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This paper investigates the use of state-dependent Riccati equation control for closed-loop guidance of the
hypersonic phase of atmospheric entry. Included are a discussion of the development of the state-dependent
Riccati equations, their outgrowth from Hamilton-Jacobi-Bellman theory, a discussion of the closed-loop non-
linear system’s closed-loop stability and robustness from both a theoretical and practical viewpoint. An innova-
tive use of sum-of-squares programming is used to solve the state-dependent Riccati equation with application
of a state-dependent Riccati equation derived guidance algorithm to a high mass, robotic Mars entry example.
Algorithm performance is compared to the Modified Apollo Final Phase algorithm planned for use on the Mars
Science Laboratory.

I. Motivation

WHEN deciding where spacecraft should land a balance exists between engineering safety and scientific (or pro-
grammatic) interest. As safe, interesting landing sites become more sparse and accuracy requirements become

more stringent, the need for guidance algorithms that are capable of targeting full state (i.e., fully specified position and
velocity vectors, r3�1 and v3�1) for the (1) hypersonic and (2) terminal descent phase becomes more pervasive.1, 2

For the hypersonic aeromaneuvering phase, these target conditions are typically the state at the deployment of the
supersonic decelerator; whereas, for the propulsive terminal descent case, the end conditions are the final touchdown
state of the vehicle. Of course, when implementing a control law, it is desirable to minimize a certain quantity, which
most commonly in entry guidance problems is the control effort (i.e., the propellant mass). In the Apollo program,
as with the planned Mars Science Laboratory, hypersonic guidance is performed using a tracking controller which
commands a given bank angle based on linear perturbations from a predefined reference path to maneuver the vehicle
towards the reference path.3, 4 The reference path is designed and tuned to achieve desired drag, deceleration, and
heating profiles while achieving the target performance without directly optimizing the fuel consumption of the reac-
tion control system required to command these bank angles. Similarly, the future Crew Exploration Vehicle currently
does not include propellant usage directly in a cost function as it is baselined to utilize a predictor-corrector approach
to hypersonic aeromaneuvering to target the initial state of the reference path guidance scheme of Apollo.5 Given the
highly nonlinear dynamics of atmospheric entry, developing a guidance algorithm that optimizes a performance index
is difficult, particularly one that has implementation potential onboard a flight system.

II. Overview

The use of the state-dependent Riccati equation (SDRE) is an emerging way to provide feedback control for
nonlinear systems that was initial proposed by Pearson in 1962.6 While initially proposed in 1962, the real emergence
of interest in the field did not come until the late 1990’s when several studies by Cloutier, D’Souza, and Mracek
showed the applicability and promise of the SDRE to nonlinear control of aerospace systems.7–9 The SDRE control
method employs factorization of the nonlinear dynamics into a state vector and state dependent matrix valued function
that is capable of capturing the nonlinear system dynamics by a linear system that is dependent on the current state.9

Through Hamilton-Jacobi-Bellman theory, the minimization of a linear system with a quadratic performance index is
possible resulting in an algebraic Riccati equation (ARE) in terms of the state dependent matrices that are the resultant
of the factorization of the system. Therefore, a slightly sub-optimal feedback control law is able to be obtained
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through solution of the ARE at each point in state space. The SDRE for infinite-time problems with affine control
in the dynamics and quadratic control in the cost has been shown to asymptotically stable and locally asymptotically
optimal; however, asymptotically the Pontryagin optimal necessary conditions are satisfied for the general case.7, 8 It
should also be mentioned that because the factorization of the nonlinear system is non-unique, the flexibility afforded
to the control system designer allows for additional control system robustness to be incorporated. As such, various
decomposition techniques can be employed, exploiting the factorization yielding the most robust closed-loop system.
The analysis of the stability and robustness of the open- and closed-loop system can be conducted using a sum-of-
squares approach where polynomials are used to approximate the Lyapunov function.10 The sum-of-squares technique
generalizes linear matrix inequalities to form a semi-definite programming problem which can be used to impose
stability requirements on the system. These requirements can further be extended to determine the robustness of the
system to perturbations by including these perturbations and parameters of the system.

III. State-Dependent Riccati Regulation Theory

A. The General Nonlinear Regulation Problem

To begin, consider the autonomous system that is full-state observable and affine in input (control) given by

_x(t) = f(x) + B(x)u(t); x(0) = x0 (1)

where x 2 Rn is the state vector, u 2 Rm is the input vector, and t 2 [0;1) is the time. Additionally, it is assumed
that f : Rn 7! Rn and B : Rn 7! Rn�m with B(x) 6= 0 8x are in C1 and that the origin of the uncontrolled,
nonlinear system is an equilibrium. Formulated in terms of an optimal regulation problem, it is desired to minimize
the infinite-time performance index

J (x(t);u(t)) =
1

2

1Z
0

(xT (t)Q(x)x(t) + uT (t)R(x)u(t))dt (2)

which is not necessarily quadratic in state, but is quadratic in input. Furthermore, the weighting matrices satisfy
Q(x) � 0 and R(x) > 0 for all x. The optimal regulation problem is then to find a control law of the form,

u(x) = �K(x)x; u(0) = 0 (3)

such that the performance index is minimized subject to systems dynamics (1) while the closed-loop system is driven
to the origin in infinite time, that is

lim
t!1

x(t) = 0 (4)

B. Extended Linearization of the Nonlinear Dynamics

Consider the state-dependent coefficient (SDC) matrix factorization of the input-free nonlinear system, in which the
nonlinear system is factorized into a linear like structure containing matrices which depend on the state. That is,
factorizing the system such that the nonlinear system, (1), becomes7

_x(t) = A(x)x(t) + B(x)u(t) x(0) = x0 (5)

where A : Rn 7! Rn�n is only unique in the case where n = 1. This factorization of f(x) is guaranteed to exist
provided that f(0) = 0 and f(x) 2 C1 The SDC factorized system now appears to be linear system; however, A(x)
and B(x) depend on the state, making the system nonlinear.

C. State-Dependent Riccati Equation Control

Using the linear-like structure of (5) as a solution direction, the regulation of the nonlinear system can be formu-
lated similarly to a linear-quadratic regulator (LQR) problem with cost function given by (2). This results in a state-
dependent ARE, or SDRE, of the form9

P(x)A(x) + AT (x)P(x)�P(x)B(x)R�1(x)BT (x)P(x) + Q(x) = 0 (6)
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where P(x) > 0 is the unique, symmetric matrix being sought. Provided P(x) exists, the feedback control law is then

u(x) = �R�1(x)BT(x)P(x)x (7)

where the feedback gain matrix, K(x) is given by

K(x) = �R�1(x)BT(x)P(x) (8)

Enacting this control law, results in the closed-loop system dynamics being given by

_x(t) =
�
A(x)�B(x)R�1(x)BT(x)P(x)

�
x(t) (9)

Hence, the SDRE control solution to the nonlinear problem is just a generalization of the the infinite-time LQR
problem, where instead of constant matrices, the matrices are now state-dependent.

D. The Connection to Hamilton-Jacobi-Bellman Theory

Hamilton-Jacobi-Bellman (HJB) theory provides the mathematical conditions in order to the optimum feedback con-
trol law under the dynamic programming framework. With f(x), B(x), Q(x), and R(x) sufficiently smooth, the
value function, defined as15

V (x) , inf
u(�)2U

J (x;u(�)) (10)

is continuously differentiable over the set of admissible controls, U . A solution is then sought for the value function
that is stationary and satisfies the partial differential equation

@

@t
V (x) + inf

u(�)2U
H

�
x;u;

@

@x
V (x)

�
= 0 (11)

where H is the Hamiltonian function. For the infinite-time LQR problem, the equation governing the value function
is given by

@V (x)

@x
[f(x) + B(x)u] +

1

2

�
xTQ(x)x + uTR(x)u

�
= 0 (12)

where the Hamiltonian is given by

H =
@V (x)

@x
[f(x) + B(x)u] +

1

2

�
xTQ(x)x + uTR(x)u

�
(13)

The boundary condition to (12) is given by V (0) = 0 since in infinite-time the state goes to the origin. Stationary
solutions of (12) are related to the stable Lagrangian manifolds of the Hamiltonian dynamics of the system, describing
the behavior of the state, x, and the adjoint variable, �,

_x =
@H

@�
(14)

_� = �@H
@x

(15)

Note that the origin of the Hamiltonian dynamics of the system yield a hyperbolic equilibrium at the origin.

Assumption 1. The linearization of the system dynamics and the infinite-time performance index, (1) and (2), about
the equilibrium is stabilizable and detectable (i.e.,

�
@f
@x (0);B(0);Q1=2(0)

	
is stabilizable and detectable).

Lemma 1. Under Assumption 1, the equilibrium is hyperbolic and there exists a stable Lagrangian manifold, L, for
the Hamiltonian dynamics that correspond to the dynamical system given by (1).17

Since Assumption 1 can be used to construct a smooth value function V (x) in the neighborhood of the origin, Lemma
1 implies the existence of a stable Lagrangian manifold, L, that goes through the origin. In fact, the value function,
V (x), is the generating function for the manifold (i.e., L is the set of points (x;�) satisfying � = @V=@x). It can
further be shown that the optimal feedback control is given by16

u(x) = �R�1(x)BT (x)

�
@V (x)

@x

�T
(16)

Assumption 1 ensures the locally smooth optimal solution V (x) near the origin; however when the optimal trajectories
start to cross, this assumption begins to break down and a viscosity solution to the HJB equation, (12), is required. For
a viscosity solution to exist, Assumption 2 must hold.18
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Assumption 2. The value function V (x) satisfying the HJB equation, (12), is locally Lipschitz in a region 
 around
the origin

With existence in a region around the origin guaranteed (under the assumptions), the optimal feedback control,
(16), can be substituted into (12), yielding

@V (x)

@x
f(x)� 1

2

@V (x)

@x
B(x)R�1(x)BT (x)

�
@V (x)

@x

�T
+

1

2
xTQ(x)x = 0 (17)

Van der Schaft16 has shown, that since @V (0)=@x = 0 that

@V (x)

@x
= P(x)x (18)

for some matrix P(x) = PT (x). Furthermore, van der Schaft showed that the factorization of f(x) into

f(x) = A(x)x (19)

exists, provided the conditions given previously for (5) hold. Hence, the HJB equation given by (17) becomes

xT [P(x)A(x) + AT (x)P(x)�P(x)B(x)R�1(x)BT (x)P(x) + Q(x)]x = 0 (20)

where the symmetric nature of P(x) is utilized. The ARE is recovered directly from (20) setting the bracketed
expression to zero for the linear case; however, since P(x) is required to be a gradient function to solve the HJB
equation, this cannot be done for the nonlinear case. However, by relaxing the requirement that P(x) be a gradient
function, (18), and instead require it be symmetric and positive-definite, a solution can be obtained by setting the
bracketed expression in (20) to zero (notice that this is identical to solving the SDRE identified in (6)).

E. Existence of a Control Solution

The conditions required for the SDRE gain matrix to exist that results in the closed-loop SDC matrix, i.e.,

ACL(x) = A(x)�B(x)K(x) (21)

to be pointwise Hurwitz were derived by Cloutier, Stansbery, and Sznaier.11

Definition 1. The extended linearization of the system dynamics, (5), is a stabilizable (controllable) parameterization
of the nonlinear system, (1), in a region 
 2 Rn if fA(x);B(x)g is pointwise stabilizable (controllable) in the linear
sense for all x 2 
.

Definition 2. The extended linearization of the system dynamics, (5), is a detectable (observable) parameterization of
the nonlinear system, (1), in a region 
 2 Rn if fA(x);Q1=2(x)g is pointwise detectable (observable) in the linear
sense for all x 2 
.

Definition 3. The extended linearization of the system dynamics, (5), is pointwise Hurwitz in a region 
 if the
eigenvalues of A(x) lie in the open left half of the complex plane (i.e., Re(�)< 0) for all x 2 
.

Definition 4. A C1 control law, (3), is recoverable by SDRE control in a region 
 if there exists a pointwise stabilizable
SDC parameterization fA(x);B(x)g, a pointwise positive-semidefinite state weighting matrix Q(x), and a pointwise
positive-definite control weighting matrix R(x) such that resulting state-dependent controller, (7), satisfies the general
regulation control law formulation, (3), for all x.

With these definitions in place, it has been shown that if Theorem 1 holds, then a SDRE gain matrix exists that renders
in the closed-loop SDC matrix pointwise Hurwitz.11

Theorem 1. A C1 control law, (3), is recoverable by SDRE control in a region 
 if there exists a pointwise stabi-
lizable SDC parameterization fA(x);B(x)g such that the closed-loop dynamics matrix (21) is pointwise Hurwitz
in 
, and the gain K(x) satisfies the pointwise minimum-phase property in 
, that is, the zeros of the loop gain
K(x) [sI�A(x)]

�1
B(x) lie in the closed left have plane Re(s) � 0, pointwise.
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F. Stability of the Closed-Loop SDRE System

In order to guarantee local asymptotic stability, Mracek and Cloutier,8 first made the following assumptions

Assumption 3. A(�), B(�), Q(�), and R(�) are C1 matrix-valued functions.

Assumption 4. The pairs fA(x),B(x)g and fA(x),Q1=2(x)g are pointwise stabilizable and detectable parameteri-
zations of the nonlinear system, (1), for all x.

They then prove that the following theorem must hold

Theorem 2. The nonlinear system, (1), with feedback control determined by the SDRE, (7), is locally asymptotically
stable provided that

(i) x 2 Rn, (n > 1)

(ii) P(x) is the unique, symmetric, positive-definite, pointwise-stabilizing solution of the SDRE, (6)

(iii) Assumptions 3 and 4 hold

Proof. Using SDRE control, the closed-loop system is given by _x = ACL(x)x, where the closed-loop SDC matrix,
ACL(x), is given by (21). Under Assumption 3, P(x) is C1, and so is ACL(x). The Mean Value Theorem applied to
the closed-loop SDC matrix gives

ACL(x) = ACL(0)x +
@ACL(z)

@x
x

where z is a vector on the line segment joining the origin and x. Substituting this expression into the closed-loop
system dynamics gives

_x = ACL(0) + xT
@ACL(z)

@x
x

and

_x = ACL(0) + 	(x; z) k x k

where

	(x; z) ,
1

k x k
xT

@ACL(z)

@x
x

This definition implies that as k x k! 1 then 	(x; z)! 0. Therefore, there exists a neighborhood around the origin
where the linear term, ACL(0) dominates the dynamics, and local asymptotic stability is ensured by this matrix being
Hurwitz, as was previously shown.

Hence, Theorem 2 provides conditions that guarantee the local asymptotic stability of the closed-loop nonlinear dy-
namical system. Furthermore, these conditions are fairly readily achievable for a large class of extended linearized
systems.

Global asymptotic stability of the closed-loop system is, in general, harder to achieve, as this implies that the
system is stable for any initial conditions. In order to achieve global stability, it is not sufficient to prove that the
eigenvalues of ACL(x) have negative real parts for all x, as this is an extended linearization of the nonlinear system.
For the global asymptotic stability of the general multivariable case consider Theorem 3, derived by Cloutier, D’Souza,
and Mracek.7

Theorem 3. If the closed-loop SDC matrix, (21), is symmetric for all x, then under Assumptions 3 and 4, the SDRE
closed-loop control law, (7), renders the closed-loop nonlinear system globally asymptotically stable.

Proof. Let V (x) = xTx be a candidate Lyapunov function. Then

_V (x) = xT _x + _xTx = xT
h
ACL(x) + ACL

T (x)
i

x

Under Assumptions 3 and 4, the closed-loop SDC matrix, (21), is stable for all x. If the closed-loop SDC matrix is
symmetric, then the quantity ACL(x) + ACL

T (x) < 0, and _V (x) < 0 for all x.

Clearly, the restrictions of Theorem 3 are restrictive and difficult to ensure in the general case. Hence, for most
systems, local asymptotic stability is assured and a region of attraction can be estimated.
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G. Estimation of the Region of Attraction

McCaffrey and Banks19 proposed a method for estimating the region of attraction of the closed-loop system resulting
from SDRE control, that is, the region in state space that encloses all initial conditions such that the origin of the system
is reached asymptotically. Their methodology invokes the Hamiltonian dynamics, (14) and (15), and the Lagrangian
manifold.

Proposition 1. For any t > 0 such that 
t � 
, V (x) is strictly decreasing along trajectories of the closed-loop
system, (9), for all x0 2 
t n f0g provided

1

2
[��P(x)x]TB(x)R�1(x)BT (x)[��P(x)x]� 1

2
xTP(x)B(x)R�1(x)BT (x)P(x)x � 0 (22)

for all (x;�) 2 L such that x 2 
t n f0g.

Noting that P(0) = @2V (0)
@x2 so that as x ! 0, P(x)x ! @2V (0)

@x2 x and � ! @2V (0)
@x2 x. Therefore, P(x)x ! � as

x ! 0, and the proposition, (22), will hold in a ball B" around the origin, where " is arbitrarily small. With this
framework in place, the stability region can be estimated by:

1. Integrating trajectories of the Hamiltonian dynamics, (14) and (15), backwards in time from xf 2 @B" and
�f = @2V (0)

@x2 xf

2. Estimate the largest t for which (22) holds in 
t

Upon finding this time, the region of attraction is the sublevel set defined by fx 2 Rn : V (x) � �g, where � =
minfV (x) : x 2 @
tg.

H. Optimality of the SDRE

As x ! 0, A(x) ! @f(0)=@x which implies that P(x) approaches the linear ARE at the origin. Furthermore,
the SDRE control solution asymptotically approaches the optimal control as x ! 0 and away from the origin the
SDRE control is arbitrarily close to the optimal feedback. Hence the SDRE approach yields an asymptotically optimal
feedback solution. Mracek and Cloutier8 developed the necessary conditions for the optimality of a general nonlinear
regulator, that is the regulator governed by (1) and (2), and then extend those results to determine the optimality of the
SDRE approach.

Assumption 5. A(x), B(x), P(x), Q(x), and R(x) and their respective gradients are bounded in a neighborhood

 of the origin.

Theorem 4. For the general multivariable nonlinear SDRE control case (i.e., n > 1), the SDRE nonlinear feed-
back solution and its associated state and costate trajectories satisfy the first necessary condition for optimality (i.e.,
@H=@u = 0 of the nonlinear optimal regulator problem defined by (1) and (2). Additionally, if Assumptions 4 and
5 hold under asymptotic stability, as x ! 0, the second necessary condition for optimality (i.e., _� = �@H=@x) is
asymptotically satisfied at a quadratic rate.

Proof. Pontryagin’s maximum principle states that necessary conditions for optimality are

@H

@u
= 0; _� = �@H

@x
; _x =

@H

@�
(23)

where H is the Hamiltonian, (13), and � = @H=@x. Using these definitions and (7) yield

@H

@u
= BT (x)[��P(x)x] (24)

Furthermore, since � = @V=@x the adjoint vector for the system satisfies

� = P(x)x (25)

and the first optimality condition, (24) is satisfied identically for the nonlinear regulator problem.
With the Hamiltonian defined in (13), the second necessary condition becomes

_� = �
�
@f(x)

@x

�T
�� uT

�
@B(x)

@x

�T
��Q(x)x� 1

2
xT

@Q(x)

@x
x� 1

2
uT

@R(x)

@x
u (26)
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Taking the time derivative of (25) yields
_� = _P(x)x + P(x) _x (27)

Substituting this result, along with (7), (9), (19), and (26) into (6) and rearranging yield the SDRE Necessary Condition
for Optimality8

_P(x)x +
1

2
xT

@Q(x)

@x
x +

1

2
xTP(x)B(x)R�1(x)

@R(x)

@x
R�1(x)BT (x)P(x)x

+ xT
�
@A(x)

@x

�T
P(x)x� xTP(x)B(x)R�1(x)

�
@B(x)

@x

�T
P(x)x = 0

(28)

Hence, whenever (28) is satisfied, the closed-loop SDRE solution satisfies all the first-order necessary conditions for
an extremum of the cost functional.

In general, (28) is not satisfied for a given extended linearization of the nonlinear system; however, the suboptimality
can be examined as

_P(x)x =

 
nX
i=1

@P(x)

@xi
_xi

!
=

nX
i=1

@P(x)

@xi

�
aiCLx

�
x (29)

where aiCL is the ith row of the closed-loop SDC matrix. Substituting (29) into (28) yields the condition

xTMix = 0 (30)

where

Mi ,Ni +
1

2

@Q(x)

@xi
+

1

2
P(x)B(x)R�1(x)

@R(x)

@x
R�1(x)BT (x)P(x) +

�
@A(x)

@x

�T
P(x)x

� xTP(x)B(x)R�1(x)

�
@B(x)

@x

�T
P(x)

(31)

where Ni is defined from the relationship
nX
i=1

@P(x)

@xi

�
aiCLx

�
x = xTNix (32)

With asymptotic stability, the trajectories will eventually enter and remain in 
 and under Assumption 5, there exists
a constant, positive definite matrix U such that

max
i
j xTMix j� xTUx 8x 2 
 (33)

Hence, the 1-norm of the SDRE Necessary Condition, (28), is bounded by a quadratic, positive-definite function
from above, and so the suboptimality of the solution is bounded from above.

IV. Sum-of-Squares Analysis and Control Synthesis Techniques

A. Sum-of-Squares Decomposition

A multivariate polynomial, f(x), x 2 Rn is said to be a sum-of-squares if there exist polynomials f1(x),..., fm(x)
such that

f(x) =

mX
i=1

f2i (x) (34)

This statement is equivalent to the following proposition.12

Proposition 2. Let f(x) be a polynomial in x 2 Rn of degree 2d. In addition, let Z(x) be a column vector whose
entries are all monomials in x with degree no greater than d. Then f(x) is a sum-of-squares if and only if there exists
a positive semi-definite matrix Q such that

f(x) = ZT (x)QZ(x) (35)
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With this definition, it can be seen that a sum-of-squares decomposition can be found using semidefinite programming,
to search for the Q matrix satisfying (35).

What is significant about sum-of-squares decomposition for control applications, is that when the polynomial
f(x) has coefficients that are parameterized in terms of some other unknowns, but the polynomial is yet unknown. A
search for the coefficients that render the polynomial f(x) a sum-of-squares can still be performed using semidefinite
programming. For example, consider the construction of a Lyapunov function for a nonlinear system where the
following procedure can be used.

1. Coefficients can be used to parameterize a set of candidate Lyapunov functions in an affine manner, that is it can
determine a set V = fV (x) : V (x) = v0(x) +

Pm
i=1 civi(x)g, where the vi(x)’s are monomials in x.

2. Search for a function V (x) 2 V which satisfies V (x) � �(x) and �
@V (x)

@x
f(x), where �(x) > 0 using

semidefinite programing

The semidefinite programming problem above determines the state dependent linear matrix inequalities (LMIs) that
govern the problem and is a resultants of solving the the following convex optimization problem

Minimize:
mX
i=1

aici (36)

Subject to: F0(x) +

mX
i=1

ciFi(x) � 0 (37)

where ai 2 R are fixed coefficients, ci 2 R are decision variables, and Fi(x) are symmetric matrix functions of the
indeterminate x 2 Rn. When Fi(x) are symmetric polynomial matrices in x the computationally difficult problem of
solving (36) and (37) is relaxed according to the following proposition12

Proposition 3. Let F(x) be an m�m symmetric polynomial matrix of degree 2d in x 2 Rn. Furthermore, let Z(x)
be a column vector whose entries are all monomials in x with degree no greater than d, and assume the following:

(i) F(x) � 0 8x 2 Rn

(ii) vTF(x)v is a sum of squares, with v 2 Rm

(iii) There exists a positive semi-definite matrix Q such that vTF(x)v = (v 
 Z(x))
T

Q (v 
 Z(x))

Then (i)( (ii) and (ii), (iii)

This proposition is proven by Prajna, Papachristodoulou, and Wu in.12 However, by applying Proposition 3, it is
seen that the solution to the sum-of-squares optimization problem seen in (38) and (39) is also a solution to the state-
dependent LMI problem, (36) and (37).

Minimize:
mX
i=1

aici (38)

Subject to: vT

 
F0(x) +

mX
i=1

ciFi(x)

!
v

is a sum-of-squares polynomial

(39)

This relaxation of the LMI problem turns the relatively difficult computation problem associated with (36) and (37) to
a relatively simple computational problem since semidefinite programming solvers are readily available on multiple
platforms,13.14
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B. State-Feedback Control Synthesis Using Sum-of-Squares

Considering the dynamical system given by (1) which can be rewritten similarly to the extended linearized equation,
(5) with the modification that the state SDC matrix now multiplies a monomial vector of the state. That is

_x(t) = A(x)Z(x) + B(x)u (40)

where now A(x) and B(x) are polynomial matrices in x 2 Rn and Z(x) is an n � 1 vector of monomials in x
satisfying

Assumption 6. Z(x) = 0 if and only if x = 0

Furthermore, define a matrix M(x) to be an n�m polynomial matrix given by the relationship

Mij(x) =
@Zi
@xj

(x) i = 1; :::; n; j = 1; :::;m (41)

Also, let Aj(x) denote the jth row of A(x), J = fj1; j2; :::; jmg denote the row indicies of B(x) whose correspond-
ing row is equal to zero, and define �x = (xj1; xj2; :::; xjm). It is desired to find a state-feedback control law of the
form K(x) = F(x)Z(x) that renders the equilibrium stable. Consider the following lemma12

Lemma 2. For a symmetric polynomial matrix, P(x), that is nonsingular 8x 2 Rn,

@P(x)

@xi
= �P(x)

@P�1(x)

@xi
P(x) (42)

Proof. Since P(x) is non-singular, P�1(x)P(x) = I. Taking the partial of both sides with respect to xi gives

@P(x)

@xi
P�1(x) + P(x)

@P�1(x)

@xi
= 0

which when rearranged is precisely (42)

The following theorem then guarantees the existence of feedback control law that stabilizes (40)12

Theorem 5. For a dynamical system of the form (40), suppose there exists an n � n symmetric polynomial matrix
P(�x), an m� n polynomial matrix K(x), a constant "1 > 0, and a sum-of-squares polynomial "2(x), such that

vT (P(�x)� "1I) v (43)

and

�vT (P(�x)AT (x)MT (x) + M(x)A(x)P(�x) + KT (x)BT (x)MT (x) + M(x)B(x)K(x)

�
X
j2J

@P(�x)

@xj
(Aj(x)Z(x)) + "2(x)I)v

(44)

are sums-of-squares, with v 2 Rn. Then the state-feedback stabilization problem is solvable with a controller given
by

u(x) = K(x)P�1(�x)Z(x) (45)

Furthermore, if (44) holds with "2(x) > 0 8x n 0, then the origin is asymptotically stable, and if P(�x) is a constant
matrix, then the origin is globally asymptotically stable.

Proof. Assume that there exist solutions P(�x) and K(x) to (43) and (44). Define a Lyapunov function candidate as

V (x) = Z(x)TP�1(�x)Z(x)

for the closed-loop system
_x =

�
A(x) + B(x)K(x)P�1(�x)

�
Z(x)
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Using Proposition 3, (43) implies that P(�x) and P�1(�x) are positive definite for all x, and V (x) > 0 8x 2 Rn.
Looking at the derivative of the Lyapunov function candidate along trajectories of the system

_V (x(t)) =ZT (x)[
X
j2J

@P�1(�x)

@xj
(Aj(x)Z(x)) +

�
A(x) + B(x)K(x)P�1(�x)

�T
MT (x)M(x)

+ P�1(�x)M(x)
�
A(x) + B(x)K(x)P�1(�x)

�
]Z(x)

Using (44), the expression

P(�x)AT (x)MT (x) + M(x)A(x)P(�x) + KT (x)BT (x)MT (x) + M(x)B(x)K(x)�
X
j2J

@P(�x)

@xj
(Aj(x)Z(x))

is negative semidefinite for all x. Hence, using Lemma 2, _V (x(t)) � 0 and the closed-loop system is stable. Further-
more, if (44) holds with "2(x) > 0 8x n 0, then _V (x(t)) < 0 and the origin is asymptotically stable. Also, if P(�x)
is a constant matrix, then V (x) is radially unbounded, and the origin is globally asymptotically stable.

C. Optimal Stabilization of a Nonlinear System

Consider the nonlinear, infinite time LQR problem previously discussed, in which the state is driven to the origin
such that a performance index that is a function of state and control is extremalized. In terms of the sum-of-squares
framework, the LQR problem is of the form264 _x

z1

z2

375 =

264A(x) B(x)

C1(x) 0

C2(x) I

375"Z(x)

u

#
; x(0) = x0 (46)

where Z(x) is a monomial vector satisfying Assumption 6 and C1(x) 6= 0 when x 6= 0. The performance index to
be minimized is given by

J (x(t);u(t)) =

1Z
0

(z1
T (t)z1(t) + z2

T (t)z2(t))dt (47)

Notice that the this performance index is just k z k22. The following theorem governs the existence of the state-feedback
control law12

Theorem 6. Suppose that (46) there exists an n � n symmetric polynomial matrix P(�x), a constant "1 > 0, and a
sum-of-squares polynomial "2(x) > 0 8x 6= 0, such that

vT1 (P(�x)� "1I) v1 (48)

and
�
�
vT1 �v1 + vT1 �v2 + vT2 �v1 + vT2 �v2

�
(49)

are sum-of-squares, where v1 2 Rn, v2 2 Rm, and

� = MÂP + PÂTMT �MBBTMT �
X
j2J

@P

@xj
(AjZ) + "2I (50)

� = PC1
T (51)

� = C1P (52)

� = �(1� "2)I (53)

where in the previous equations the dependence on the state, x, has been dropped for simplicity. Furthermore, Â(x) =
A(x)�B(x)C2(x). Then the state-feedback control law

u(x) = �
�
BT (x)MT (x)P�1(�x) + C2(x)

�
Z(x) (54)
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causes the origin to be asymptotically stable, and if P (�x) is a constant matrix, the origin is globally asymptotically
stable. Additionally, for an initial condition, x0, that is inside the region of attraction the performance index is
bounded by

J (x(t);u(t)) =k z k22� ZT (x0)P�1(�x0)Z(x0) (55)

The proof of this theorem follows similarly to the general sum-of-squares stabilization problem discussed in the
previous section, and is outlined in.12

D. Connection Between the SDRE and Sum-of-Squares Framework

Note that the framework setup to solve the infinite time LQR problem for both the SDRE problem and sum-of-squares
control synthesis problem can be made identical assuming that the monomial vector Z(x) is just the state vector, x.
That is to say,

Z(x) = x (56)

and the extended linearization of f(x) into the SDC matrix, A(x), results in the SDC matrix being composed entirely
of polynomial functions. With these restrictions in place, the state-dependent LMI solution solved by the SDRE yields
the same solution and the solution obtained by sum-of-squares control synthesis.

V. Dynamics of a High Mass Mars Entry Vehicle

For this investigation, the nonlinear equations of motion shown in (57)-(64) will govern the flight mechanics of
the vehicle during its descent through the atmosphere. Note that these equations of motion assume three degree-of-
freedom motion of a point mass with rotation about the velocity vector (i.e., bank) being decoupled from any other
rotational motion of the vehicle. Additionally, because the hypersonic flight time for a vehicle descending through the
Martian atmosphere is relatively short relative to the rotational period, the effect of planetary rotation is ignored.

_� =
V

r

cos() cos( )

cos(�)
(57)

_� =
V

r
cos() sin( ) (58)

_r = �V sin() (59)

_ = �V
r

cos() cos( ) tan(�) +
L̂

V
cos() sin(�) (60)

_ =

�
g � V 2

r

�
cos()

V
� L̂

V
cos(�) (61)

_V = �D̂ + g sin() (62)

�� =
Td

Ib
(63)

_m = � T

g0Isp
(64)

Where (57)-(59) are the kinematic equations governing the time rate of change of longitude (�), latitude (�), and the
radial distance from the center of the planet (r). Equations (60)-(62) are the equations of motion describing the time
rate of change of the azimuth ( ), flight path angle (), and velocity (V ). The last two equations above, (63) and (64),
describe the attitude dynamics of the vehicle and the associated vehicle mass loss with using the thrusters. While the
bank angle (�) is the control variable that appears directly in the dynamics of the vehicle (57)-(62), the thrust (T ) is
the actuator available to control the bank angle. The relationships for the mass specific lift (L̂) and mass specific drag
(D̂) are seen in (65) and (66).

L̂ =
1

2m
�V 2SCL (65)

11



D̂ =
1

2m
�V 2SCD (66)

Additionally, the planetary environment is assumed to be defined by an inverse-square law gravitational field and an
exponential density profile, as seen in (67) and (68)

g = gp

�rp
r

�2
(67)

� = �p exp

�
�r � rp

H

�
(68)

The remaining parameters of (57)-(68) are shown in Table 1 where values specific to Mars and the Mars Science
Laboratory vehicle are used.

Table 1. Additional Modeling Parameters

Parameter Description Value Units
g0 Earth Reference Gravity 9.806 m/s2

gp Mars Surface Gravity 3.71 m/s2

rp Mars Surface Radius 3397 km
�p Mars Surface Density 0.0068 kg/m3

H Atmospheric Scale Height 17391 m
d Thruster Offset Distance 0.9 m
Isp Specific Impulse of Thruster 190 s
m0 Entry Mass 2196 kg
Ib Vehicle Moment of Inertia 5560 kg-m2

S Vehicle Reference Area 15.9 m2

CD Coefficient of Drag 1.4 –
CL Coefficient of Lift 0.34 –

VI. Modified Apollo Final Phase Hypersonic Guidance

The modified Apollo final phase (MAFP) entry guidance algorithm is a bank-to-steer guidance law which is a
derivative of the Apollo final phase guidance law used during Earth entry from Lunar return of the Apollo spacecraft.3

MAFP was developed in response to growing accuracy needs for Martian entry and is baselined to be used for the
first time on MSL (scheduled to launch in 2011). In general, bank-to-steer guidance modulates the direction of the lift
vector of the entry vehicle around the velocity vector in order to achieve some desired state. For the MAFP algorithm,
this desired state is a reference trajectory, comprised of range-to-go, acceleration due to drag, and altitude rate which
is stored as a function of the relative velocity. The guidance algorithm is activated once sufficient sensible drag (� 0:5
g’s) is detected. It then predicts the range-to-go based as a function of the error in the drag and altitude rate, as shown
in (69).

Rp = Rref +
@R

@D
(D �Dref )� @R

@ _r
( _r � _rref ) (69)

The desired vertical component of the lift-to-drag ratio is then able to be calculated as�
L

D

�
C

=

�
L

D

�
ref

+
K3 (R�Rp)
@R=@(L=D)

(70)

and finally the bank angle command is given by

�c = cos�1
�

(L=D)C
L=D

�
K2ROLL (71)

where K2ROLL is a control on the direction of bank angle to account for bank reversals. The gains used in the algo-
rithm are calculated using linear perturbation theory from the reference and are calculated using the adjoint equations
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of the system. The advantage of the MAFP algorithm is that it has shown to be extremely robust in practice, with a
solution existing at every instant in time, which is an advantageous property for flight implementation. Furthermore,
it only relies on parameters that are directly sensible (or that can be derived from directly sensible parameters). How-
ever, there is no guarantee of optimality on the control effort utilized, which correlates to the propellant mass used to
command the bank angle through the trajectory.

VII. State-Dependent Riccati Equation Tracking Controller Development for a High Mass
Mars Entry Vehicle

A. System Factorization

The objective of this controller design is to track a full-state reference path, therefore first define the error of the system
as

e = x� x̂ (72)

where x is the current state vector and x̂ is the state vector along the reference trajectory. With this definition, the
atmospheric entry system that we wish to control has dynamics governed by

_e = _x� _̂x (73)

The reference path dynamics _̂x are determined (and subsequently tabulated) during the generation of the reference
trajectory, apriori to actual implementing the guidance law and therefor act as a bias to the system, not influencing the
system dynamics described in (57)-(64). Because one of the solution procedures pursued will be through a sum-of-
squares approach, the extended linearization of the equations needs to contain a polynomial SDC matrix. To achieve
this, a Taylor series expansion of the trigonometric and exponential functions is performed such that

sin(x) � x� x3

6
+ ::: (74)

cosx � 1� x2

2
+ ::: (75)

tanx � 1 +
x3

3
+ ::: (76)

expx � 1 + x+ ::: (77)

Let the state vector be defined as

x(t) = [�(t) �(t) r(t)  (t) (t) V (t) �(t) _�(t) m(t))]
T (78)

and the control defined as solely the thrust, T (t). Applying the polynomial approximations above, leads to one
potential extended linearization for the state SDC matrix of the system as shown in (80) on the subsequent page. The
control SDC matrix, for this particular factorization is given by

B(x) =

2666666666666666664

0

0

0

0

0

0

0
d

Ib�1

Ispg0

3777777777777777775

(79)

It is important to note that this extended linearization of the flight mechanics of the entry vehicle is not unique, and,
in fact, several variations can be seen, by choosing different parameters to factor out. Furthermore, when not wishing
to solve the SDRE using a sum-of-squares technique to solve the SDRE was desired, extended linearizations of the
system are readily available without the use of any approximations.
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B. SDRE Solution Procedure

With the extended linearized system determined, several solution paths can be pursued in order to obtain the closed-
loop control solution to guide the vehicle towards the reference trajectory. The first option involves following the
following procedure at each point along the trajectory:

1. Evaluate the A(x) and B(x) matrices given in (80) and (79), respectively, at the current value of the state

2. Form the SDRE as shown in (6) where the SDC’s are constant matrices and the state and control weighting
matrices (i.e., Q(x) and R(x)) are also constant matrices, determined apriori. (For the results shown in this
report, they are arbitrarily taken to be identity)

3. Solve the SDRE evaluated at the current state as if it were a linear Riccati equation, for the positive-definite
matrix, P(x)

4. Invoke the state-feedback control law given in (7) as the control

Note that provided a solution for P(x) exists, this solution method assures local asymptotic stability to the desired
reference trajectory. However, there is no guarantee that the extended linearization chosen will always result in an
obtainable solution for the desired reference trajectory (and hence at some points in the trajectory a control will not be
able to be found). This method solves the semidefinite programming problem for the state-feedback control at each
point along the trajectory. Because this technique involves using semidefinite programming, an external program,
SOSTOOLS v2.0113 coupled with SeDuMi,14 was utilized. This tool combination allows for direct synthesis of the
sum-of-squares formulation of the SDRE, by solving the LQR problem using Shur decomposition real-time with the
trajectory simulation. The outline of the solution procedure is as follows:

1. Formulate the appropriate polynomial objects in SOSTOOLS for the extended linearization representation of
the dynamics

2. Choose appropriate values for the C1(x) and C2(x) matrix (For the results shown in this report, these are taken
to be identity)

3. Call SOSTOOLS from the trajectory simulation to evaluate whether or not a solution satisfying Theorem 6

4. If a solution exists, evaluate the feedback-control law polynomial object returned (valid for a local region of the
current condition), if a solution does not exist exit with no obtainable solution

Note that the solution obtained through the sum-of-squares approach is a local solution through the options in SOS-
TOOLS with updates being recomputed every 30 seconds along the trajectory (approximately 10 times throughout the
entry) to ensure that the locally obtained solution is valid.
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A(x) = [A1�5(x) A6�9(x)] (80)

A1�5(x) =

266666666666666664

0 0 0 0
�
2 2

4 � 2

2 �
 2

2 + 1
�

1

r��2r2
0 0 0 V

r �
V  2

6r + V 2 2

12r �
V 2

2r 0

0 0 0 0 V 2

6 � V
0 �V �

2

3r �
V 2�2

6r + V �2 2

6r � V 2�2 2

12r 0 0 0

0 0 0 0
gpr

2
p

r2 �
2gpr

2
p

6r2

0 0 0 0 0

0 0 0 0
gpr

2
p

r2 �
2gpr

2
p

6r2
1
� 0 0 0 0
1
� 0 0 0 0

377777777777777775
(81)

A6�9(x) =

266666666666666664

�
2 2

4 � 2

2 �
 2

2 + 1
�

1

r��2r2
0 0 0

0 0 0 0
CLV S�prp

mr (
rp
2 �

V 2

4 �
1
12 + 2�2

24 ) 0 0 0

0 V
2r �

1
r +  2

2r �
2 2

4r 0 �CDSV
2�prp

2m2r

�gpr
2
p

2V r2
2

2r �
1
r +

gpr
2
p

V 2r2 �
CLS�prp

2mr +
CLS�prp�

2

4mr 0 0 0

0 �CDSV �prp2mr 0 0

0 0 1 0

0 0 0 0

0 0 0 0

377777777777777775
(82)
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VIII. High Mass Mars Entry Vehicle Hypersonic Guidance Performance

A. Reference Trajectory

A single reference trajectory was designed in order to evaluate the performance of each algorithm evaluated. The
SDRE based guidance laws track the full state vector along the reference, while MAFP follows four states (or derived
states)–range-to-go, acceleration due to drag, altitude rate, and velocity. The reference trajectory is defined at a
constant 45� bank angle from the initial conditions seen in Table 2 and is terminated at the final conditions seen in
Table 3 (nominally). In altitude-velocity space, the reference trajectory is included as part of the plot seen in Figure 1.

Table 2. Reference Trajectory Initial Conditions

Parameter Description Value Units
�0 Initial Longitude 0 deg
�0 Initial Latitude 0 deg
h0 Initial Altitude 125 km
 0 Initial Azimuth Angle 90 deg
0 Initial Flight Path Angle 10 deg
V0 Initial Velocity 4500 m/s
m0 Initial Mass 2196 kg
�0 Initial Bank Angle 45 deg

Table 3. Reference Trajectory Final Conditions

Parameter Description Value Units
�f Final Longitude -1.3947 deg
�f Final Latitude 16.279 deg
hf Final Altitude 7 km
 f Final Azimuth Angle 113.7 deg
f Final Flight Path Angle 28.8 deg
Vf Final Velocity 492.4 m/s
mf Final Mass 2196 kg
�f Final Bank Angle 45 deg

B. Region of Attraction

Using the adjoint method outlined previously (i.e., invoking Proposition 1), the region of attraction around the ref-
erence trajectory was able to be estimated. The solution procedure involves integrating the Hamiltonian dynamics
as well as the adjoint equations of the system from the final state (taken to be the full state defined at 7 km, which
is approximately the planned parachute deployment condition for MSL) while attempting to find the largest region
in state space which satisfies (22). The region of attraction was numerically approximated for each state variable by
using a Newton-Raphson iteration on (22) with a convergence criterion of 1% of the state values along the reference
trajectory. The results of this estimation when taken to altitude-velocity space are shown in Figure 1. It is interesting
to note that for the reference trajectory used in this analysis, that virtually no region attraction exists above 83 km.
This is somewhat expected as the control authority is negligible in this regime with little dynamic pressure to yield
significant lift.

C. Continuous and Piecewise Continuous SDRE Performance

In order to gain a sense of the performance of SDRE control for hypersonic aeromaneuving of entry vehicles on
Mars, as well as the performance of the sum-of-squares decomposition relative to solving the SDRE with the SDC
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Figure 1. Region of Attraction Around the Reference Trajectory

matrices updated continually with the current state, the two different implementations of the SDRE were implemented.
Additionally, MAFP was included to serve as a performance baseline relative to the current state of the art for flight
implementable hypersonic guidance. Two different scenarios were analyzed, one in which the density was 10% higher
than that modeled in the nominal (reference) trajectory and one in which the entry flight path angle is shallowed to
8�. Performance data is shown in Table 4 and 5 for the two different cases. While Figure 2 and Figure 3 shows the
trajectory for each of the control laws in altitude-velocity space for the increased density case and shallow flight path
angle case, respectively. Also shown is how the error vector, e, evolves with velocity for each of the algorithms. This
error vector is normalized by the maximum magnitude observed for each algorithm, to make the results more relevant.
This velocity evolution is shown in Figure 4 and Figure 5. In the results, modified Apollo final phase is identified as
MAFP, the SDRE with SDC matrices continuously updated is identified as Continuous, and the SDRE solved locally
using the sum-of-squares technique is identified as Sum-of-squares.

Table 4. Performance Comparison with 10% Higher Density

Algorithm Velocity Error Position Error Propellant
at 7 km (m/s) at 7 km (m) Usage (kg)

MAFP 8.6 398 33.9
Continuous 7.5 420 27.6

Sum-of-squares 9.4 440 29.2

Table 5. Performance Comparison with  = 8�

Algorithm Velocity Error Position Error Propellant
at 7 km (m/s) at 7 km (m) Usage (kg)

MAFP 16.3 287 28.9
Continuous 9.6 378 27.6

Sum-of-squares 29.6 622 31.2

It is seen that all three algorithms had similar performance with the sum-of-squares algorithm performing poorer than
the continuous SDRE algorithm for both cases examined. This is can be attributed to the update rate of the local
solution. Furthermore, it is seen that all three algorithms perform similarly in how the negate the relative error, with
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Figure 2. Trajectory Comparison with 10% Higher Density
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Figure 3. Trajectory Comparison with  = 8�

early error growth being primarily dominated by the timeline (range) differing dramatically from that of the reference.

IX. Conclusions and Future Work

Through this work, a SDRE control solution to the bank-to-steer hypersonic aeromaneuvering of a high mass entry
vehicle at Mars was accomplished. An analysis of the solution tools available was conducted as well as the perfor-
mance relative to a flight-heritage bank-to-steer guidance algorithm. While the guidance accuracy for all algorithms
was acceptable, a propellant benefit was seen to implementing the SDRE as it solves a sub-optimal LQR problem that
accounts for control effort directly. However, this is at the cost of having the reference the full state of the system as
opposed to a minimal state, that is fully sensible in flight. A sum-of-squares technique which locally solved a generic
control problem was observed to give slightly poorer performance relative to that of a continuous linear LQR prob-
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Figure 4. Error Vector Magnitude Comparison with 10% Higher Density
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Figure 5. Error Vecotr Magnitude Comparison with  = 8�

lem. In the future, an investigation into alternative extended linearizations of the system as well as the impact of the
Taylor series polynomial approximation should be performed in order to fully characterize the quality of the solution
obtained.
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