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The inherent iteration required in the multidisciplinary design problem allows the design
problem to cast as a dynamical system. The iteration in design is a resultant of the two root-
finding problems. The first root-finding problem is in seeking out candidate designs while
the second is in optimizing the candidate designs. Viewing the root-finding schema as a
dynamical system allows the application of established techniques from dynamical systems
theory to design. Stability theory is one of the techniques that is enabled by viewing
multidisciplinary design as a dynamical system. Stability theory is capable of providing
information on whether or not a design will converge for a given iteration scheme, starting
values for the iteration that will lead to convergence, as well as information regarding how
fast a design will converge. Following the theoretical development, each of these concepts is
demonstrated on sample problems showing the benefit of the application of stability theory
in the design realm.

Nomenclature

(·)e Equilibrium of (·)
(·)∗ Root value of (·)
(·)k Iterate k of (·)
λ Lagrange multiplier
Φ(k, j) Discrete state transition matrix from iterate k to iterate j
C Set of complex numbers
R Set of real numbers
Z Set of all integers
Z+ Set of all positive integers (i.e., Z+ = {0, 1, 2, 3, . . .})
f(u,p) Contributing analysis function mapping
gi(u,p) Inequality constraints
hi(u,p) Equality constraints
p Design parameter
u Design variables
x The state, the output of the contributing analysis
z Column vector of monomials used in sum-of-squares
z Requirement value
A Region of attraction
J (u,p) Objective function
{λi} Set of eigenvalues
L(·) Lagrangian
MDA/O Multidisciplinary analysis/optimization
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I. Introduction

Complex system design is comprised of analyses from numerous disciplines. When each of the disciplines
use the same information, have a common set of assumptions, and satisfy the constraints imposed on the
design, the design is said to be converged. The convergence process for complex, multidisciplinary designs
is typically lengthy without and is typically undertaken without the knowledge whether a converged design
even exists. Dynamical systems theory is a well researched field and there is an inherent analogue between
the multidisciplinary design problem and dynamical systems theory.1–7 In Ref. 8, formalism and example
applications of casting the multidisciplinary design problem as a dynamical system is provided and it is
shown that design is fundamentally a root-finding problem, which can be thought of as a discrete dynamical
system.

This work discusses some of the theoretical constructs required to view the design problem as a dynamical
system. It then builds upon these foundations to provide a specific application of how dynamical system
theory can be used in the convergence process of multidisciplinary design. In particular, concepts from the
stability domain of dynamical system theory are applied to multidisciplinary design in order to identify:

1. Whether a feasible design exists (for a given iteration scheme)

2. Whether an optimal design exists (for a given iteration scheme)

3. The range of initial values that can be used to converge the design

4. The rate at which the design will converge

Each of these is an enhancement compared to current multidisciplinary design and analysis (MDA/O) tech-
niques enabled by viewing iterative relationships formed in the convergence of the design problem as a
dynamical system.

II. Viewing the Multidisciplinary Design Problem as a Dynamical System

II.A. Identification of Candidate Designs

Identifying candidate designs in multidisciplinary systems can be thought of as the process of finding the
root of a function. Consider a multidisciplinary problem where the analysis variables are described by
a multivariable function f(u,p) where u are the design variables and p are parameters of the problem.
Assume that the requirements of the design are given by only equality constraints that are a function of
the performance of the system. The performance of the design is described by a multi-variable mapping
g(f(u,p)) and the requirements are given by z. In order to meet the requirements it is necessary to adjust
the design variables u so that

z = g(f(u,p)) (1)

Equation (1) can be rewritten as
z− g(f(u,p)) = 0 (2)

The solution u∗ of Eq. (2) is the root of the system and the process is referred to as root-finding. Since
identifying feasible designs within the multidisciplinary design problem requires finding the value of u that
satisfies Eq. (2), this process can be thought of as a root-finding problem when an iterative solution method
is chosen.

Many numerical methods for finding the root of a function, g(x), are dynamical systems since they rely on
iterative schemes to identify the root.1 For instance, the bisection method, secant method, function iteration
method, and Newton’s method are all iterative techniques that satisfy the requirements of a dynamical
system. The choice of iteration method may affect the convergence characteristics of the system.

II.B. Design Optimization

In order for a candidate design to be an optimum with respect to some objective function, its performance
needs to be evaluated with respect to other potential designs.
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The first-order, necessary condition associated with optimization problem given by

Minimize: J (u,p)

Subject to: gi(u,p) ≤ 0, i = 1, . . . , ng

hj(u,p) = 0, j = 1, . . . , nh

By varying: u

 (3)

require the a stationary point of the Lagrangian to be defined. For the optimization problem given in Eq.
(3), the Lagrangian is

L(u,p,λ) = J (u,p) +

ng∑
i=1

λigi(u,p) +

nh∑
j=1

λng+jhj(u,p) (4)

The first-order, necessary conditions for u∗ to be an optimum are9

1. u∗ is feasible

2. λigi(u
∗,p) = 0 i = 1, . . . , ng and λi ≥ 0

3. ∇uL(u,p, λ) = ∇uJ (u,p) +

ng∑
i=1

λi∇ugi(u,p) +

nh∑
j=1

λng+j∇uhj(u,p) = 0 with all λi ≥ 0 and λng+j

unrestricted in sign

Each of the necessary conditions can be considered a root-finding problem by itself. Thus, the optimization
process can also be considered as a root-finding problem.

II.C. Identifying an Optimal Multidisciplinary Design

Multidisciplinary design optimization can be broken down into two steps: (1) identifying feasible designs and
(2) identifying the optimal design from the set of feasible candidates. As discussed, both of these steps are
root-finding problems. With the choice of an appropriate iterative numerical root-finding scheme, each of
these individual steps can be posed as dynamical systems. When combined together, a nested root-finding
problem results, whereby the function being optimized is actually a root-finding problem itself. This is shown
in Fig. 1

Since both steps of this process are numerical root-finding problems that are described by an autonomous,
discrete dynamical system, the theoretical development that follows considers a general autonomous, discrete
dynamical system and the example problems demonstrate the use of stability in the convergence process.

III. Stability Analysis

The concept of stability allows for the identification of feasible designs for given iteration schemes. These
iteration schemes can usually be written in the form

xk+1 = f(xk,uk) (5)

where x is the state of the system, f is a function which describes the time evolution of the system, u is
the input into the system, and k is the iterate number. A specific instance of Eq. (5) is a linear, discrete
dynamical system, which is given by

xk+1 = Akxk + Bkuk (6)

For a given initial state, a system is stable if the state does not grow beyond the initial state’s magnitude.
More rigorously, this is defined in terms of equilibrium points of a system. Consider the discrete dynamical
system defined by Eq. (5), the equilibrium point is defined as

For a linear dynamical system, given by Eq. (6), the equilibrium point is only the origin of the system (i.e.,
xe = 0).
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Figure 1. Multidisciplinary design through root-finding.

Definition: Equilibrium of a Dynamical System

A particular point xe is an equilibrium point of the dynamical system given by Eq. (5) if the
system’s state at iterate k = 0 is xe and ∀k ∈ Z+ \ {0}, f(xe,0) = xe.

The equilibrium point’s stability is defined with regard to the zero-input discrete dynamical system given
by2–5

xk+1 = f(xk,0)

xk=0 = x0

}
(7)

Definition: Stability

For the system given by Eq. (7), if ∀ε > 0, ∃δ(ε, 0) ∈ (0, ε] an equilibrium point of the system
is

• stable if ∀k > 0 and ‖ x0 ‖< δ, ‖ xk ‖< ε

• asymptotically stable if

1. the equilibrium point is stable and

2. ∃δ′ ∈ (0, ε] such that whenever ‖ x0 ‖< δ′ the state’s evolution satisfies
lim
k→∞

‖ xk ‖= 0

• unstable if it is not stable or asymptotically stable

Figures 2 and 3 demonstrate the concept of equilibrium point stability. Figure 2 shows a more intuitive
concept of stability while Fig. 3 demonstrates different state trajectories in R2 × R and R2.

4 of 15

American Institute of Aeronautics and Astronautics



Asymptotically 

Stable 

Stable Unstable 

Figure 2. Visualization of the concept of stability.

x0 

x0 

x0 

x(t) x(t) 

x(t) t 

x1 

x2 

Stable 

Unstable 

Asymptotically 
Stable 

Cylinder of radius ε 
Disk of radius  

x2 

x1 

Asymptotically 
Stable 

Stable 

Unstable Disk of  
radius ε 

Disk of  
radius  

                                      (a)                                                                                       (b) 

Figure 3. Visualization of state trajectories in (a) R2×R and (b) R2 showing stability for a continuous dynamical system.

III.A. Linear Stability Criterion

For discrete, linear systems, that is dynamical systems given by Eq. (6), the solution for the evolution of
the state and the output is given by

xk = Φ(k, 0)x0 +

k∑
j=1

Φ(k, j)Bj−1uj−1 (8)

where Φ(k, j) is the discrete state transition matrix. This transition matrix is given by

Φ(k, j) = Ak−j (9)
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in the case where Ak = A ∀k ∈ Z+, that is when A is constant. Substituting Eq. (8) and Eq. (9) into Eq.
(6) yields2

xk+1 = Ak+1x0 +

k∑
j=1

Ak−j+1Bj−1uj−1 + Bkuk (10)

which is a relationship that depends on the initial condition and the control history. In the unforced case
(i.e., uk = 0 ∀k ∈ Z+) and by the Cayley-Hamilton theorem, the stability criterion can be identified. If
max

i
|λi| > 1 for any simple root of the characteristic equation

det(A− λI) = 0 (11)

or max
i
|λi| ≥ 1 for any repeated root of Eq. (11) then the system is unstable. This is because the Jordan

canonical form of A has terms terms that tend to infinity as the iteration proceeds (i.e., lim
k→∞

VTAkV =∞
since diagonal terms of VTAV are greater than unity). Similarly, if max

i
|λi| ≤ 1 for any simple root or

max
i
|λi| < 1 for repeated roots of Eq. (11), then the iteration scheme is asymptotically stable.2,6, 7 More

rigorous proof of this concept is provided in Ref. 6.

III.B. Lyapunov Stability

Stability of general dynamical systems, including the one formed for design, can be studied using Lyapunov
stability theory. This theory lays the foundations to assess the stability characteristics of arbitrary designs
and can be leveraged to give additional characteristics about the convergence properties of the design. For
instance, it can be used to ascertain information regarding the convergence rate and what starting iteration
values will lead to a converged design, for a given root-finding scheme.

Lyapunov stability theory is prevalent for continuous dynamical systems such as the autonomous system

ẋ = f(x), ∀t ∈ [0,∞) (12)

for which the origin is an equilibrium point, a Lyapunov function is a continuously differentiable map
V : Rn → R such that

1. V (x) > 0, x 6= 0, V (0) = 0

2.
d

dt
(V (x(t))) ≤ 0, ∀t ∈ [0,∞)

where x : [0,∞) → Rn is any solution of Eq. (12).4 In fact, it has been applied to differential equations
such as this since Lyapunov in 1892. However, its use in dynamical systems defined by difference equations,
such as those used to converge and optimize designs, is less mature with the first treatment in the literature
being attributed to Hahn in 1958.10

To begin the development of Lyapunov theory for discrete dynamical systems (such as those defined in
design), consider the following definition of a Lyapunov function5,7, 10–12

Definition: Discrete Lyapunov Function

A mapping V : Rn → R is a Lyapunov function for the zero-input autonomous, discrete
dynamical system, Eq. (5), (i.e., f(xk,0)) at an equilibrium point xe of f if there is an open
neighborhood D at xe such that V is continuous on D and

• V (x) > 0 ∀x ∈ D, x 6= xe, V (xe) = 0

• ∆V = V (xk+1)− V (xk) ≤ 0 whenever xk,xk+1 ∈ D

With this definition, the following theorem can be presented.

Theorem 1 (Lyapunov’s Direct Method for Discrete Dynamical Systems). Consider the following dynamical
system

xk+1 = f(xk), xk ∈ S ⊆ D
f(0) = 0

}
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where it is assumed that f : Rn → Rn is continuous on an open neighborhood S of a fixed point xe and that
V : Rn → R is a Lyapunov function for f at u∗, then at u∗ the dynamics governed by f is stable. If, in
addition,

∆V = V (xk+1)− V (xk) < 0 whenever x,xk+1 ∈ D and xk 6= xe

then the trajectory governed by f is asymptotically stable at xe. If S = D = Rn and

V (xk)→∞ as ‖ xk ‖→ ∞,

then the dynamics governed by f is globally asymptotically stable at xe.

The proof of this theorem is shown in the appendix.
A special case of a discrete dynamical system is that of a linear, discrete system with constant coefficients

such as that shown in Eq. (6) with Ak = A ∀k ∈ Z+. The zero-input stability in this case can be investigated
using a quadratic Lyapunov function of the form

V (x) = xTRx (13)

This form leads to
∆V (x) = V (xk+1)− V (xk) = xT

(
ATRA−R

)
x = −xTSx (14)

For any given S > 0, which is symmetric there is exactly one solution for a symmetric matrix R which is
the solution of Stein’s equation

ATRA−R = −S (15)

provided that
λi 6= λj 6= 1, i = 1, 2, · · · , n, j = 1, 2, · · · , n (16)

holds for all eigenvalues λi of A. Thus, if there is a solution, R, to Stein’s equation, Eq. (15), then the linear
system is globally asymptotically stable since ∆V < 0, S = D = Rn, and V (xk)→∞ as ‖ xk ‖→ ∞. Note
that this is equivalent to the results before (i.e., if an R exists, this implies |λi| < 1 for all eigenvalues).

III.C. Summary of Stability Conditions

A summary of the conditions to achieve stability for both a general dynamical system (in terms of Lyapunov
functions) and linear, constant coefficient systems (in terms of eigenvalue criterion) are listed in Table 1.

Table 1. Discrete dynamical system stability criterion.2,6,7

General System Linear Constant

Classification Criterion System Criterion

Unstable
If |λi| > 1 for any simple root

or |λi| ≥ 1 for any repeated root

Stable
1. V (x) > 0 If |λi| ≤ 1 for any simple root

2. ∆V ≤ 0 and |λi| < 1 for all repeated roots

Asymptotically Stable

1. V (x) > 0 ∀x 6= 0 and V (0) = 0

2. ∆V < 0 ∀x 6= 0

(or ∆V ≤ 0 ∀x and ∆V 6= 0 for any

solution sequence {xk}) |λi| < 1 for all roots

Globally Asymptotically Stable

1. V (x) > 0 ∀x 6= 0 and V (0) = 0 (or ∃R that satisfies

2. ∆V < 0 ∀x 6= 0 ATRA−R = −S

(or ∆V ≤ 0 ∀x and ∆V 6= 0 for any with S = ST > 0)

solution sequence {xk})
3. V (x)→∞ as ‖ x ‖→ ∞
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IV. Stability and Its Relation to Design Convergence

From the multidisciplinary design perspective, stability of the dynamical system gives information into
the convergence characteristics of the design. Asymptotic stability implies that there is a limited region
for which the design will converge whereas global asymptotic stability implies that the design will converge
with enough iteration regardless of the design assumptions used to start the convergence procedure. If the
dynamical system representing the multidisciplinary design is unstable or stable it implies that the design
will not converge. This is an analogous to the requirement that a contraction mapping exist.

V. Region of Attraction

The region of attraction to an equilibrium point xe of Eq. (7) is the set

A = {x : fk(x)→ xe as k →∞}

This can be more readily understood as the set of initial guesses that make the iteration scheme converge
to a design. The following theorem helps in identifying this region of attraction13

Theorem 2 (Region of Attraction). Assume that φ : Rn → R is continuous and satisfies

1. φ(xe) = 0

2. φ(x), x 6= xe

3. φ(x) ≥ a for ‖ x− xe ‖≥ b

where a and b are positive constants and xe is a fixed point of f : Rn → Rn. Assume also ∃w : Rn → R is
continuous at xe with

1. w(xe) = 0

2. w(x) > 0, x 6= xe

3. w(f(x))− w(x) = −φ(x)(1− w(x)) ∀x ∈ Rn

Then A0 = {x : w(x) < 1} is the region of attraction, A.

A function of the form φ(x) = c ‖ x − xe ‖p satisfies the three required conditions for φ. Therefore,
the problem of finding the domain of attraction becomes a problem of finding the domain for w such that
w(x) < 1.

VI. Seeking Lyapunov Functions

In general the search of a Lyapunov function V (x) is a difficult one, particularly for nonlinear systems
for which the equations describing their evolution may not be known, as would likely be the case in design.
However, several techniques exist for their search exist.3–7 An emerging technique that is used in this work
to identify Lyapunov functions is sum-of-squares decomposition. This technique is particularly applicable for
polynomial dynamical systems (including Taylor series approximations) and achieves a Lyapunov function
by factoring an nonlinear polynomial that is parameterized by unknown variables into a sum-of-squares. The
resulting sum-of-squares polynomial positive definite and can be used to check the difference condition to
find if iteration schema for the design is convergent.

VI.A. Sum-of-squares Decomposition and Analysis

A multivariate polynomial, f(x), x ∈ Rn is said to be a sum-of-squares if there exist polynomials f1(x),...,
fm(x) such that

f(x) =

m∑
i=1

f2
i (x) (17)

This statement is equivalent to the following proposition.14
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Proposition 1. Let f(x) be a polynomial in x ∈ Rn of degree 2d. In addition, let z(x) be a column vector
whose entries are all monomials in x with degree no greater than d. Then f(x) is a sum-of-squares if and
only if there exists a positive semi-definite matrix Q such that

f(x) = zT (x)Qz(x) (18)

With this definition, it can be seen that a sum-of-squares decomposition can be found using semidefinite
programming, to search for the Q matrix satisfying Eq. (18).

What is significant about sum-of-squares decomposition for design applications, is that it allows the
search of a polynomial Lyapunov function V (x) (i.e., the f(x)) to have coefficients that are parameterized
in terms of some other unknowns. A search for the coefficients that render the polynomial f(x) a sum-of-
squares can still be performed using semidefinite programming. For example, consider the construction of a
Lyapunov function for a nonlinear system where the following procedure can be used:

1. Coefficients can be used to parameterize a set of candidate Lyapunov functions in an affine manner,

that is it can determine a set V = {V (x) : V (x) = v0(x)+

m∑
i=1

civi(x)}, where the vi(x)’s are monomials

in x.

2. Search for a function V (x) ∈ V which satisfies V (x) − φ(x) and −
∂V (x)

∂x
f(x), where φ(x) > 0 using

semidefinite programing

The semidefinite programming problem above determines the state dependent linear matrix inequalities
(LMIs) that govern the problem which are resultants of solving the the following convex optimization problem

Minimize:

m∑
i=1

aici

Subject to: F0(x) +
∑m

i=1 ciFi(x) ≥ 0

By varying: ci

 (19)

where ai ∈ R are fixed coefficients, ci ∈ R are decision variables, and Fi(x) are symmetric matrix functions
of the indeterminate x ∈ Rn. When Fi(x) are symmetric polynomial matrices in x the computationally
difficult problem of solving (19) is relaxed according to the following proposition14

Proposition 2. Let F(x) be an m×m symmetric polynomial matrix of degree 2d in x ∈ Rn. Furthermore,
let Z(x) be a column vector whose entries are all monomials in x with degree no greater than d, and assume
the following:

(i) F(x) ≥ 0 ∀x ∈ Rn

(ii) vTF(x)v is a sum of squares, with v ∈ Rm

(iii) There exists a positive semi-definite matrix Q such that vTF(x)v = (v ⊗ Z(x))
T

Q (v ⊗ Z(x))

Then (i) ⇐ (ii) and (ii) ⇔ (iii)

This proposition is proven by Prajna et al. in Ref. 14. However, by applying Proposition 1, it is seen
that the solution to the sum-of-squares optimization problem seen in Eq. (20) is also a solution to the
state-dependent LMI problem, Eq. (19).

Minimize:

m∑
i=1

aici

Subject to: vT

(
F0(x) +

m∑
i=1

ciFi(x)

)
v is a sum-of-squares polynomial

By varying: ci


(20)

This relaxation of the LMI problem turns the relatively difficult computation problem associated with
Eq. (19) to a relatively simple computational problem since semidefinite programming solvers are readily
available on multiple platforms.15,16

9 of 15

American Institute of Aeronautics and Astronautics



VII. Estimating the Rate of Convergence Based on Lyapunov-like Techniques

For a special case of asymptotically stable systems, the rate of convergence can be estimated—that of
exponentially stable systems. The following lemma defines the basis of exponential stability for a discrete
dynamical system

Lemma 1. For a system defined by Eq. (5) if there exists a function V (x) with V (0) = 0 such that

1. V (xk) ≥ cφ(‖ xk ‖)

2. ∆V = V (xk+1)− V (xk+1) ≤M − αV (xk)

for some φ ∈ K and constants c > 0, M ≥ 0, and 0 < α < 1 then

1. cφ(‖ xk ‖) ≤ V (xk) ≤ (1− α)kV (x0) +M

k−1∑
i=0

(1− α)i

2. lim
k→∞

φ(‖ xk ‖) ≤
M

cα

The proof of this lemma is found by application of a geometric series as shown in Ref. 17. The two
conclusions of this lemma imply that the Lyapunov function provides a bound on how the state converges
as a function of iterate and the ultimate bound of the state.

VII.A. Linear Designs

For the zero-input general linear system as defined by Eq. (6) the following theorem yields information
regarding the exponential bounds of the design (i.e., how fast the design converges)18

Theorem 3 (Linear System Exponential Stability). The origin of Eq. (6) with uk = 0 ∀k ∈ Z+ is uniformly
(exponentially) asymptotically stable if, and only if, there exists a sequence of nonsingular matrices Wk ∈
Cn×n and some matrix norm ‖ · ‖, with ‖ Wk ‖ and ‖ W−1

k ‖ uniformly bounded, and β , sup
k
{βk} < 1

where βk ,‖Wk+1AkW−1
k ‖. In this case, given any initial state x0 ∈ Rn and defining w , sup

k
‖W−1

k ‖,

‖ xk ‖≤ βkw ‖W0x0 ‖

Proof of this theorem is found in Ref. 18. This theorem says that if the linear system describing the
convergence of the design is transformed according to

ζk = Wkxk (21)

then
ζk+1 = Ψkζk (22)

where Ψk , Wk+1AkW−1
k . Due to the condition βk < 1, ‖ Ψk ‖< 1 and the transformed system is a

contraction mapping.
The computation of the matrix Wk for the case when Ak = A ∀k ∈ Z+ is significantly more tractable

and can be readily achieved by any of the following methods18

1. If A is diagonalizable, A = VDV−1 where D , diag{λi}, then choosing W = V−1 and ‖ · ‖2 gives
β = λmax.

2. For any A, compute A = U∗RU, the Schur decomposition and set W = ΓU where Γ = diag{1, γ, γ2, · · · , γn−1}.

3. Choose a positive definite Q and solve P−ATPA = Q to obtain a positive definite P. Compute the
Cholesky factorization P = WTW.

Each of these provide a value of β which can be used as an absolute scale to describe how fast a design will
converge as the norm of the of the state ‖ x ‖ decreases by a factor proportional to β at each iterate.
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VII.B. Nonlinear Designs

The methods of linear systems can be extended to nonlinear designs, that is those designs whose iteration
is described by Eq. (5). The following theorem provides a sufficient condition for exponential stability, a
domain of exponential stability, and exponential bounds on the state.18

Theorem 4 (Nonlinear System Exponential Stability). The origin of Eq. (5) with uk = 0 ∀k ∈ Z+ is
exponentially asymptotically stable if there exists a nonsingular matrix W ∈ Cn×n and some matrix norm
‖ · ‖, such that

β , sup
k

sup
v∈Ω

n
W

[
∂f

∂x
(v)

]
W−1

n
< 1

for some open convex set Ω ∈ Rn with 0 ∈ Ω. There exists an open set Xs ⊆ Ω with 0 ∈ Xs, and ∀x0 ∈ Xs,
∃β0 ∈ [0, β] such that ‖ xk ‖≤ βk

0κ(W) ‖ x0 ‖, and hence Xs is a domain of exponential stability.

This is proven in Ref. 18. However, this theorem again provides a rate of convergence, provided the
associated conditions are met. In this case, the rate of convergence is given as β0 as the magnitude of the
initial state is reduced successively by this amount.

VIII. Examples

VIII.A. A Linear, Three Contributing Analysis System

Consider the linear, three CA system shown in Fig. 4 where each CA is scalar. In this case, it is desired to

 

'''

p

' DyCyBuAy 1312111 

 

'

232122 CyByAy '' 
321 yyyr du

1y

2y

 

'

323133 CyByAy '' 
3y

2y

Figure 4. Three contributing analysis multidisciplinary design.

find ud ∈ R that minimizes the summation of the CAs output while being within the unit cube centered at
the origin. In other words

Minimize: J = y1 + y2 + y3

Subject to: y1, y2, y3 ∈ [−1, 1]

By varying: ud


The output of the CAs can be stated in the form of a linear system

y1 =
(

0 B′1 C ′1

)
y +

(
A′1

)
ud +

(
0
)

up +D′1

Similarly, for the second CA, the functional form is given by

y2 =
(
A′2 0 B′2

)
y +

(
0
)
ud +

(
0
)

up + C ′2

and the third CA
y3 =

(
A′3 B′3 0

)
y +

(
0
)
ud +

(
0
)

up + C ′3

Hence,

A1 =
(

0 B′1 C ′1

)
B1 =

(
A′1

)
C1 =

(
0
)

d1 = D′1

11 of 15

American Institute of Aeronautics and Astronautics



A2 =
(
A′2 0 B′2

)
B2 =

(
0
)

C2 =
(
0
)

d2 = C ′2

A3 =
(
A′3 B′3 0

)
B3 =

(
0
)

C3 =
(
0
)

d3 = C ′3

The fixed-point iteration use to converge the design is defined by the relation

yk = f(yk−1), ∀k ∈ Z+ \ {0} (23)

where f(yk−1) is the output value of the CAs on the kth − 1 iteration. In terms of the linear equations
developed the fixed-point iteration equations are

yk = Λyk−1 + βud + γup + δ (24)

For this example, the fixed-point iteration equations described in Eq. (24) are

Λ =

A1

A2

A3

 =

 0 B′1 C ′1
A′2 0 B′2
A′3 B′3 0



β =

B1

B2

B3

 =

A′10
0



γ =

C1

C2

C3

 =

0

0

0



δ =

d1

d2

d2

 =

D′1C ′2
C ′3



VIII.A.1. Design Results

The parameters used within the models for each of the cases examined are shown in Table 2 where the values
without distributions are assumed to be deterministic.

Table 2. Parameters for the design of a three contributing analysis system.

Parameter Case 1 Case 2

Λ

0 1 1

1 0 1

1 1 0


 0 1/3 1/3

1/3 0 1/3

1/3 1/3 0


β

1

0

0


1

0

0


γ

0

0

0


0

0

0


δ

0

0

0


0

0

0
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Case 1: Divergent Design
In the first case, the nominal eigenvalues of Λ are found to be

λ = {−1,−1, 2}

Hence, since |λmax| ≥ 1 ∀λi, i ∈ {1, 2, 3} there is not a feasible design to be found with the iteration scheme.
This is shown in Fig. 5(a) where the objective function value exponentially diverges. Despite fixed-point

1 2 3 4 5 6 7 8 9 10
0

100

200

y i, −

Iteration number, −
1 2 3 4 5 6 7 8 9 10

0

500

1000

R
 =

 y
1 +

 y
2 +

 y
3, −

(a)

0 20 40 60 80 100
0

0.5

1

1.5

y i, −

Iteration number, −
0 20 40 60 80 100

0

1

2

3

R
 =

 y
1 +

 y
2 +

 y
3, −

(b)

Figure 5. Fixed-point iteration values for a (a) convergent design and (b) divergent design

iteration not being able to find a solution, a feasible design does exist. The feasible designs are characterized
by the equation

y =

 0

−1/2

−1/2

ud

which implies that the optimum is found with ud = 2. This example demonstrates the need for alternative
iteration schemes to be investigated.

Case 2: Convergent Design
In the second case, the nominal eigenvalues of Λ (see Table 2) are substantially different,

λ = {−1/3,−1/3, 2/3}

This implies that a feasible solution should be able to be found since |λmax| = 2/3 ≤ 1. This fact is
demonstrated in Fig. 5(b) where the objective function value converges for an arbitrary value of ud. The
optimal design in his case is found to be when ud = −2/3, which has an objective value r∗ = −2.

VIII.B. A Nonlinear, Two Contributing Analysis System

Consider the multidisciplinary design with fixed-point iteration defined by

y1,k+1 =
1

2
y1,k +

1

2
y2,k

y2,k+1 = αy3
1,k +

1

4
y2,k

 (25)

With

W =

(
1 2

0 2

)
and defining a , 24αy2

1 it is shown that β < 1 for a ∈ [−1.9, 1.4], which shows the origin is exponentially
asymptotically stable for any finite α. With α = −0.1 the domain of attraction can be shown to be
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A = {y| − 0.89 < y1 < 0.89} and with V (y) =‖Wy ‖2 it can be shown that Xs = {y|V (y) < 0.63} ⊂ A.
If ‖ y0 ‖2< 0.2 then y0 ∈ Xs then β0 = 0.56 allows the bound on convergence to be shown as
‖ yk ‖2< 0.9(0.56)k. Note that other choices of norms or W could yield different values.

IX. Conclusions

This work has shown the applicability of dynamical system theory to the convergence of multidisciplinary
designs. In particular, the stability of the dynamical systems describing the convergence of the design
was examined with specific criterion given in terms of general method using Lyapunov theory and more
tractable methods for specific functional cases. Asymptotic stability of the dynamical system implies that
the multidisciplinary design will converge. For linear systems, the instability of the system implies that
the system will not converge for the choice of root-finding schemes. A method to estimate the domain of
attraction, that is the range of initial guesses which will cause the design to converge, was discussed as
was an innovative method to find Lyapunov functions for discrete dynamical systems. Finally, the rate of
convergence for the iteration was discussed for exponentially stable iteration schemes with specific criterion
given for linear and nonlinear designs.

Appendix

This appendix contains the proofs for the theorems presented throughout this work.

Lyapunov’s Direct Method

The following proof for Lyapunov’s direct method follows that outlined in Refs. 10 and 11.

Proof: Lyapunov’s Direct Method for Discrete Dynamical Systems. Choose r0 > 0 such that
{xk : ‖ xk − xe ‖≤ r0} ⊂ S ∩ D. By the continuity of f there is an r1 ≤ r0 such that ‖ f(xk) − xe ‖≤ r0

whenever ‖ xk − xe ‖≤ r1. Now let ε > 0 be given and assume, without loss of generality, that ε ≤ r1. Then
choose δ ∈ (0, ε) so that ‖ xk − xe ‖≤ δ implies that

V (xk) < φ(ε) ≡ min{V (xk) : ε ≤‖ xk − xe ‖≤ r0}

This can be achieved using the continuity of V and the fact that V (xk) is positive definite. Now suppose
there is some x0 such that ‖ x0 − xe ‖≤ δ but ‖ xk+1 − xe ‖> ε for some k. Assume that this is the first
such k; thus ‖ xi − xe ‖≤ ε ≤ r1, i = 1, 2, · · · , k. Then ‖ f(xk)− xe ‖≤ r0 so that V (f(xk)) is well-defined
and V (f(xk)) ≥ φ(ε). But by the definition of a Lyapunov function

V (xk+1) ≤ V (xk) ≤ · · · ≤ V (x0) < φ(ε)

This is a contradiction and stability is proved.
For asymptotic stability, it suffices to consider any sequence {xk} ⊂ {xk : ‖ xk−xe ‖≤ ε} and show that

xk → xe as k →∞, and for this it suffices to show that if x̂ is any limit point of {xk}, then x̂ = xe. Suppose
not, then the mapping

r(xk) =
V (f(xk))

V (xk)

is well-defined and continuous in some open neighborhood S0 of x̂ and since ∆V < 0, r(x̂) < 1. Hence, for a
given α ∈ (r(x̂), 1), there is a δ > 0 such that r(xk) ≤ α whenever ‖ xk − x̂ ‖≤ δ. Therefore, for sufficiently
large ki, the subsequence converging to x̂ satisfies

V (xki+1) = V (f(xki+1)) ≤ αV (xki) ≤ · · · ≤ αV (xki−1+1) ≤ · · · ≤ αiV (x0)

so that V (xki) → 0 as i → ∞. But the continuity of V implies that V (x̂) = 0, and because the Lyapunov
function is positive definite, x̂ = xe proving asymptotic stability.

For global asymptotic stability, note that for any x0, the radial unboundedness of the Lyapunov function
guarantees that {xk} is bounded otherwise there would be a subsequence {xki

} such that ‖ xki
− xe ‖→ ∞

as i → ∞ and hence V (xki
) → ∞ as i → ∞. This contradicts the monotone decreasing behavior of V (xk)

required by ∆V < 0. It now follows precisely as in the case of asymptotic stability that xk → xe as k →∞
proving global asymptotic stability.
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Region of Attraction

This proof follows that outlined in Ref. 13

Proof: Region of Attraction. If x0 ∈ A0 then the third condition on w(x) shows that w(x1) ≤ w(x0) so
that x1 ∈ A0 and, by induction, xk ∈ A0 and w(xk+1) ≤ w(xk), k = 2, · · · . Hence the sequence {w(xk)}
converges. Also note that the third condition on w(x) implies that

1− w(f(x))

1− w(x)
= 1 + φ(x), x ∈ A0

so that

1− w(xk)

1− w(x0)
=

k−1∏
i=0

1− w(xi+1)

1− w(xi)
=

k−1∏
i=0

1 + φ(xi)

Since the left hand side of this equality converges as k → ∞, the right does as well which implies that
φ(xk) → 0 as k → ∞. Then the first condition on w(x) and the continuity of φ ensures that xk → xe as
k →∞. Conversely, suppose that x0 /∈ A0 then the third condition on w(x) shows that w(x1) ≥ w(x0) ≥ 1
so that x1 /∈ A0 and, by induction, w(xk) ≥ 1, k = 2, 3, · · · . But if lim

k→∞
xk = xe, then the continuity of w

requires that lim
k→∞

w(xk) = 0 which is a contradiction.
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