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ñWell, actually, we have a lot better rockets than the coyote.ò 

-Dan Truman, Armageddon 
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Abstract 

The capabilities of small satellites produced by the university and small business community have 

seen a sharp rise in recent years. With this growth in capabilities has come an increase in mission 

complexity to encompass those architectures previously only found in well-funded government 

programs, including proximity operations. The inherent complexity of proximity operations-based 

missions introduces a great deal of risk to the missionôs success. The low-budget nature of the 

small satellite community has limited the development of relevant testing infrastructure to match 

the pace of mission complexity increase to adequately mitigate risk. This research will leverage 

the standardization of CubeSat components to develop a highly adaptable hardware-in-the-loop 

testing capability for the verification and validation of small satellite avionics boards and flight 

software. MATLAB © Simulink Real-Time will be utilized to create a user friendly framework that 

can easily be adapted to support a wide range of small satellite mission architectures. This 

architecture, known as SoftSim6D, has been designed to thoroughly exercise the robustness of a 

satellite with the primary aim of minimizing mission risk to ensure full mission success. An 

examination of the overall framework, verified capabilities, and current variants will be discussed. 
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Acronyms 

6DOF 
Six degrees of 

freedom 

ADACS 
Analog to Digital 

Acquisition System 

ADC 
analog to digital 

converter 

CML 
Communication 

Management Layer 

COTS 
Commercial-off-

the-Shelf 

CPM 
Communication 

Processing Module 

DBM 
Data Buffer 

Module 

DDOS 
Distributed Denial 

of Service 

DPL 
Data Preparation 

Layer 

DTL 
Data Transmission 

Layer 

ECEF 
Earth Centered 

Earth Fixed 

ECI 
Earth Centered 

Inertial 

EGSE 
Electrical ground 

support equipment 

ENV 
Environment data 

bus 

FIFO First In First Out 

FOV Field of view 

GB Gigabyte 

GN&C 

Guidance, 

navigation, and 

control 

GPS 
Global Positioning 

System 

HWITL 
Hardware-in-the-

Loop 

I/O Input/output 
 

IBLE 
Integrated Base 

Level Environment 

IMU 
Inertial 

measurement unit 

INIT  
Initialization data 

bus 

LEO Low Earth Orbit 

LOS Line of sight 

LSB 
Least Significant 

Bit 

MADS 

Modular Attitude 

Determination 

System 

MEO Middle Earth Orbit 

MSFC 
Marshall Space 

Flight Center 

PCI 

Peripheral 

Component 

Interconnect 

RAM 
Random access 

memory 

SSF Sensor fixed frame 

SICD 
Software interface 

control document 

SSIP 

Spacecraft and 

Simulation 

Initialization File 

STATE State data bus 

STK Systems Tool Kit 

TAB Test avionics board 

UART 

Universal 

asynchronous 

receiver/transmitter  

VDF 
Variant Definition 

File 
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1. Introduction  

1.1. The Growing Need of HWITL Testing 

Throughout the history of spaceflight, relative proximity operations and rendezvous have 

undergone a significant evolution from human-in-the-loop to ground-in-the-loop to varying levels 

of autonomy. Due to the inherent complexity of automated proximity operations, the development 

of such a system presents a high operational and cost risk to developing organizations. Errors in 

algorithms or flight coding that are not caught through testing have the potential to result in a 

mission failure. This reality is what makes it difficult for mission designers to truly remove the 

ground from on-orbit maneuver planning and allow the system complete autonomy. The only way 

to guarantee the system is robust enough to be able to operate on a completely autonomous basis 

is to have a comprehensive ground test program designed specifically to exercise the system in 

such a way that faults in the system (if any) will present themselves in a laboratory environment 

as opposed to during mission critical operations.  

 

Autonomous proximity operations-based missions are by 

definition inherently risk prone as they involve at least one 

spacecraft maneuvering in close quarters to another space 

object. A slight miscalculation or incorrect reaction can 

create the potential for a collision resulting in a mission 

failure and possibly result in the loss of both space assets. 

This inherent risk further backs the needs for a system 

dedicated to the comprehensive check out of a satelliteôs 

guidance, navigation, and control (GN&C) system so as to 

verify the robustness of the system. Multi-million dollar 

class missions often undergo extensive testing regimes but 

without a system independently designed to reach these testing goals, mission failure is still a 

possibility. This was shown in the NASA DART mission (illustrated in Figure 1) where inadequate 

software requirements and software failures resulted in a collision with the MUBLCOM spacecraft 

and the loss of a $110 million mission [1]. The MUBLCOM spacecraft was not critically damaged 

by the collision, but loss of the DART mission shows the risk involved in autonomous relative 

operations even for well-funded programs. The high profile Orbital Express mission was also 

plagued with failures due to incorrect software implementation. Although the mission was 

recovered through on-orbit software updates, it further stresses the potential for these types of 

failures even in the best-funded situations [2]. The possibility of failure is not an option if such 

autonomous systems wish to be used to service high-value assets or in support of manned 

spaceflight. 

 

Figure 1: DART Concept Visualization 

Invalid source specified. 
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With the rising popularity of CubeSats and small satellite platforms, the cost of producing these 

spacecraft has decreased drastically allowing complicated missions to be developed on the scale 

of hundreds of thousands of dollars as opposed to tens of millions. This has resulted in the addition 

of large numbers of universities and start-up 

companies to the small satellite community. As 

these organizations operate on very restricted 

budgets, they often do not have in-house test 

capabilities that are capable of fully testing complex 

GN&C systems. Although they do not have this 

capability, it has not deterred them from developing 

proximity operations-based missions such as Tyvak 

Nano-Satellite Systems CubeSat Proximity 

Operations Demonstration (CPOD) and Georgia 

Techôs Prox-1 mission [3] (see Figure 2), [4]. These missions, by design, are high-risk operations 

but these risks are further increased by limited capability and funding to perform extensive testing 

prior to operations. It is thus desirable for there to exist a highly adaptable test capability to reduce 

operational risk but also at minimal expense such that low-budget missions can still afford to adopt 

more in depth test programs.  

 

1.2. Previous Approaches 

There are several universities and organizations that 

have developed various levels of such a capability 

but there are limitations to many of these 

approaches. One prevalent method is the physical 

augmentation of an integrated spacecraft to measure 

system performance. This involves the use of rate 

tables, Helmholtz cages, image simulators, as well 

as other devices to emulate the on-orbit spacecraft 

performance. A prime example of this is MITôs 

testing system designed for testing the attitude 

determination and control system used with the 

ITU-PSAT II mission which utilized an air bearing 

table and Helmholtz cage [5] (shown in Figure 3). Although it has been proven to verify certain 

portions of ITU-PSAT IIôs ACS system, it is limited in scope and not easily reconfigurable for 

additional scenarios. Similar approaches can be found at other institutions, but they all present the 

issue that they cannot be easily reconfigured for additional scenarios without extensive time and 

cost [6], [7], [8], [9].  

 

Figure 2: Prox-1 Mission Visualization 

Figure 3: ITU -PSAT II Test Setup [5] 
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Another approach removes hardware actuation from the loop and focusses on software emulation 

of sensors and actuators [10], [11], [12]. This approach has been successfully utilized in the 

development in Marshall Space Flight Centerôs SPRITE tool for HWITL testing of CubeSats. Here 

the plant dynamics of a spacecraft are simulated and resulting sensor readings are generated to be 

fed into a spacecraftôs flight computer [11]. The benefit to this approach is that the primary 

adaptations required between different testing scenarios are software based, not hardware, and thus 

reduce the complexity and cost of a reconfiguration. In the small satellite community, this is 

desirable as cost and schedule are often limiting factors in the extent of testing which will be 

conducted. Although this approach does not verify individual sensor and actuator performance and 

rather focusses on the spacecraftôs avionics, it can be argued that this approach is highly valuable.  

 

Multiple approaches have been used in the past in order to tackle the problem of thoroughly testing 

complicated mission architectures. However, capabilities that have been developed have either 

been limited in scope or lacked the capability to be easily adapted for other mission architectures. 

The need clearly exists for the development of a reconfigurable system that can test a wide range 

of mission profiles for different spacecraft while still remaining cost effective for the small satellite 

community. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation 

Environment: SoftSim6D 

 

Date: 3 December 

2015 

Page 15 of 

80 

 

 

2. Methodology 

2.1. Approach Selection 

After conducting a survey of pre-existing testing environments it was determined that a framework 

which would achieve the most utility throughout the entire lifecycle of the mission and provide 

the greatest platform for fully exercising a spacecraftôs avionics system should focus on the 

avionics of the spacecraft. Physical actuation of an integrated spacecraft was considered as a 

possible option, however it was decided that this would only have limited utility in fully verifying 

the system. Physical actuation (rate tables, Helmholtz cageôs, etc.) would provide the ability to 

partially test nominal mission performance but would not give testing engineers the ability to 

adequately introduce off-nominal scenarios to fully characterize the system. These systems also 

often require significant modification between spacecraft which introduce large cost and schedule 

implications making the system less desirable. However, a testing environment based on integrated 

avionics testing can both fully exercise the systemôs performance and be adaptable enough to make 

it a viable ñgenericò testing environment. 

 

In the small satellite community, the vast majority of sensors and actuators used on-board satellites 

originate from commercial vendors as opposed to custom-designed, mission-specific solutions. As 

these Commercial-Off-The-Shelf (COTS) components gain more flight heritage, the validity of 

the performance specifications for these units has increased dramatically. It is for this reason that 

oftentimes it is safe to take these specifications at ñfaceò value and not invest extensive resources 

in verifying individual sensor performance. This is especially the case for university-based and 

other low-budget missions where this sort of testing is not within the budgetary allowances of the 

program. Since these components have a high probability of meeting performance specification 

during operation, it is possible to remove them from the testing chain. This fact allows us to now 

formulate the main methodology behind the HWITL test bed. 

 

As previously discussed, the largest risk to a successful mission lies with the successful 

implementation of the hardware/software interface as well as adequate definition and 

implementation of flight software requirements. The software interface with hardware can often 

prove to be a complicated interface to design for nominal conditions. Without proper requirements 

and extensive testing, this software interface may not be able to properly function should the 

hardware malfunction. In university-class missions, requirements concerning off-nominal 

hardware communication are often not adequately defined, thus requiring further testing to verify 

functionality. A major cause of mission failure also lies with the definition of flight software 

requirements rather than their implementation. Requirements may be developed, implemented, 

and successfully tested, but if those requirements do not adequately encompass the true needs of 

the mission, failure is still possible. For instance, one of the causes for the failure of the DART 
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mission was a GPS velocity error bias of 0.6 m/s. The design requirements stated that the measured 

velocity error must be within ±2 m/s (meaning this error fell within requirements). However, as 

the failure of the mission proved, this requirement was not properly defined and thus contributed 

to the mission failure [1]. A key ability of the HWITL platform will be to rigorously test the 

spacecraft avionics in a system realistic enough such that potential in-flight errors caused by poor 

requirements definition will be revealed. 

 

To replace the physical simulators and actuators that we have removed from the testing chain, the 

HWITL platform will instead mimic the low level output of each of these components. As opposed 

to many testing schemes where this data would be fed into the flight computer via an electrical 

ground support equipment (EGSE) connection, this approach would feed the emulated component 

I/O directly into the hardware connections on the avionics boards where the actual component 

would be connected. Introducing component signals at this level would therefore allow the 

complete verification of the entire avionics hardware and software chain while still allowing the 

test engineer a great deal of control over the system. This capability is especially important in 

distributed architectures where information passes through multiple levels of signal and data 

processing before reaching the primary flight processor. EGSE connections typically bypass all 

lower level hardware/software and pass data directly to the flight computer. Although this form of 

testing may verify performance of software on the primary flight computer, it does not provide 

any verification for the multiple lower levels of hardware/software that in reality sensor data would 

need to pass through before it reaches the flight computer. Therefore the EGSE methodology 

would effectively be ignoring a large number of potential fault locations and not truly validating 

the robustness of the system. 

 

The resulting environment will therefore need to be a full avionics in the loop test bed, capable of 

exercising all of the avionics electronics of the spacecraft, from low-level serial communication 

and associated basic electronics such as logic level converters to subsystem level microprocessors 

to the fully integrated avionics system with the primary flight computer in the loop. 

2.2. Framework Requirements 

The scope of the HWITL framework has already been defined as an avionics-in-the-loop test bed 

capable of fully exercising a spacecraftôs flight avionics system. From here three primary driving 

requirements have been defined. From this point forward, the framework will be known as 

SoftSim6D. 

 

Requirement 1 

The test bed shall be a robust Hardware-in-the-Loop avionics testing environment with primary 

emphasis on supporting the development, verification, and validation of autonomous proximity 

operations based mission systems 
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Requirement 2 

The system shall be capable of supporting spacecraft projects throughout the mission lifetime, 

from initial development, to engineering and flight unit testing to flight anomaly mitigation during 

on-orbit operation. 

 

Requirement 3 

The system shall be highly adaptable such that it can be rapidly configured for a new mission with 

no to minimal simulation development required. 

2.3. System Architecture 

Initial requirements definition of the SoftSim6D framework determined that the framework was 

to be both highly adaptable for specific mission requirements and capable for use during all phases 

of a spacecraft design lifecycle. SoftSim6D was designed with the intention that it can be used for 

development of MATLAB/Simulink control algorithms and mission design, testing of flight C 

code, and Hardware-in-the-Loop (HWITL) testing of flight avionics boards. In support of this, a 

framework was developed with three distinct layers: simulation, emulation, and interface. 

 

The simulation layer is the primary engine of the environment, consisting of a series of high fidelity 

environmental, perturbation, and dynamics models. Environmental models generate the Earth-

centric ephemerides of the spacecraft, sun, and moon. Perturbations caused by atmospheric drag, 

solar radiation pressure, spherical gravity harmonics, and third body effects are modeled. 

Accelerations and moments caused by these phenomena are fed into translational and rotational 

dynamic plants along with physical characteristics of the spacecraft to create a high fidelity six 

degrees-of-freedom environment. 

 

The emulation layer is responsible for the simulation of spacecraft components and consists of two 

parts: spacecraft sensors and actuators. The spacecraft sensor block takes the true spacecraft state 

as determined by the simulation layer and generates the corresponding sensor readings for a suite 

of generic spacecraft sensors. The actuator block acts upon commands received from the test article 

and generates the resulting forces and moments to be fed back into the simulation level for 

propagation of the spacecraft state.  

 

For a given spacecraft or flight program, once components are selected, the only modifications 

that will be required to interface with a given test article will be the interface layer. For basic 

testing of MATLAB/Simulink algorithms, this layer will simply generate data buses to be fed 

directly into the provided MATLAB code. For testing of flight C code and HWITL testing, the 

interface layer will act as the interpreter between the simulation and test module, generating 
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realistic low-level input/output (IO) to model flight hardware conditions as realistically as possible. 

The layered architecture is illustrated in Figure 4: High Level Architecture OverviewFigure 4. 

 

 

Figure 4: High Level Architecture Overview 

A key attribute of this architecture is that it is highly adaptable and configurable such that it is able 

to accommodate a wide range of mission profiles, sensors, and testing requirements. As such, a 

standardized plant framework has been developed for all models to allow for new models to be 

ñpluggedò into the simulation, minimizing rework between each satellite. Generic models have 

also been developed for ñstandardò classes of COTS components such as reaction wheels, cold gas 

thrusters, inertial measurement units (IMUôs), etc. with easily changeable configuration 

parameters to allow the plant models to be updated for different versions of hardware.  

 

Different mission profiles can call for different fidelities in their environments models based on 

mission requirements. For example a spacecraft with a deployable boom operating in LEO would 

have greater concern about the effect of atmospheric drag on system performance than a 

communications satellite in MEO. It is for this reason that environment models such as 

atmospheric density, solar radiation pressure, and Earthôs magnetic field will also be treated as 

interchangeable components within the overall framework. For example, the testing of a specific 

satellite may call for the use of a specific high fidelity magnetic field model not included in the 

standard HWITL framework libraries. To prevent the need for substantial code change to 

accommodate a new model, the specific model utilized by a simulation run will be another 

configuration parameter with a standard interface format.  
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3. Simulink Real-Time Implementation 

3.1. Overview 

This architecture has been implemented using MATLAB© Simulink Real-Time via a real-time 

target machine. Using this framework, the test environment will have three primary components; 

the host machine, the target machine, and the test article. The test article will either be the 

spacecraft avionics boards undergoing testing or MATLAB/Simulink algorithms. The architecture 

implementation is illustrated in Figure 5.  

 

 

Figure 5: Framework Hardware Implementation 

 

 

The host machine is where the simulation is designed and configured for the specific test run via 

MATLAB © Simulink. This is where all spacecraft parameters are set, new models are defined, and 

simulation management occurs. When the simulation is completed it is compiled into a Simulink 

Real-Time C application and loaded onto the target machine for execution. Depending on the test 

scenario, the application can be compiled to run in real-time, for HWITL testing, or free-run mode, 

for algorithm testing and verification. Free-run mode is an accelerated mode which will execute 

the simulation as fast as the hardware capabilities of the target machine allow. 

 

The target machine is where the execution of all testing occurs. The target machine is a modified 

PC that is booted into a MATLAB© kernel from an external USB drive. By using this kernel, the 

target computer does not load a traditional operating system which requires substantial processor 

overhead. Rather the purpose of the kernel is solely for communication with the host computer 

and management of the simulation. This allows the C application to utilize the complete power of 
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the processor and drastically increase the speed of any real-time or free run simulations. Data 

monitoring during testing will occur via this machine while the final test data will be transferred 

to the host computer over crossover Ethernet for post processing. The MATLAB © kernel also 

allows for real-time communication between the target and host computers both before and during 

testing. As will be discussed later, this allows the test engineer to quickly configure the simulation 

from the host machine as well as change parameters or insert faults while a simulation is running.  

 

The target machine will also host the low level IO interface cards which will be responsible for 

communication with the spacecraft avionics during HWITL testing. The wiring harness that 

interfaces the real-time target PC with the avionics board will be fabricated for each spacecraft 

being tested such that the connections are identical to those which the spacecraft would see from 

the real component.   

 

For scenarios where MATLAB/Simulink algorithms are undergoing testing in lieu of hardware, 

during the configuration of the simulation on the host machine, the algorithms will be directly 

inserted into the simulation. These algorithms will then be compiled into the C application with 

the rest of the simulation and transferred to the target machine. Execution will still occur on the 

target machine so as to take full advantage of the increased simulation speeds allowed by the 

standalone MATLAB kernel. 

3.2. Data Bus Formulation 

To allow for easy configuration, expansion, and data management MATLAB data buses have been 

used to track all states, logic flags, and data products throughout the simulation. This was done 

intentionally to allow for easy management/access to all state information and to allow for the easy 

use of variable models that enable the simulation to be configured without substantial user input. 

As will be discussed, the specific utilization of data buses was designed to allow for development 

and implementation of new models in a plug and play fashion. 

 

Three major data buses exist in all simulations, regardless of the configuration, test article, or 

models utilized. These are the environment (ENV), state (STATE), and initialization (INIT) buses. 

Each are required for the successful propagation of all dynamic and kinematic models as well as 

for the modelling of sensors and actuators. The environment bus is responsible for tracking all 

time conversions and any processes that exist external of the spacecraft. The state bus contains all 

information pertaining to the spacecraft inertial state, rotation matrices, and mass properties. The 

initialization bus was developed to allow for rapid configuration of the entire simulation with 

minimal modifications required. This bus contains all information on the spacecraft initial states 

as well as information pertaining to any other physical or performance characteristic (such as 

surface areas or sensor noise parameters). Updates to the default values of this bus allow the user 

to automatically configure many aspects the simulation at start-up. Data buses for sensor data 
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(SEN_DATA) and actuator response (SC_RESPONSE) are also defined within the baseline 

environment, however these will need to be updated to match the data sets of the spacecraft under 

examination.  

3.3. Variable Models 

A primary requirement of SoftSim6D was to have the ability to rapidly configure the simulation 

for different perturbation models, sensor models, etc. without substantial user effort. To meet this 

need, Simulink Model References and Variant Subsystems were utilized. Model References allow 

the generation of custom Simulink blocks for insertion into a high-level model. A model reference 

block is a standalone Simulink model that is configured in such a way that, it can be inserted into 

another model as a block as opposed to a subsystem. This enables easy configuration management 

as well as speeds up compile time of the overall simulation. Generic blank Simulink models 

configured for this purpose have been generated for each major variation subsystem within 

SoftSim6D to simplify the development of future modules.  

 

Simulink Variant Subsystems are a powerful tool that enables much of SoftSim6Dôs rapid 

configuration abilities. A variant subsystem allows the definition of multiple instances of the same 

subsystem, however only one is active at a time, as determined by an external setting. This setting 

can be set at initialization and thus allows the multiple models to be rapidly interchanged without 

manual manipulation of the model. In SoftSim6D, each variant is an externally defined model 

reference block. To ensure proper functionality, all variants placed within a given variant 

subsystem are required to have identical inputs and outputs. Universally across the simulation, 

with few exceptions, all variants/model references contain the three standard buses (ENV, STATE, 

and INIT). These were designed to contain the necessary information for all derived calculations 

within SoftSim6D. The outputs of each variant model are dependent on the specific application 

and are typically simple vector outputs. New bus definition (such as SEN_DATA and 

SC_RESPONSE) occur at a higher level within the simulation. 
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Figure 6: Variant Subsystem Example: Spherical Harmonics 

Figure 6 shows an example of a variant subsystem. The displayed subsystem is for the spherical 

harmonics perturbation model. Three variants currently exist within the model; no spherical 

harmonics, only J2 zonal harmonics, and J2 through J6 harmonics. Currently the J2 zonal harmonics 

model is active (this can be discerned by the fact that the other two models appear grayed out). To 

change which model is active, the user simply needs to alter the single parameter SPH_Option in 

the initialization file. No other action is required. To expand on previous discussion of standard 

model reference formats, it is important to note that these models produce both a translational 

acceleration and moment result. Although basic spherical harmonics do not produce torques on 

the spacecraft, configuration control requires that all perturbation models have both acceleration 

and moment outputs. In this case, the moment output of the models is of value zero. 

 

Variant subsystems are used throughout SoftSim6D in any subsystem which is conducive to the 

desire to have numerous options available for rapid configuration. Expansion of a variant 

subsystem has also been designed to be straightforward. The user needs only to create their new 
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model within the generic template and save it according to configuration standards. A new model 

reference corresponding to the new block is then inserted into the relevant variant subsystem. To 

be accessible as a rapid configuration option, a single variant control and condition must be added 

to the variant subsystemôs block parameters. After this is completed, the new model is completely 

integrated and ready for testing. 

3.4. Data Visualization and Storage  

There are three primary means of data visualization and storage while executing a simulation on 

the target machine. Each methodology takes advantage of pre-supported Simulink Real-Time 

capabilities and their use customized to support the needs of SoftSim6D. 

 

During all testing, a monitor is connected to the target machine. This monitor is primarily used for 

displaying real-time information and visual confirmation of simulation settings. Up to 9 plots of 

type Target Scope can be displayed on this screen during simulations. Target Scopes sole use is 

for the displaying of information while a test in underway and do not provide for a means of storing 

data for post processing. It is for this reason that no target scopes are permanently configured in 

SoftSim6D. The test engineer has the latitude to insert these where desired within the simulation 

to monitor any desired signals. For HWITL testing, these scopes are useful for verifying 

successfully communication with test hardware. Figure 7 shows a HWITL test where a non-zero 

signal in the top row scopes signify incoming data and the bottom row signifies outgoing 

communications. This proves a useful sanity check to confirm proper operation during a 

simulation. 

 

 

Figure 7: File Scope Example: HWITL Testing 
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The second and most used means of data monitoring and storage is through the use of Host Scopes. 

Although they are called scopes, their primary purpose is to save data from the simulation and not 

for plotting of data during execution. Host Scopes take the given input signal and save it in a 

Simulink Real-Time Scope object. Once all requested data has been gathered, the information is 

then transferred to host computer. Host scopes have been implemented across SoftSim6D to store 

all signals found in data busses and are found within Data Logging subsystems. This includes 

default storage utilities for ENV and STATE as well as for SEN_DATA and SC_RESPONSE. All 

listed signals are automatically acquired during every simulation run, in both real-time and free 

run modes. Additional scopes can also be readily added to capture new signals.  

 

In certain situations, a simulation may need to be run at a relatively high frequency but the user 

may only require data acquisition at a slower frequency. All Host Scopes are configured to allow 

slower storage rates if desired and it is a parameter that is configurable at simulation compilation 

time. Host Scopes can also be utilized to display select data at near real-time. A real-time plotting 

utility has been created to allow user real-time viewing of state data. This capability is separate 

from the standard Host Scope configuration described previously as a different implementation 

path is required. An example host scope implementation using both long term data storage and 

real-time display is shown in Figure 8. 

 

 

Figure 8: Host Scope Implementation Example 
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An unlimited number of Host Scopes are allowed by Simulink Real-Time, however limitations do 

exist on their use. Data found in Host Scopes are stored in the RAM of the target machine until the 

simulation is complete and the data is ported over to the host machine. Therefore if the number of 

signals saved, simulation duration, and sample frequency result in a data quantity that exceeds the 

2 GB RAM limits of Simulink Real-Time, SoftSim6D will be unable to run. If this is the case, 

when the simulation is loaded onto the target machine prior to execution, an error will occur to 

inform the user to address the issue. 

 

If Host Scopes do not provide sufficient data storage, the third method for data storage it to use 

File Scopes. These scopes save data directly to file system on the target machine and have no limit 

on size, however Simulink Real-Time is limited to 8 file scopes per simulation. Since there is no 

data limit on each of these scopes, signals are combined by bus in order to be stored concurrently 

in the same file. A significantly greater amount of custom configuration is required to both 

implement and extract data from File Scopes so it is recommended they are only used in long term 

HWITL testing where it is absolutely necessary to continuously store large amount of data for 

extended periods of time. Standard implementations have been generated for STATE and ENV 

data buses. An example of the ENV and STATE file scopes is shown in Figure 9. 

 

 

Figure 9: File Scope Implementation Example 
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3.5. Adaptability and Expansion 

The selection of Simulink Real-Time as the primary framework for SoftSim6D as well as the 

various methodologies already described for implementing models and storing data have all been 

done with the aim of making the simulation quickly adaptable and intuitive enough to allow new 

users to make additions. Model variants, spacecraft physical characteristics, initial state, 

component specifications, and simulation parameters have all been implemented in such a way 

that a test engineer can configure them at run-time without any modifications to the system. A 

detailed discussion of this is found in Chapter 5. 

 

If a user requires a model not currently found in SoftSim6D libraries, generic Simulink models 

and code files have been created for the major elements of each layer. In each generic model, the 

IO with the corresponding higher level model has already been defined and all of the model 

parameters have been configured to automatically map to the settings of the higher level 

simulation. A userôs guide is under development which further expedites this process. Figure 10 

shows an example generic model. 

 

 

Figure 10: Generic Model Variant: Magnetic Field Model Example 
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Detailed spreadsheets have been maintained for configuration management and revision control 

of existing models, tracking of data bus objects, and scope data ID trackers. Naming and 

numbering conventions have been developed and documented for all processes that are utilized 

across the simulation to ensure the plug and play capabilities of SoftSim6D. 

3.6. Target Machine and Hardware IO 

The target machine utilized in the Georgia Tech simulation environment is a standard Dell 

OPTIPLEX GX620 with a Pentium D processor. The machine has 4 GB of RAM (although only 

2 GB are useable by Simulink Real-Time due to limitations in the MATLAB kernel). A 1 terabyte 

(TB) configured to a FAT-32 file system has also been added to allow for the use of File Scopes. 

A standard USB flash drive has been written as a boot-disk for the MATLAB kernel and the BIOS 

of the target computer is configured to automatically boot from this flash drive at start-up. An Intel 

PWLA8391GTL Ethernet Card has also been added to both the target machine and host computer. 

This specific type of Ethernet card allows for direct communication between the target and host 

computer via a cross-over CAT5 cable. A PCI expansion bus has also been added to the target 

machine to allow for a total of five PCI IO cards, used for HWITL testing. The current target 

machine is shown in Figure 11. 

 

 

Figure 11: Georgia Tech Target Machine 
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To date IO cards have been added to the system to support serial communication over RS-232, 

RS-422, and RS-485 protocols as well as for the reading and generation of analog signals. All IO 

cards were selected based on their protocol, number of available IO lines, and pre-compatibility 

with Simulink Real-Time. A list of current IO cards and IO capabilities of the target machine is 

found in Table 1. The integrated IO cards in the PCI expansion bus attached to the target machine 

is shown in Figure 12. 

 

Table 1: Current IO Capabilities of Target Machine 

  Communication Protocols 

IO Card  RS-232 RS422/485 TTL  

Analog to 

Digitial  

Digitial to 

Analog 

Quatech ESCLP-100 8 0 0 0 0 

Quatech QSCLP-200/300 0 4 0 0 0 

Quatech QSCLP-200/300 0 4 0 0 0 

Quatech QSCLP-200/300 0 4 0 0 0 

PCIM-DAS1602/16 0 0 8 16 2 

           

Target Computer Total 8 12 8 16 2 

 

 

 

Figure 12: Target Machine PCI Expansion Bus 
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4. System Modelling 

As previously discussed, SoftSim6D can be broken down into three distinct layers; simulation, 

emulations, and interface. Chapter 4 will discuss the internal workings of these layers and 

examples of functionality that has been implemented to do. Chapter 5 will discuss the integrated 

simulation environment that is created using these layers. 

4.1. Simulation Layer 

 Overview 

The simulation layer is the primary physics engine of the environment. This layer contains all 

models of the space environment, true spacecraft dynamics, and external perturbations. The states 

generated and monitored by this layer are fed into the emulation layer for use in generating sensor 

data. The simulation layer is also responsible for updating the true inertial state of the spacecraft 

based on commands interpreted by the interface layer and executed by the emulation layer. 

 Environment Models 

Environments are defined as any processes of state that exist external of the spacecraft and are not 

dependent on the state of the spacecraft. Calculation of states of planetary bodies are calculated 

here, such as the positions of the Sun and moon in the Earth Centered Inertial (ECI) frame. Any 

quantities derived from these states, in conjunction with either time or the spacecraft state, are also 

determined. This includes the rotation from ECI to the Earth-Centered-Earth-Fixed (ECEF) frame, 

the eclipse state of the spacecraft, and the sun line-of-sight (LOS) vector from the spacecraft. 

 

The framework also classifies any processes of the primary central body as environment models. 

The Earthôs magnetic field is calculated with respect to the ECI frame at the current location of 

the spacecraft as well as atmospheric density. 

 

Primary time keeping of the simulation time and current Epoch along with all other derived time 

measurements (GMST, Julian date, GPS Week and Second, etc.) are all monitored and propagated 

from the environment. Any use of time throughout the entire HWITL is calculated here. In 

sensitive GN&C missions, time tags on sampled data is of the utmost importance and even a 

variation in rounding within the simulation can have undesirable effects. It is for this reason that 

all time related calculation have been consolidated to the environment model to ensure 100% 

timing consistency. The implementation of this layer is shown in Figure 13. 
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Figure 13: Environment Model Simulink Implementation 

 

 Dynamic Modelling 

Dynamic modelling of the spacecraft is broken down into three categories; translational dynamics, 

rotational dynamics, and mass properties. The translational dynamics of the spacecraft are 

described by the generic two-body problem with the inclusion of imparted forces and perturbing 

accelerations. 

 

 ►  
‘

ᴁ►ᴁ
► ╪  

╕

ά
 (1) 

 

As will be discussed later, all non-two-body gravitational forces are treated as external 

perturbations in order to allow for the greatest configurability of the 6DOF model.  
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Attitude is defined within the simulation via a quaternion of the form: 

 

 ▲
ꜗ
– (2) 

 

The rotational state of the spacecraft is similarly modelled using the basic Eulerôs rotational 

equations with the inclusion of external moments.  

 

 ╙◌ ◌ ╙◌  Ⱳ╬  Ⱳ▀ (3) 

 

Where Ⱳ╬ are control torques and Ⱳ▀ are external disturbances. The kinematics of the orientation 

of the body frame with respect to the ECI frame is given by: 

 

 ▲
ρ

ς
▲ⱷ (4) 

 

Where: 

 

 ▲
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The attitude matrix defining the rotation from the spacecraft body-frame to the ECI frame is also 

calculated and stored here using Equation 6. 

 

 ╡║╕╕ ╔╒╘▲  ╣▲ ▲ (6) 

Where: 

 

 ▲  
–╘  ꜗ

ꜗ╣
 (7) 

 

Mass properties are defined to be constant unless a propulsion system is present on the spacecraft, 

in which case a basic model for the change in mass and inertia for the spacecraft as a function of 

burn time is included. The implementation of the dynamics modelling subsystem is shown in 

Figure 14. 
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Figure 14: Dynamics Model Implementation 

 

 Perturbation Models 

Perturbations are considered to be all external processes which create a force or moment on the 

spacecraft and are dependent only on the spacecraftôs state and current environment. Moments and 

accelerations are calculated based on the userôs current desired variant and then fed into the 6DOF 

dynamics models for integration. All perturbations can either be turned off at run-time by the user 

or configured to a specific fidelity or specification. To make the addition of new perturbations as 

simple as possible, it has also been defined that all perturbation models have a resultant 

acceleration and moment output. If a given perturbation does not require one of the outputs, within 

the model that output is simply set to zero. For instance, gravity gradient effects produce no 

translational accelerations on the spacecraft, therefore a non-zero moment would be produced 

along with a zero magnitude acceleration. The high level implementation of all perturbation 

models is shown in Figure 15. 
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Figure 15: Perturbation Model Implementation 

 

4.1.4.1. Third Body Effects 

Currently, the ECI state of the moon and sun are calculated within the environments model. These 

states are then used in Equation to determine the resulting accelerations. 

 

 ╪  ‘
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 (8) 

 

Where R3BD is the position of the third body expressed in the ECI frame and ‘  is the 

gravitational parameter of the third body. 

4.1.4.2. Atmospheric Drag 

Two current models for atmospheric drag currently are defined within the pre-existing libraries. 

The first is a basic model which assumes a spherical spacecraft with a given frontal area A and 

drag coefficient CD. Atmospheric density, as given by the environment model, is then used in 

Equation 9 to determine the translational acceleration on the spacecraft. 






























































































