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During conceptual design, multidisciplinary optimization is often performed using com-
putationally intensive direct methods. Prior work has shown that rapid design studies can
be performed using fast indirect methods, but several optimization techniques including
discrete dynamic programming, nonlinear inversion, and pseudospectral methods are re-
quired to construct a suitable initial guess within the design space. In this investigation, a
simplified methodology is developed to eliminate these optimization techniques, enabling
rapid design space exploration using continuation of indirect methods alone. This is made
possible by initially converging to a simple solution that is outside of the design space of
interest, and solutions within the design space of interest are quickly accessed through con-
tinuation from this initial solution. As an initial step to automate this continuation process,
state transition tensors are used to predict optimal solutions throughout the design space.
A methodology is developed to provide accurate predictions of trajectories with varying
flight times, and the error of these predictions is controlled to regulate the continuation
process. This approach provides flexibility to adapt to future computational capabilities
and serves as an initial step to bridge the gap between conceptual trajectory design and
onboard trajectory planning.

Nomenclature

DSM Design Structure Matrix
GPU Graphics Processing Unit
LGL Legendre-Gauss-Lobatto
MDO Multidisciplinary Design Optimization
NLP Nonlinear Programming
RK Runge-Kutta
STT State Transition Tensor

A vehicle reference area, m2

CD drag coefficient
CL lift coefficient
D drag force magnitude, N
H scale height, m
L lift force magnitude, N
L/D lift to drag ratio
m vehicle mass, kg
p order of Taylor series solution
r radial magnitude, m
re Earth radius, m
t time, s

∗Graduate Research Assistant, Guggenheim School of Aerospace Engineering, AIAA Student Member.
†Visiting Assistant Professor, Guggenheim School of Aerospace Engineering, AIAA Member.
‡David and Andrew Lewis Associate Professor of Space Technology, Guggenheim School of Aerospace Engineering, AIAA

Fellow.

1 of 16

American Institute of Aeronautics and Astronautics



v relative velocity magnitude, m/s
x′ augmented state vector

α angle of attack, deg
β ballistic coefficient, kg/m2

µ gravitational parameter, m3/s2

γ relative flight path angle, rad
θ downrange subtended angle, rad
λ costate
ρ0 atmospheric density at the surface, kg/m3

Φ state transition tensor
φ bank angle, deg

∗ reference solution value

I. Introduction

Traditionally, conceptual design is performed using various tools provided by disciplinary experts. The
interaction among these tools during hypersonic mission design is often illustrated using a design struc-

ture matrix (DSM) as shown in Figure 1. In this methodology, design variables are often chosen within
each discipline, and a multidisciplinary design optimization (MDO) scheme is used to optimize the overall
system.1,2, 3, 4, 5, 6, 7 These schemes are often classified as direct optimization methods which operate on a
finite number of design variables. As a result, continuous design variables such as hypersonic trajectories
must be discretized for incorporation into these methods. Collocation, pseudospectral, and explicit shoot-
ing methods are three common trajectory optimization methods used in system design studies.8,9, 10,11 A
common collocation method arranges nodes along a path, and the trajectory is optimized assuming a cubic
interpolation between the nodes. In this method, no assumption is made a priori regarding the form of
the trajectory. Alternatively, pseudospectral methods implement a more efficient quadrature scheme such
as Legendre-Gauss-Lobatto with the assumption that the trajectory can be approximated as a polynomial.
Both of these approaches are implicit methods that require use of nonlinear programming (NLP) solvers such
as SNOPT.12 Rather than solving a large NLP problem, explicit shooting methods discretize the control
history and propagate the equations of motion to a terminal point. While shooting methods require less
memory, satisfying path constraints such as maximum heat rate and g-loading can be challenging during
the shooting process. However, shooting methods allow global searching algorithms widely used in systems
studies, such as genetic algorithms and particle swarm optimizers, to be extended to include trajectory opti-
mization.11,13 Although shooting methods are easy to implement with existing tools, prior work has shown
that continuation of indirect methods can improve the efficiency of entry corridor design studies.14

Figure 1. Example design structure matrix for entry systems.15
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II. Rapid Trajectory Optimization Background

In this prior work, a rapid trajectory design methodology is formed through the combination and advance-
ment of disparate trajectory optimization techniques that had been developed over the previous century into
a unified framework that is capable of solving a wide range of design problems. Specifically, this framework
implements discrete dynamic programming, nonlinear inversion, pseudospectral methods, indirect methods,
and continuation. This methodology balances the advantages and disadvantages of both direct and indirect
methods as described in Table 1. While direct methods are generally slower than indirect methods when
converging to an optimal solution, direct methods have a much larger region of attraction that enables this
convergence.16,17 As a result, direct methods, including those previously discussed, have been widely adopted
over indirect methods for design studies. However, many solutions are desired from design studies, and, in
many cases, trades in designs are performed in succession. Rather than executing successive direct methods,
this methodology capitalizes on the computational efficiency of indirect methods to perform design studies
using continuation.14 This process has been shown to be successful for a range of vehicle shapes, constraints,
environment parameters, initial conditions, and terminal conditions. This trajectory optimization process
has also been extended to include vehicle shape, allowing rapid simultaneous hypersonic aerodynamic and
trajectory optimization for conceptual design.18 While this methodology enables the rapid conceptual design
of hypersonic missions, several limitations remain.

Table 1. Comparison between direct and indirect methods.

Advantages Disadvantages

Direct Methods Large region of attraction Computationally intensive

Widespread NLP solvers exist Optimality not guaranteed

Indirect Methods Rapid convergence Small region of attraction

Necessary conditions satisfied Costates introduced

II.A. Prior Methodology Limitations

II.A.1. Framework Complexity

In order to successfully execute the design methodology, several optimization techniques are required. These
techniques include discrete dynamic programming, nonlinear inversion, pseudospectral methods, indirect
methods, and continuation. The integration of these algorithms greatly increases the complexity of the
process and would likely limit its adoption by the design community.

II.A.2. Path Cost Limitation and Sensitivity of Discrete Dynamic Programming

In the prior methodology, path constraints, such as maximum heat rate and g-loading, as well as design
constraints, such as minimum control authority, are shown to reduce the number of trajectory options
that define an entry corridor. As such, discrete dynamic programming is used to construct a good initial
guess within this corridor. While this approach is very efficient to minimize path cost throughout the
corridor, incorporating terminal cost into the objective would be problematic. Furthermore, the dynamic
programming solution provides a good initial guess within altitude-velocity space. As such, the remaining
states must be estimated using nonlinear inversion of the altitude-velocity solution. Along certain portions
of the the trajectory, the estimation of flight path angle is highly sensitive to the slope of the altitude-
velocity solution.14 For certain problems, these numerical challenges may reduce the quality of the initial
guess provided by discrete dynamic programming. These challenges could be addressed through various grid
densities or adaptive mesh techniques, but these solutions would continue to add complexity into the process.
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II.A.3. Pseudospectral Complexities
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Figure 2. Comparison of node locations for a representative
Earth entry problem (45 nodes for both methods).

In the previous work, the solution from a pseu-
dospectral method is used to provide a good initial
guess required for the continuation of indirect meth-
ods. Pseudospectral methods approximate the tra-
jectory as a polynomial by collocating nodes at effi-
cient locations such as the Legendre-Gauss-Lobatto
(LGL) points shown in Figure 2. Note that for a
given number of nodes, the location of these nodes
is fixed and problem independent. Additionally,
these nodes are highly clustered near the endpoints.
While this reduces the onset of the Runge phe-
nomenon when interpolating high order polynomials
near the endpoints, high dynamic regions of many
hypersonic missions, such as entry, occur in the mid-
dle of the trajectory where the dynamic pressure
peaks. This is observed when comparing the LGL
node locations with the node locations of an error-
controlled, adaptive Runge-Kutta (RK) method for
a representative Earth entry problem shown in Fig-
ure 2. Without assuming a form of the solution a priori, the adaptive RK method clusters nodes during
high dynamic periods which occur near the center of the trajectory.

Collocating nodes at the LGL points requires use of an NLP solver in which the equations of motion are
enforced as constraints at the nodes. Due to the clustering of nodes at the endpoints, a sufficient number
of nodes must be chosen to ensure accuracy of the interpolated dynamics during the high dynamic region
near the center of the trajectory. While adaptive mesh refinement methods have been developed to address
this issue, successive trajectory optimizations with varying node counts and arrangements are required.19,20

Furthermore, NLP solvers such as SNOPT employ penalty functions that may result in additional complexity
during convergence to the optimal solution. Finally, the converged pseudospectral solution is mapped to an
indirect solution using the Covector Mapping Theorem.21,22 The mapping requires identification of the
discontinuous changes in costates that occur at the entrance of path constraints. This identification can be
challenging to accomplish in an automated manner when this discontinuity resides between the collocated
nodes.23,24,25

II.A.4. The Disparity Between Conceptual Design and Onboard Operations

In general, the open-loop optimal trajectories simulated during conceptual design are not consistent with
the closed-loop trajectories flown by fielded systems. When developing a flight vehicle, substantial effort is
placed on the selection and development of a suitable guidance algorithm. Once a guidance algorithm has
been selected, modifications are often made to tailor the algorithm to a specific mission.26 Efforts such as
these often complicate the design process and are generally omitted from conceptual design.

During conceptual design, optimal solutions are used to analyze various vehicle and trajectory combi-
nations over a range of environment and mission requirements uncertainties that form the design space as
notionally shown in Figure 3. Analogously, real-time trajectory planning would enable optimal trajectory
solutions to be constructed during flight to identify the best path within a range of expected flight con-
ditions that form a subset of this design space. As a result, the need for traditional guidance algorithms
would be eliminated, and the conceptual design process would better reflect onboard operations. If the prior
methodology is used, then an appropriate balance between the use of pseudospectral methods and contin-
uation of indirect methods is required to perform efficient exploration of this design space. For example, if
the pseudospectral solution creates an anchor point in this design space to seed the continuation of indirect
solutions, then the designer must decide where to create these anchor points. Furthermore, many options
likely exist when continuing from the anchor solution to another solution of interest as shown in Figure
4. The optimal continuation policy may influence the choice of anchor solution locations, but this policy
is problem dependent and would likely require substantial computational resources. If the continuation of
indirect methods is used to perform real-time trajectory planning, then this analysis would likely improve
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the onboard performance of the continuation process. However, this analysis would likely not be worthwhile
during conceptual design due to the required increase in computational resources. Finally, while the prior
methodology could provide a consistent rapid optimization framework for both conceptual design and real-
time trajectory planning, the complexity resulting from the use of many disparate optimization techniques
would likely lead to additional challenges during certification for onboard operations.

Figure 3. Example of design space exploration using con-
tinuation from anchor solution. Figure 4. Example of optimal continuation policy.

This prior methodology is analogous to many MDO algorithms in which relevant design solutions are
immediately sought. As such, pseudospectral methods are required to seed the continuation process due
to the difficulty of providing a sufficient initial guess to converge to an indirect solution, especially in the
presence of path constraints such as maximum heat rate and g-loading. Consequently, these processes
are generally confined to the plane of the design space represented in Figure 3. If solutions of minimal
immediate value to the designer are also considered, then optimal solutions throughout the design space
can be efficiently constructed using continuation of indirect methods alone. This is accomplished by seeding
the indirect method with a simple, short, unconstrained trajectory solution outside of the design space
as opposed to a constrained pseudospectral solution within the design space. This greatly simplifies the
process by eliminating the dynamic programming, nonlinear inversion, and pseudospectral steps of the prior
methodology. As a result, a simplified methodology that relies only on the continuation of indirect methods
is developed to address the aforementioned limitations and perform rapid design space exploration.

III. Rapid Design Space Exploration Using Continuation

Table 2. Environment parameters.

Parameter Value

Scale Height, H 7200 m

Surface Density, ρo 1.217 kg/m3

Gravitational Parameter, µ 3.986e14 m3/s2

Earth Radius, re 6378000 m

For this study, a planar entry trajectory is as-
sumed with equations of motion shown in Eq. (1)-
(4), where t is the time, r is the radial magnitude, θ
is the downrange subtended angle, v is the relative
velocity magnitude, γ is the relative flight path an-
gle, D is the drag force magnitude, m is the mass of
the vehicle, µ is the gravitational parameter, L is the
lift force magnitude, and φ is the bank angle. For
comparison with the prior methodology, trajectories
are again optimized to minimize total heat load.14 To minimize heat load, the heat rate must be maximized
along every portion of the trajectory, and this result is evident from the optimal solutions presented in this
report. Nominal environment parameters are chosen as shown in Table 2, and a high performance blunted
conic is chosen with geometric and aerodynamic parameters shown in Table 3. An entry mass of 4080 kg is
assumed, resulting in a large ballistic coefficient, β, of 6,070 kg/m2 for illustrative purposes in the following
examples.

dr

dt
= v sin γ (1)

dθ

dt
=
v cos γ

r
(2)

5 of 16

American Institute of Aeronautics and Astronautics



dv

dt
= −D

m
− µ sin γ

r2
(3)

dγ

dt
=
L cosφ

mv
+
(v
r
− µ

vr2

)
cos γ (4)

Table 3. Blunted conic parameters.

Geometric Parameter Value Aerodynamic Parameter Value

Length 6.92 m α 10 deg

Nose Radius 0.025 m CD 0.144

Base Radius 1.22 m CL 0.311

Cone Half-Angle 10 deg L/D 2.16

III.A. Construction of the Initial Indirect Solution Outside of the Design Space

Table 4. Control switching structure.

λγ < 0 Bank = 0 deg

λγ > 0 Bank = 180 deg

λγ = 0 Bank is indeterminate

As previously mentioned, it is generally impractical for the de-
signer to provide a sufficient initial guess within the constrained
design space without the use of pseudospectral methods. Al-
ternatively, the designer can easily provide a sufficient initial
guess to converge to a short, unconstrained, optimal trajectory
that is outside of the design space. For the following example,
a terminal altitude of 6 km and velocity of 1.4 km/s is enforced.
After choosing a reasonable terminal flight path angle of -49o and terminal costate values of zero, an initial
guess can be constructed through reverse propagation of the states and costates for a short period of time
which was chosen to be one second for this example. Before the trajectory is propagated, the lift of the
vehicle is artificially reduced by a factor of 100. This prevents switches in control that could result along
the unconstrained arc as described by the switching structure depicted in Table 4.23,24,25 Finally, the initial
altitude and velocity resulting from the reverse propagation are chosen as fixed initial conditions.

With this initial guess as well as fixed initial and terminal conditions, an indirect method is able to quickly
converge to the short, unconstrained, minimum heat load solution. The resulting trajectory and costates
are shown in Figures 5 and 6, respectively. As expected, the costates are smooth throughout the entire
unconstrained trajectory. As with many common indirect method solvers, only the necessary conditions
of optimality are guaranteed to be satisfied. The optimality of this short, unconstrained solution can be
easily verified for this relatively simple trajectory optimization problem. As expected to maximize heat
rate throughout the trajectory, the optimal solution consists of a full lift-up trajectory as described by the
switching structure. The optimality of this solution could also be verified through analysis of the sufficient
conditions of optimality. However, this is left as future work.
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Figure 5. Initial indirect solution.
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Figure 6. Costates from initial indirect solution.
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III.B. Unconstrained Continuation to the Desired Initial State

The short, unconstrained trajectory is outside of the design space and is not of immediate interest to the
designer. However, this solution serves as the starting point from which the trajectory is evolved to a solution
of interest within the design space. With this converged indirect solution, the unconstrained trajectory must
be extended through continuation to the set of desired entry conditions. The evolution of the optimal
trajectories and corresponding costates is shown in Figures 7 and 8, respectively. During the continuation
process, the prior solution serves as an initial guess to converge to the subsequent nearby solution. As the
trajectory is lengthened, the switching structure is monitored to ensure no switches occur in the bank angle.
During this process, λγ is always negative, implying that the artificial decrease in lift was sufficient to prevent
switches in control. Additionally, each successive solution is monitored during the continuation process to
determine if large changes occur between solutions. For example, the initial flight path angle is monitored to
determine if the vehicle is initially traveling towards the target as desired. If the distance between solutions
is too large, then the indirect method solver may converge to a solution in which the vehicle is initially
traveling away from the target. If this occurs, then smaller distances are chosen between solutions during
the continuation process, ensuring convergence to a proper initial flight path angle.
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Figure 7. Trajectories from unconstrained continuation.
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Figure 8. Costates from unconstrained continuation.

III.C. Introduction of Path Constraints

Figure 9. Introduction of path constraint.

With the trajectory fully extended to include the desired initial
conditions, path constraints such as maximum heat rate and g-
loading can be incrementally introduced. In this process, path
constraints that define a flight corridor are introduced at a lo-
cation of tangency to the unconstrained trajectory as depicted
in Figure 9. This approach serves two purposes. First, indirect
methods require the number and order of unconstrained and
constrained trajectory arcs to be specified prior to optimiza-
tion. This is difficult to estimate apriori, and, in the prior
methodology, this sequence is provided from the pseudospec-
tral solution. After identifying the magnitude of the constraint
that provides this tangency condition, a determination can be
made as to whether or not the constraint is initially active and
should be included in the optimization. Second, by introducing
a constraint at the point of tangency, the states and time of the optimal trajectory remain unchanged. Only
the costates change with the introduction of a discontinuity as a result of the corner conditions.23,24,25 This
provides a gradual change in solution necessary for convergence of the indirect method.

In the prior unconstrained continuation process, lift is artificially decreased to prevent switches in bank
angle. As path constraints are introduced, the lift of the vehicle must be incrementally restored to the actual
value to enable the vehicle to maneuver along these constraints. As an example, a maximum heat rate
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constraint is introduced at a location of tangency along the final trajectory from the previous unconstrained
continuation process. Once the heat rate constraint is introduced in this manner, it is incrementally decreased
to the desired value. As the heat rate constraint is decreased, the lift of the vehicle is restored to prevent
saturation in bank angle while traveling along the constraint. At the end of this process, the lift of the vehicle
is restored to 50% of the actual value. The resulting trajectories and costates from this process are shown
in Figures 10 and 11, respectively. As shown, the initial flight path angle must be shallowed as the heat
rate constraint is decreased to prevent the vehicle from violating the constraint. As expected, discontinuities
occur in the costates at the time the vehicle enters the heat rate constraint. Note that as the magnitude of
the heat rate constraint is reduced and the lift of the vehicle is increased, both the length of the trajectory
and time of the entrance to the heat rate constraint increase. It is also important to note that the switching
structure only applies to the unconstrained portions of the trajectory. While λγ is shown to be positive
during the middle portion of each trajectory, this occurs while the vehicle is traveling along the heat rate
constraint and, as a result, does not conflict with the switching structure. As expected, λγ is verified to be
negative along the unconstrained arcs.
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Figure 10. Trajectories from continuation of heat rate
constraint and L/D.
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Figure 11. Costates from continuation of heat rate con-
straint and L/D.

After the continuation of the heat rate constraint is completed, additional path constraints such as
maximum g-loading can also be introduced and modified in a similar manner. The trajectories and costates
that result from continuation of the g-loading constraint are shown in Figures 12 and 13, respectively.
During this process, the lift of the vehicle is fully restored. As expected, a second discontinuity occurs
where the vehicle enters the g-loading constraint at around 80 s. At the end of this process, a constrained
indirect solution is obtained within the design space of interest. It is important to note that this process is
executed quickly through continuation of fast indirect methods, eliminating the need for the slower processes
of discrete dynamic programming, nonlinear inversion, and pseudospectral methods associated with the
previous methodology. Consequently, this eliminates the need to construct anchor solutions at strategic
locations throughout the design space. Instead, any point within the design space can be quickly accessed
through continuation from a simple solution outside of the design space. As a result, rapid design space
exploration can be performed using continuation of fast indirect methods alone.
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Figure 12. Trajectories from continuation of g-loading
constraint and L/D.
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Figure 13. Costates from continuation of g-loading con-
straint and L/D.

In the prior example, algorithm monitors are used to ensure the initial flight path angle and lift restoration
provides feasible solutions during the continuation process. However, parameters are changed manually
during this continuation process. Without prior knowledge of optimal solutions during the continuation
process, small steps must be conservatively chosen after trial and error to ensure that each prior solution
serves as a good initial guess to converge to the next indirect solution. If indirect solutions could be predicted
during the continuation process, then improved initial guesses could be constructed. Additionally, if the error
of this prediction could also be estimated, then the choice in step size can be automated to perform efficient
design space exploration.

IV. Unconstrained Solution Prediction Using State Transition Tensors

In the prior example, the construction of optimal solutions within the design space begins with the con-
tinuation of unconstrained solutions to the desired initial condition. As such, the prediction of unconstrained
solutions must be addressed. While traditional MDO methods rely on direct optimization techniques that
perform a constrained search for the optimum, indirect methods convert the optimization problem into a
root-solving problem of boundary conditions. If a relationship between these boundary conditions can be
constructed, then optimal solutions can be predicted during the continuation process. This relationship is
constructed using State Transition Tensors (STTs).

IV.A. State Transition Tensors

In this work, STTs are used to relate changes in initial states and costates from a reference solution (denoted
by ∗) to changes in states and costates at a future time as shown in Eq. (5), where x′i is the ith component
of an augmented state vector that also includes costates and Φi,k1···kp is the corresponding pth order STT.
As a result, deviations in the augmented state with n elements can be expressed as a Taylor series of STTs
to order m as shown in Eq. (6), and deviations in the rate of the augmented state can expressed in the
form of Eq. (7). The equations of motion can be combined with the costate rate equations obtained from
the necessary conditions of optimality to construct a relationship for the rate of the augmented state as
shown in Eq. (8). The corresponding deviations in the rate of the augmented state can also be calculated
by expressing Eq. (8) as a Taylor series as shown in Eq. (9), where the Jacobian of the augmented state
is shown in Eq. (10). After substitution of Eq. (6) into Eq. (9), the STTs can be calculated by matching
coefficients with Eq. (7).27 An automated process has been developed to perform this coefficient matching
for any order m chosen by the designer as well as to construct the appropriate subroutines for computing
the STTs associated with the trajectory optimization of interest. After computing the STTs, predictions
can be made during the continuation process in both the states and costates for nearby optimal solutions.
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Φi,k1···kp =
∂px′i

∂x′ok1 · · · ∂x′okp
(5)

δx′i(t) =

m∑
p=1

1

p!

 n∑
k1=1

n∑
k2=1

· · ·
n∑

kp=1

Φi,k1···kpδx
′o
k1 · · · δx

′o
kp

 (6)

δẋ′i(t) =

m∑
p=1

1

p!

 n∑
k1=1

n∑
k2=1

· · ·
n∑

kp=1

Φ̇i,k1···kpδx
′o
k1 · · · δx

′o
kp

 (7)

ẋ′i(t) = f ′i [t,x
′(t)] (8)

δẋ′i(t) =

m∑
p=1

1

p!

 n∑
k1=1

n∑
k2=1

· · ·
n∑

kp=1

f ′∗i,k1···kpδx
′
k1 · · · δx

′
kp

 (9)

f ′∗i,k1···kp =
∂pf ′i

∂x′k1 · · · ∂x′kp

∣∣∣∣
x′=x′∗

(10)

Higher order STTs are often used in astrodynamics applications to maintain accuracy for the long propa-
gation times required.28,29,30,31 For relatively short hypersonic missions, higher order STTs could potentially
be used to accurately predict optimal solutions at greater distances from the reference solution. If the opti-
mal solutions throughout the design space can be expressed as a convergent STT series, then the accuracy of
the predictions will improve as the order of the STT approximation is increased. However, not all functions
can be approximated by a convergent Taylor series. A scalar example of each scenario will illustrate the
considerations made when predicting optimal solutions using STTs.

IV.B. Taylor Series Examples

A scalar Taylor series approximation about the reference point a can be expressed in the form of Eq. (11),
where a = 0 in the following examples. As shown in Figure 14, the Taylor series approximation of the
function ex appears to improve for all x as the order of the approximation increases. Alternatively, Figure
15 illustrates that the error of the Taylor series increases as the order of the approximation increases for the
function log(1+x) where x > 1. During the continuation process, the exact solution of the predicted optimal
trajectories is not known a priori, and as a result, this comparison cannot be made to directly determine if
the STT prediction improves as the order of the approximation increases. Instead, convergence of the STT
series can be indirectly observed from convergence of the approximate STT solutions as the order of the
approximation increases. For a convergent series, the discrepancy between the approximate solution of order
p, denoted as fp, and of order p+ 1, denoted as fp+1, should decay as p increases. For the convergent Taylor
series example, this decay is observed at various values of x as shown in Figure 16. For the divergent Taylor
series example, this decay is observed for x < 1 as shown in Figure 17. However, for x > 1, this decay only
occurs for small orders of p. As p increases, the discrepancy also eventually increases. As shown in both
examples, the discrepancy is likely to decrease as the order p increases for x near the reference point a = 0.
The discrepancy between an approximation of order p and an approximation of order p+ 1 is shown in Eq.
(12). For |x − a| << 1, (x − a)p+1 will likely dominate this expression, resulting in the observed decay in
discrepancy for both examples. However, as x is chosen farther from the reference point, the discrepancy will

only decrease with order p if f(p+1)(a)
(p+1)! decreases in magnitude faster than (x− a)p+1 increases in magnitude.

f(x+ a) = f(a) +
f
′
(a)

1!
(x− a) +

f
′′
(a)

2!
(x− a)2 + · · ·+ f (p)(a)

p!
(x− a)p (11)

|fp+1 − fp| =
∣∣∣∣f (p+1)(a)

(p+ 1)!
(x− a)p+1

∣∣∣∣ (12)
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Figure 14. Example convergent Taylor series approxima-
tions for f(x) = ex.
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Figure 15. Example divergent Taylor series approxima-
tions for f(x) = log(1 + x).
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Figure 17. Discrepancy in divergent Taylor series esti-
mates at various x locations for f(x) = log(1 + x).

IV.C. Optimal Solution Prediction Using State Transition Tensors

The prior Taylor series examples illustrate two important considerations when predicting optimal solutions
during the continuation process. First, the accuracy of predicted solutions is not guaranteed to increase as
the order of the STT approximation increases. As such, higher order STT approximations should only be
used to improve accuracy if the observed discrepancy decreases. Second, for well-posed hypersonic problems,
optimal solutions can likely be predicted to any degree of accuracy using STTs of sufficient order as long as
these solutions are sufficiently close to the reference solution. As predictions are made farther away from the
reference solution, the accuracy of predictions with increasing order p is governed by the optimal solution
space. To highlight the advantages of using higher order STTs, optimal trajectories from a continuation
process are also predicted using both first and second order STTs as shown in Figure 18. During this
process, the prior converged indirect solution serves as the reference trajectory when calculating the STTs.
The errors in predicted altitude and velocity with the corresponding optimal solutions are shown in Figure 19.
As desired, the predicted errors from the second order approximation are smaller throughout each trajectory
than the errors from the first order approximation. Additionally, the accuracy of these predictions suggests
that larger steps can be taken during the continuation process and that the error in predicted solutions can
be controlled using higher order STT approximations.
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Figure 18. Improved STT-predicted trajectories with or-
der of approximation.
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Figure 19. Error in predicted altitude and velocity for
various orders of approximation.

Figure 20. Optimal solution prediction of tra-
jectories with varying initial conditions and
fixed terminal conditions.

As an initial step to automate the continuation process, a
methodology has been developed to predict optimal solutions
throughout the unconstrained trajectory space using STTs. By
controlling the error of this prediction, the methodology dynami-
cally determines the appropriate change in initial conditions orig-
inally chosen through trial and error as shown in Figure 7. Fur-
thermore, these predicted solutions are used to provide better
initial guesses that were originally formulated using the prior in-
direct solution. To predict optimal, unconstrained trajectory so-
lutions, boundary conditions must be satisfied at both the initial
and terminal points of the trajectory. In general, the STTs pro-
vide an analytic mapping between these boundary conditions,
enabling an analytic root-solving process to be used to quickly
construct predicted optimal solutions. During the unconstrained
continuation process, the initial altitude and velocity are incre-
mentally increased to eventually match the desired initial conditions while the terminal conditions remain
fixed. As a result, the time of each optimal trajectory increases during this process. However, the STTs
are only able to relate changes in initial conditions to changes in terminal conditions with respect to the
indirect solution that serves as the reference trajectory during computation of the STTs. This is evident in
Figure 18 in which the predicted STT solutions terminate before reaching the desired terminal point. To
predict optimal trajectories with longer flight times, the indirect solution used to construct the STTs must
be propagated beyond the original terminal conditions by a time dtf as shown in Figure 20. As such, STTs
can then be used to predict the change in initial conditions, dxi, that yields an optimal trajectory with this
increased flight time to the desired terminal state.

While this process enables the prediction of optimal trajectories with greater flight times, many solutions
in dxi likely exist for a given choice in dtf . To enforce a unique solution for dxi, all changes in the initial
state are restricted to the analytic shooting line that connects the initial state of the indirect solution to
the desired initial condition as shown in Figure 21. Additionally, as the magnitude of dxi increases as
dtf increases, the STT-predicted solutions will reside at greater distances from the initial indirect solution.
Consequently, the error associated with these predictions will also likely increase. Without knowledge of the
exact optimal solutions during this process, the error at the boundary conditions is approximated as the
discrepancy between STT-predicted solutions of order p and of order p + 1. To limit the number of steps
during the continuation process, the magnitude of dxi should be chosen to be as large as possible without
violating the maximum approximate error chosen by the designer. However, the proper choice in dtf that
provides this desired magnitude of dxi is not known a priori. As such, an intermediate rapid continuation
process is employed to predict optimal solutions along the analytic shooting line using STTs.
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Figure 21. Example of unconstrained analytic shooting
using STT predictions.

During this intermediate process, dtf is incremen-
tally increased, and the analytic mapping between the
initial and final conditions of the STT-predicted solu-
tions is used to converge to the appropriate dxi along
the analytic shooting line. During this process, the
STTs provide the opportunity to perform an analytic
shooting in which dxi is iterated to converge to the ap-
propriate terminal conditions. Once the proper change
in initial conditions is found, the final time is incre-
mentally increased again from dtf,1 to dtf,2, and a
new initial condition, dxi,2, is identified through an-
alytic shooting of the STTs using dxi,1 as an initial
guess. This process is repeated until dtf can no longer
be increased without exceeding the limit in approxi-
mate error chosen by the designer. Note that the in-
termediate continuation process is naturally regulating. As the indirect solution is propagated beyond the
terminal conditions using an error-controlled, adaptive RK scheme, the sequence of dtf values used by the
intermediate continuation process adapts to the dynamics of the optimization problem. If the dynamics of
the problem are relatively strong, then smaller steps are taken in dtf , resulting in more steps during the
intermediate continuation process.

To maximize computational efficiency, the analytic shooting process is initially performed using an STT
of order one, and the approximate error of each solution is calculated using an STT of order two. As the
limit in approximate error is reached, the order of the STT used for each calculation can be increased as
long as the discrepancy is decreased. If no higher order STT solution is available due to the increase in
computational requirements, then the STT-predicted solution is used as an initial guess to converge to a new
indirect solution, and the process is repeated. As an example, this process is executed using a maximum
STT order of two shown in Figure 22 and a maximum order of three shown in Figure 23. As expected, as
the maximum order of the STT increases, larger changes in dxi can be predicted with the same limit in
approximate error. Note that this error includes predicted flight times, and as a result, the STT-predicted
solutions to not reach the terminal point. However, these predictions do provide greatly improved initial
guesses that enable rapid convergence to the nearby indirect solution also shown in Figures 22 and 23.
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Figure 22. Unconstrained continuation using 2nd order
STT predictions.
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Figure 23. Unconstrained continuation using 3rd order
STT predictions.

V. Addressing Prior Methodology Limitations and Future Work

As shown, the complexities of the prior methodology that relies on the combination of many trajec-
tory optimization techniques including discrete dynamic programming, nonlinear inversion, pseudospectral
methods, and continuation of indirect methods are eliminated. Instead, this framework can be collapsed
into a design methodology that only relies on the continuation of indirect methods. As a result, the path
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cost limitation and sensitivity of the discrete dynamic programming process are eliminated. Additionally,
the complexities of pseudospectral methods associated with predetermined node locations, mesh refinement
techniques, use of penalty functions in NLP solvers, and identification of discontinuous changes in costates
are also eliminated. Alternatively, indirect methods enable the use of single and multiple shooting methods
that employ an error-controlled, adaptive RK scheme. As a result, path constraints are directly enforced,
eliminating the need for penalty functions, and discontinuous changes in costates that result from these
path constraints can be directly observed during the continuation process. The investigation of efficient
multiple shooting tools, such as BNDSCO, and symplectic integration techniques is left as future work.32

Furthermore, the prediction of optimal solutions should be expanded to include various vehicle parameters,
environment parameters, and path constraints. During the manual continuation process, solutions are mon-
itored to ensure convergence. For example, the lift of the vehicle is increased in a manner that enables the
vehicle to follow path constraints while preventing any switches in control. The automation of this monitor-
ing would also enable automation of the continuation process as optimal solutions are predicted using STTs.
Furthermore, the continuation of indirect methods may eliminate the disparity between conceptual design
and onboard operations.

The dynamic node arrangement provided by adaptive RK schemes ensures that the dynamics of the tra-
jectory are satisfied to an accuracy specified by the designer. This eliminates the need for mesh refinement
techniques that may be required when node locations are predetermined as shown in Figure 2. Additionally,
the dynamic node arrangement efficiently clusters nodes in regions of most interest that have strong dy-
namics, whereas pseudospectral methods cluster nodes near the endpoints with generally weak dynamics for
hypersonic missions. The efficient clustering of nodes by adaptive RK schemes could assist onboard real-time
trajectory planning operations in which optimal trajectory solutions are only accepted if the dynamics at
many locations throughout the entire solution are validated to a certain level of accuracy. Furthermore,
the use of penalty functions, internal subproblems, and slack variables by NLP solvers greatly increase the
complexity of identifying optimal solutions. As a result, the certification of these algorithms for flight op-
erations would also increase in complexity. Alternatively, indirect methods only require a root-solver and a
numerical integration scheme. Onboard calculations such as these have already been planned to support the
entry monitor system of the Orion command module.33 As such, the continuation of indirect methods could
potentially bridge the gap between conceptual design and onboard trajectory operations. Further advance-
ments in this approach should be evaluated during conceptual design as well as in a flight-relevant hardware
environment to address additional gaps that may remain. For example, additional real-time considerations
including estimation of vehicle and atmospheric properties could also be incorporated into the conceptual
design process.

As methods are evaluated for both conceptual design and onboard applications, considerations must be
made for future advances in ground and onboard computing. In both environments, limited computational
resources demand rapid calculation of optimal solutions. For example, the emergence of the massive paral-
lelization of scientific computing provided by graphics processing units (GPU) will likely alter the manner
in which conceptual design is performed. While NLP solvers can be parallelized, STTs can be computed
with relatively small amounts of memory.34 This enables the relatively limited but fast memory on a GPU
to be utilized for rapid parallel computation of STTs.35 As the capability of GPUs increases, higher order
STTs can be computed in parallel to reduce the number of steps required during the continuation process.
Additionally, the analytic shooting line should be evaluated to determine if a more efficient path for the
continuation policy can be constructed. Finally, as the balance between serial speed and parallelization
matures in future computing, indirect methods can also be adapted through proper division of the problem
and use of multiple shooting techniques.

VI. Conclusions

In this investigation, a simplified methodology is developed to perform rapid design space exploration that
only relies on the continuation of fast indirect methods. This approach eliminates the complexities associated
with the integration of discrete dynamic programming, nonlinear inversion, and pseudospectral methods
required by a prior design methodology before the continuation of indirect methods. These optimization
techniques are required in the prior methodology due to the challenges associated with constructing a good
initial guess to converge to an indirect solution within a constrained design space. In this work, a good initial
guess is shown to be easily constructed for a short, unconstrained, optimal trajectory that resides outside of
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the design space of interest. As such, solutions within the design space of interest are shown to be efficiently
constructed through continuation of indirect methods from this unconstrained solution. During this process,
path constraints are introduced at points of tangency with the trajectory, and examples with maximum heat
rate and g-loading constraints illustrate that the indirect method is able to converge to optimal solutions as
the magnitude of these constraints is modified. For these examples, the continuation process is performed
manually. As an initial step toward the automation of the continuation process, state transition tensors are
shown to provide accurate predictions of optimal solutions throughout the unconstrained trajectory space.
A methodology is developed to perform accurate predictions of trajectories with varying flight times, and
the error of these predictions is controlled to identify the required steps during the continuation process.
Finally, the use of state transition tensors and continuation of indirect methods could be used for both
conceptual design studies and onboard real-time trajectory planning. This approach is easily adaptable to
future computing considerations and would serve as an initial attempt to bridge the gap between conceptual
design and onboard operations.
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