation, it is possible to remove them from the testing chain. This fact allows us to now

formulate the main methodology behind the HWITL test bed.

As previously discussed, the largest risk to a successful mission lies with the successful

implementation of the hardware/software interface as well as adequate definition and

implementation of flight software requirements. The software interface with hardware can often

prove to be a complicated interface to design for nominal conditions. Without proper requirements

and extensive testing, this software interface may not be able to properly function should the

hardware malfunction. In university-class missions, requirements concerning off-nominal

hardware communication are often not adequately defined, thus requiring further testing to verify

functionality. A major cause of mission failure also lies with the definition of flight software

requirements rather than their implementation. Requirements may be developed, implemented,

and successfully tested, but if those requirements do not adequately encompass the true needs of

the mission, failure is still possible. For instance, one of the causes for the failure of the DART

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 16 of

80

mission was a GPS velocity error bias of 0.6 m/s. The design requirements stated that the measured

velocity error must be within ±2 m/s (meaning this error fell within requirements). However, as

the failure of the mission proved, this requirement was not properly defined and thus contributed

to the mission failure [1]. A key ability of the HWITL platform will be to rigorously test the

spacecraft avionics in a system realistic enough such that potential in-flight errors caused by poor

requirements definition will be revealed.

To replace the physical simulators and actuators that we have removed from the testing chain, the

HWITL platform will instead mimic the low level output of each of these components. As opposed

to many testing schemes where this data would be fed into the flight computer via an electrical

ground support equipment (EGSE) connection, this approach would feed the emulated component

I/O directly into the hardware connections on the avionics boards where the actual component

would be connected. Introducing component signals at this level would therefore allow the

complete verification of the entire avionics hardware and software chain while still allowing the

test engineer a great deal of control over the system. This capability is especially important in

distributed architectures where information passes through multiple levels of signal and data

processing before reaching the primary flight processor. EGSE connections typically bypass all

lower level hardware/software and pass data directly to the flight computer. Although this form of

testing may verify performance of software on the primary flight computer, it does not provide

any verification for the multiple lower levels of hardware/software that in reality sensor data would

need to pass through before it reaches the flight computer. Therefore the EGSE methodology

would effectively be ignoring a large number of potential fault locations and not truly validating

the robustness of the system.

The resulting environment will therefore need to be a full avionics in the loop test bed, capable of

exercising all of the avionics electronics of the spacecraft, from low-level serial communication

and associated basic electronics such as logic level converters to subsystem level microprocessors

to the fully integrated avionics system with the primary flight computer in the loop.

2.2. Framework Requirements

The scope of the HWITL framework has already been defined as an avionics-in-the-loop test bed

capable of fully exercising a spacecraftôs flight avionics system. From here three primary driving

requirements have been defined. From this point forward, the framework will be known as

SoftSim6D.

Requirement 1

The test bed shall be a robust Hardware-in-the-Loop avionics testing environment with primary

emphasis on supporting the development, verification, and validation of autonomous proximity

operations based mission systems

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 17 of

80

Requirement 2

The system shall be capable of supporting spacecraft projects throughout the mission lifetime,

from initial development, to engineering and flight unit testing to flight anomaly mitigation during

on-orbit operation.

Requirement 3

The system shall be highly adaptable such that it can be rapidly configured for a new mission with

no to minimal simulation development required.

2.3. System Architecture

Initial requirements definition of the SoftSim6D framework determined that the framework was

to be both highly adaptable for specific mission requirements and capable for use during all phases

of a spacecraft design lifecycle. SoftSim6D was designed with the intention that it can be used for

development of MATLAB/Simulink control algorithms and mission design, testing of flight C

code, and Hardware-in-the-Loop (HWITL) testing of flight avionics boards. In support of this, a

framework was developed with three distinct layers: simulation, emulation, and interface.

The simulation layer is the primary engine of the environment, consisting of a series of high fidelity

environmental, perturbation, and dynamics models. Environmental models generate the Earth-

centric ephemerides of the spacecraft, sun, and moon. Perturbations caused by atmospheric drag,

solar radiation pressure, spherical gravity harmonics, and third body effects are modeled.

Accelerations and moments caused by these phenomena are fed into translational and rotational

dynamic plants along with physical characteristics of the spacecraft to create a high fidelity six

degrees-of-freedom environment.

The emulation layer is responsible for the simulation of spacecraft components and consists of two

parts: spacecraft sensors and actuators. The spacecraft sensor block takes the true spacecraft state

as determined by the simulation layer and generates the corresponding sensor readings for a suite

of generic spacecraft sensors. The actuator block acts upon commands received from the test article

and generates the resulting forces and moments to be fed back into the simulation level for

propagation of the spacecraft state.

For a given spacecraft or flight program, once components are selected, the only modifications

that will be required to interface with a given test article will be the interface layer. For basic

testing of MATLAB/Simulink algorithms, this layer will simply generate data buses to be fed

directly into the provided MATLAB code. For testing of flight C code and HWITL testing, the

interface layer will act as the interpreter between the simulation and test module, generating

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 18 of

80

realistic low-level input/output (IO) to model flight hardware conditions as realistically as possible.

The layered architecture is illustrated in Figure 4: High Level Architecture OverviewFigure 4.

Figure 4: High Level Architecture Overview

A key attribute of this architecture is that it is highly adaptable and configurable such that it is able

to accommodate a wide range of mission profiles, sensors, and testing requirements. As such, a

standardized plant framework has been developed for all models to allow for new models to be

ñpluggedò into the simulation, minimizing rework between each satellite. Generic models have

also been developed for ñstandardò classes of COTS components such as reaction wheels, cold gas

thrusters, inertial measurement units (IMUôs), etc. with easily changeable configuration

parameters to allow the plant models to be updated for different versions of hardware.

Different mission profiles can call for different fidelities in their environments models based on

mission requirements. For example a spacecraft with a deployable boom operating in LEO would

have greater concern about the effect of atmospheric drag on system performance than a

communications satellite in MEO. It is for this reason that environment models such as

atmospheric density, solar radiation pressure, and Earthôs magnetic field will also be treated as

interchangeable components within the overall framework. For example, the testing of a specific

satellite may call for the use of a specific high fidelity magnetic field model not included in the

standard HWITL framework libraries. To prevent the need for substantial code change to

accommodate a new model, the specific model utilized by a simulation run will be another

configuration parameter with a standard interface format.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 19 of

80

3. Simulink Real-Time Implementation

3.1. Overview

This architecture has been implemented using MATLAB© Simulink Real-Time via a real-time

target machine. Using this framework, the test environment will have three primary components;

the host machine, the target machine, and the test article. The test article will either be the

spacecraft avionics boards undergoing testing or MATLAB/Simulink algorithms. The architecture

implementation is illustrated in Figure 5.

Figure 5: Framework Hardware Implementation

The host machine is where the simulation is designed and configured for the specific test run via

MATLAB © Simulink. This is where all spacecraft parameters are set, new models are defined, and

simulation management occurs. When the simulation is completed it is compiled into a Simulink

Real-Time C application and loaded onto the target machine for execution. Depending on the test

scenario, the application can be compiled to run in real-time, for HWITL testing, or free-run mode,

for algorithm testing and verification. Free-run mode is an accelerated mode which will execute

the simulation as fast as the hardware capabilities of the target machine allow.

The target machine is where the execution of all testing occurs. The target machine is a modified

PC that is booted into a MATLAB© kernel from an external USB drive. By using this kernel, the

target computer does not load a traditional operating system which requires substantial processor

overhead. Rather the purpose of the kernel is solely for communication with the host computer

and management of the simulation. This allows the C application to utilize the complete power of

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 20 of

80

the processor and drastically increase the speed of any real-time or free run simulations. Data

monitoring during testing will occur via this machine while the final test data will be transferred

to the host computer over crossover Ethernet for post processing. The MATLAB © kernel also

allows for real-time communication between the target and host computers both before and during

testing. As will be discussed later, this allows the test engineer to quickly configure the simulation

from the host machine as well as change parameters or insert faults while a simulation is running.

The target machine will also host the low level IO interface cards which will be responsible for

communication with the spacecraft avionics during HWITL testing. The wiring harness that

interfaces the real-time target PC with the avionics board will be fabricated for each spacecraft

being tested such that the connections are identical to those which the spacecraft would see from

the real component.

For scenarios where MATLAB/Simulink algorithms are undergoing testing in lieu of hardware,

during the configuration of the simulation on the host machine, the algorithms will be directly

inserted into the simulation. These algorithms will then be compiled into the C application with

the rest of the simulation and transferred to the target machine. Execution will still occur on the

target machine so as to take full advantage of the increased simulation speeds allowed by the

standalone MATLAB kernel.

3.2. Data Bus Formulation

To allow for easy configuration, expansion, and data management MATLAB data buses have been

used to track all states, logic flags, and data products throughout the simulation. This was done

intentionally to allow for easy management/access to all state information and to allow for the easy

use of variable models that enable the simulation to be configured without substantial user input.

As will be discussed, the specific utilization of data buses was designed to allow for development

and implementation of new models in a plug and play fashion.

Three major data buses exist in all simulations, regardless of the configuration, test article, or

models utilized. These are the environment (ENV), state (STATE), and initialization (INIT) buses.

Each are required for the successful propagation of all dynamic and kinematic models as well as

for the modelling of sensors and actuators. The environment bus is responsible for tracking all

time conversions and any processes that exist external of the spacecraft. The state bus contains all

information pertaining to the spacecraft inertial state, rotation matrices, and mass properties. The

initialization bus was developed to allow for rapid configuration of the entire simulation with

minimal modifications required. This bus contains all information on the spacecraft initial states

as well as information pertaining to any other physical or performance characteristic (such as

surface areas or sensor noise parameters). Updates to the default values of this bus allow the user

to automatically configure many aspects the simulation at start-up. Data buses for sensor data

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 21 of

80

(SEN_DATA) and actuator response (SC_RESPONSE) are also defined within the baseline

environment, however these will need to be updated to match the data sets of the spacecraft under

examination.

3.3. Variable Models

A primary requirement of SoftSim6D was to have the ability to rapidly configure the simulation

for different perturbation models, sensor models, etc. without substantial user effort. To meet this

need, Simulink Model References and Variant Subsystems were utilized. Model References allow

the generation of custom Simulink blocks for insertion into a high-level model. A model reference

block is a standalone Simulink model that is configured in such a way that, it can be inserted into

another model as a block as opposed to a subsystem. This enables easy configuration management

as well as speeds up compile time of the overall simulation. Generic blank Simulink models

configured for this purpose have been generated for each major variation subsystem within

SoftSim6D to simplify the development of future modules.

Simulink Variant Subsystems are a powerful tool that enables much of SoftSim6Dôs rapid

configuration abilities. A variant subsystem allows the definition of multiple instances of the same

subsystem, however only one is active at a time, as determined by an external setting. This setting

can be set at initialization and thus allows the multiple models to be rapidly interchanged without

manual manipulation of the model. In SoftSim6D, each variant is an externally defined model

reference block. To ensure proper functionality, all variants placed within a given variant

subsystem are required to have identical inputs and outputs. Universally across the simulation,

with few exceptions, all variants/model references contain the three standard buses (ENV, STATE,

and INIT). These were designed to contain the necessary information for all derived calculations

within SoftSim6D. The outputs of each variant model are dependent on the specific application

and are typically simple vector outputs. New bus definition (such as SEN_DATA and

SC_RESPONSE) occur at a higher level within the simulation.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 22 of

80

Figure 6: Variant Subsystem Example: Spherical Harmonics

Figure 6 shows an example of a variant subsystem. The displayed subsystem is for the spherical

harmonics perturbation model. Three variants currently exist within the model; no spherical

harmonics, only J2 zonal harmonics, and J2 through J6 harmonics. Currently the J2 zonal harmonics

model is active (this can be discerned by the fact that the other two models appear grayed out). To

change which model is active, the user simply needs to alter the single parameter SPH_Option in

the initialization file. No other action is required. To expand on previous discussion of standard

model reference formats, it is important to note that these models produce both a translational

acceleration and moment result. Although basic spherical harmonics do not produce torques on

the spacecraft, configuration control requires that all perturbation models have both acceleration

and moment outputs. In this case, the moment output of the models is of value zero.

Variant subsystems are used throughout SoftSim6D in any subsystem which is conducive to the

desire to have numerous options available for rapid configuration. Expansion of a variant

subsystem has also been designed to be straightforward. The user needs only to create their new

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 23 of

80

model within the generic template and save it according to configuration standards. A new model

reference corresponding to the new block is then inserted into the relevant variant subsystem. To

be accessible as a rapid configuration option, a single variant control and condition must be added

to the variant subsystemôs block parameters. After this is completed, the new model is completely

integrated and ready for testing.

3.4. Data Visualization and Storage

There are three primary means of data visualization and storage while executing a simulation on

the target machine. Each methodology takes advantage of pre-supported Simulink Real-Time

capabilities and their use customized to support the needs of SoftSim6D.

During all testing, a monitor is connected to the target machine. This monitor is primarily used for

displaying real-time information and visual confirmation of simulation settings. Up to 9 plots of

type Target Scope can be displayed on this screen during simulations. Target Scopes sole use is

for the displaying of information while a test in underway and do not provide for a means of storing

data for post processing. It is for this reason that no target scopes are permanently configured in

SoftSim6D. The test engineer has the latitude to insert these where desired within the simulation

to monitor any desired signals. For HWITL testing, these scopes are useful for verifying

successfully communication with test hardware. Figure 7 shows a HWITL test where a non-zero

signal in the top row scopes signify incoming data and the bottom row signifies outgoing

communications. This proves a useful sanity check to confirm proper operation during a

simulation.

Figure 7: File Scope Example: HWITL Testing

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 24 of

80

The second and most used means of data monitoring and storage is through the use of Host Scopes.

Although they are called scopes, their primary purpose is to save data from the simulation and not

for plotting of data during execution. Host Scopes take the given input signal and save it in a

Simulink Real-Time Scope object. Once all requested data has been gathered, the information is

then transferred to host computer. Host scopes have been implemented across SoftSim6D to store

all signals found in data busses and are found within Data Logging subsystems. This includes

default storage utilities for ENV and STATE as well as for SEN_DATA and SC_RESPONSE. All

listed signals are automatically acquired during every simulation run, in both real-time and free

run modes. Additional scopes can also be readily added to capture new signals.

In certain situations, a simulation may need to be run at a relatively high frequency but the user

may only require data acquisition at a slower frequency. All Host Scopes are configured to allow

slower storage rates if desired and it is a parameter that is configurable at simulation compilation

time. Host Scopes can also be utilized to display select data at near real-time. A real-time plotting

utility has been created to allow user real-time viewing of state data. This capability is separate

from the standard Host Scope configuration described previously as a different implementation

path is required. An example host scope implementation using both long term data storage and

real-time display is shown in Figure 8.

Figure 8: Host Scope Implementation Example

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 25 of

80

An unlimited number of Host Scopes are allowed by Simulink Real-Time, however limitations do

exist on their use. Data found in Host Scopes are stored in the RAM of the target machine until the

simulation is complete and the data is ported over to the host machine. Therefore if the number of

signals saved, simulation duration, and sample frequency result in a data quantity that exceeds the

2 GB RAM limits of Simulink Real-Time, SoftSim6D will be unable to run. If this is the case,

when the simulation is loaded onto the target machine prior to execution, an error will occur to

inform the user to address the issue.

If Host Scopes do not provide sufficient data storage, the third method for data storage it to use

File Scopes. These scopes save data directly to file system on the target machine and have no limit

on size, however Simulink Real-Time is limited to 8 file scopes per simulation. Since there is no

data limit on each of these scopes, signals are combined by bus in order to be stored concurrently

in the same file. A significantly greater amount of custom configuration is required to both

implement and extract data from File Scopes so it is recommended they are only used in long term

HWITL testing where it is absolutely necessary to continuously store large amount of data for

extended periods of time. Standard implementations have been generated for STATE and ENV

data buses. An example of the ENV and STATE file scopes is shown in Figure 9.

Figure 9: File Scope Implementation Example

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 26 of

80

3.5. Adaptability and Expansion

The selection of Simulink Real-Time as the primary framework for SoftSim6D as well as the

various methodologies already described for implementing models and storing data have all been

done with the aim of making the simulation quickly adaptable and intuitive enough to allow new

users to make additions. Model variants, spacecraft physical characteristics, initial state,

component specifications, and simulation parameters have all been implemented in such a way

that a test engineer can configure them at run-time without any modifications to the system. A

detailed discussion of this is found in Chapter 5.

If a user requires a model not currently found in SoftSim6D libraries, generic Simulink models

and code files have been created for the major elements of each layer. In each generic model, the

IO with the corresponding higher level model has already been defined and all of the model

parameters have been configured to automatically map to the settings of the higher level

simulation. A userôs guide is under development which further expedites this process. Figure 10

shows an example generic model.

Figure 10: Generic Model Variant: Magnetic Field Model Example

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 27 of

80

Detailed spreadsheets have been maintained for configuration management and revision control

of existing models, tracking of data bus objects, and scope data ID trackers. Naming and

numbering conventions have been developed and documented for all processes that are utilized

across the simulation to ensure the plug and play capabilities of SoftSim6D.

3.6. Target Machine and Hardware IO

The target machine utilized in the Georgia Tech simulation environment is a standard Dell

OPTIPLEX GX620 with a Pentium D processor. The machine has 4 GB of RAM (although only

2 GB are useable by Simulink Real-Time due to limitations in the MATLAB kernel). A 1 terabyte

(TB) configured to a FAT-32 file system has also been added to allow for the use of File Scopes.

A standard USB flash drive has been written as a boot-disk for the MATLAB kernel and the BIOS

of the target computer is configured to automatically boot from this flash drive at start-up. An Intel

PWLA8391GTL Ethernet Card has also been added to both the target machine and host computer.

This specific type of Ethernet card allows for direct communication between the target and host

computer via a cross-over CAT5 cable. A PCI expansion bus has also been added to the target

machine to allow for a total of five PCI IO cards, used for HWITL testing. The current target

machine is shown in Figure 11.

Figure 11: Georgia Tech Target Machine

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 28 of

80

To date IO cards have been added to the system to support serial communication over RS-232,

RS-422, and RS-485 protocols as well as for the reading and generation of analog signals. All IO

cards were selected based on their protocol, number of available IO lines, and pre-compatibility

with Simulink Real-Time. A list of current IO cards and IO capabilities of the target machine is

found in Table 1. The integrated IO cards in the PCI expansion bus attached to the target machine

is shown in Figure 12.

Table 1: Current IO Capabilities of Target Machine

 Communication Protocols

IO Card RS-232 RS422/485 TTL

Analog to

Digitial

Digitial to

Analog

Quatech ESCLP-100 8 0 0 0 0

Quatech QSCLP-200/300 0 4 0 0 0

Quatech QSCLP-200/300 0 4 0 0 0

Quatech QSCLP-200/300 0 4 0 0 0

PCIM-DAS1602/16 0 0 8 16 2

Target Computer Total 8 12 8 16 2

Figure 12: Target Machine PCI Expansion Bus

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 29 of

80

4. System Modelling

As previously discussed, SoftSim6D can be broken down into three distinct layers; simulation,

emulations, and interface. Chapter 4 will discuss the internal workings of these layers and

examples of functionality that has been implemented to do. Chapter 5 will discuss the integrated

simulation environment that is created using these layers.

4.1. Simulation Layer

 Overview

The simulation layer is the primary physics engine of the environment. This layer contains all

models of the space environment, true spacecraft dynamics, and external perturbations. The states

generated and monitored by this layer are fed into the emulation layer for use in generating sensor

data. The simulation layer is also responsible for updating the true inertial state of the spacecraft

based on commands interpreted by the interface layer and executed by the emulation layer.

 Environment Models

Environments are defined as any processes of state that exist external of the spacecraft and are not

dependent on the state of the spacecraft. Calculation of states of planetary bodies are calculated

here, such as the positions of the Sun and moon in the Earth Centered Inertial (ECI) frame. Any

quantities derived from these states, in conjunction with either time or the spacecraft state, are also

determined. This includes the rotation from ECI to the Earth-Centered-Earth-Fixed (ECEF) frame,

the eclipse state of the spacecraft, and the sun line-of-sight (LOS) vector from the spacecraft.

The framework also classifies any processes of the primary central body as environment models.

The Earthôs magnetic field is calculated with respect to the ECI frame at the current location of

the spacecraft as well as atmospheric density.

Primary time keeping of the simulation time and current Epoch along with all other derived time

measurements (GMST, Julian date, GPS Week and Second, etc.) are all monitored and propagated

from the environment. Any use of time throughout the entire HWITL is calculated here. In

sensitive GN&C missions, time tags on sampled data is of the utmost importance and even a

variation in rounding within the simulation can have undesirable effects. It is for this reason that

all time related calculation have been consolidated to the environment model to ensure 100%

timing consistency. The implementation of this layer is shown in Figure 13.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 30 of

80

Figure 13: Environment Model Simulink Implementation

 Dynamic Modelling

Dynamic modelling of the spacecraft is broken down into three categories; translational dynamics,

rotational dynamics, and mass properties. The translational dynamics of the spacecraft are

described by the generic two-body problem with the inclusion of imparted forces and perturbing

accelerations.

 ►
‘

ᴁ►ᴁ
► ╪

╕

ά
 (1)

As will be discussed later, all non-two-body gravitational forces are treated as external

perturbations in order to allow for the greatest configurability of the 6DOF model.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 31 of

80

Attitude is defined within the simulation via a quaternion of the form:

 ▲
ꜗ
– (2)

The rotational state of the spacecraft is similarly modelled using the basic Eulerôs rotational

equations with the inclusion of external moments.

 ╙◌ ◌ ╙◌ Ⱳ╬ Ⱳ▀ (3)

Where Ⱳ╬ are control torques and Ⱳ▀ are external disturbances. The kinematics of the orientation

of the body frame with respect to the ECI frame is given by:

 ▲
ρ

ς
▲ⱷ (4)

Where:

 ▲
–╘ Ⱡ

Ⱡ
 (5)

The attitude matrix defining the rotation from the spacecraft body-frame to the ECI frame is also

calculated and stored here using Equation 6.

 ╡║╕╕ ╔╒╘▲ ╣▲ ▲ (6)

Where:

 ▲
–╘ ꜗ

ꜗ╣
 (7)

Mass properties are defined to be constant unless a propulsion system is present on the spacecraft,

in which case a basic model for the change in mass and inertia for the spacecraft as a function of

burn time is included. The implementation of the dynamics modelling subsystem is shown in

Figure 14.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 32 of

80

Figure 14: Dynamics Model Implementation

 Perturbation Models

Perturbations are considered to be all external processes which create a force or moment on the

spacecraft and are dependent only on the spacecraftôs state and current environment. Moments and

accelerations are calculated based on the userôs current desired variant and then fed into the 6DOF

dynamics models for integration. All perturbations can either be turned off at run-time by the user

or configured to a specific fidelity or specification. To make the addition of new perturbations as

simple as possible, it has also been defined that all perturbation models have a resultant

acceleration and moment output. If a given perturbation does not require one of the outputs, within

the model that output is simply set to zero. For instance, gravity gradient effects produce no

translational accelerations on the spacecraft, therefore a non-zero moment would be produced

along with a zero magnitude acceleration. The high level implementation of all perturbation

models is shown in Figure 15.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 33 of

80

Figure 15: Perturbation Model Implementation

4.1.4.1. Third Body Effects

Currently, the ECI state of the moon and sun are calculated within the environments model. These

states are then used in Equation to determine the resulting accelerations.

 ╪ ‘
╡ ►

ᴁ╡ ►ᴁ

╡

ᴁ╡ ᴁ
 (8)

Where R3BD is the position of the third body expressed in the ECI frame and ‘ is the

gravitational parameter of the third body.

4.1.4.2. Atmospheric Drag

Two current models for atmospheric drag currently are defined within the pre-existing libraries.

The first is a basic model which assumes a spherical spacecraft with a given frontal area A and

drag coefficient CD. Atmospheric density, as given by the environment model, is then used in

Equation 9 to determine the translational acceleration on the spacecraft.

