
AIAA 2000-4884
Optimized Solutions for the Kistler K-1
Branching Trajectory Using MDO Techniques

L. A. Ledsinger
J. R. Olds
Space Systems Design Laboratory
Georgia Institute of Technology
Atlanta, GA

8th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization

6-8 September 2000
Long Beach, California

For permission to copy or to republish, contact the American Institute of Aeronautics and Astronautics,
1801 Alexander Bell Drive, Suite 500, Reston, VA, 20191-4344.

AIAA 2000-4884

Optimized Solutions for the Kistler K-1 Branching Trajectory Using
MDO Techniques

Laura A. Ledsinger

Dr. John R. Olds

Space Systems Design Laboratory
School of Aerospace Engineering

Georgia Institute of Technology, Atlanta, GA 30332-0150

ABSTRACT

Fully reusable two-stage-to-orbit vehicle designs
that incorporate ÔbranchingÕ trajectories during their
ascent are of current interest in the advanced launch
vehicle design community. Unlike expendable vehicle
designs, the booster of a reusable system must fly to a
designated landing site after staging. Therefore, both
the booster return branch and the orbital upper stage
branch along with the lower ascent trajectory are of
interest after the staging point and must be
simultaneously optimized in order to achieve an
overall system objective. Current and notable designs
in this class include the U. S. Air Force Space
Operations Vehicle designs with their Ôpop-upÕ
trajectories, the Kelly Astroliner, the Kistler K-1, the
two-stage-to-orbit vehicle Stargazer, and NASAÕs
proposed liquid flyback booster designs (Space Shuttle
booster replacement).

The solution to this problem using an industry-
standard trajectory optimization code (POST) typically
requires at least two separate computer jobs Ñ one for
the orbital branch, from the ground to orbit, and one
for the flyback branch, from the staging point to the
landing site. These jobs are coupled and their data
requirements are interdependent. These requirements
must be taken into consideration when optimizing the
entire trajectory. This paper analyzes the results of
branching trajectory optimization for the Kistler K-1
launch vehicle with respect to computational efficiency

and data consistency for various solution methods. In
particular, these methods originate from the field of
Multidisciplinary Design Optimization (MDO).

NOMENCLATURE

NASA National Aeronautics and Space Admin.
RTLS Return to Launch Site

INTRODUCTION

In order to lower costs, designers of advanced two-
stage-to-orbit (TSTO) launch vehicles are considering
launch systems in which the booster stage can be
recovered, serviced, and reflown. Often the reusable
booster is required to land at a predesignated recovery
site either near the original launch site (RTLS-style
trajectory, Figure 1) or downrange of the staging point
(Figure 2). In these cases, the entire trajectory is
composed of three parts. The ascent portion follows
the vehicle from launch to staging. At this point, the
trajectory is assumed to split into two Ôbranches.Õ One
is the orbital branch beginning at staging and
following the orbital upper stage all the way to orbit.
The second branch, or flyback branch, starts at staging
and follows the reusable booster to its landing site.
Due to recovery distance or out-of-plane maneuvers
required, the booster is often powered for its flight to
the landing site. In simulations where the booster is
jettisoned from an orbital vehicle, it may be
convenient to combine the ascent trajectory and the
orbital branch to create one computer job, as is the
case with the Kistler K-1. The same may be said
about a launch vehicle with an upper stage that is
jettisoned; the ascent trajectory and the flyback branch
may be combined.

 - Ph.D. Candidate, School of Aerospace Engineering,

Member AIAA.

 - Assistant Professor, School of Aerospace
Engineering, Senior Member AIAA.

Copyright ©2000 by Laura A. Ledsinger and John R.
Olds. Published by the American Institute of Aeronautics
and Astronautics, Inc., with permission.

AIAA 2000-4884

2

In general, both the orbital branch and the flyback
branch rely upon the ascent trajectory for their
respective initial conditions. These initial conditions
are state vectors composed of geographical position,
altitude, velocity, flight path angle, velocity azimuth,
and possibly staging weight. The ascent trajectory
also depends on both branches. Assuming that the
booster is powered, the amount of flyback fuel required
by the booster influences the gross lift-off weight of
the vehicle and thus the ascent path. The weight of
the upper stage (which is dependent upon initial
staging conditions) also affects the gross lift-off
weight of the vehicle and thus the ascent path.
Consequently, all the parts of the entire trajectory are
coupled or interdependent.

The optimization of branching trajectories differs a
great deal from that of the single trajectory. The fact
that there are now two, or even three, different parts of
the overall branching trajectory makes the
optimization more complex. The existence of the
staging point means that compromises must be made
between the orbital and flyback branches. An example
is that typically the upper stage wants a larger flight
path angle at staging. This helps it achieve its orbit
goals in a shorter amount of time (than with a smaller
flight path angle) and thus aids in minimizing its fuel
consumed during the orbital portion of the trajectory.
At the same time, the booster desires a smaller flight
path angle. The closer the velocity vector is to the
horizontal, the faster the booster can achieve that
negative flight path angle that is needed to aim the
vehicle back to the earth. This also helps to minimize
fuel. It is evident that a compromise is needed when
the overall trajectory is considered.

Another important aspect of the branching
trajectory is the feedback of the flyback fuel and the
upper stage fuel. Unnecessary extra fuel in the booster
or the upper stage means that either extra payload can
be taken to orbit or smaller vehicles (booster and upper
stage) can be used. Not enough fuel means that orbit
conditions may not be met and the booster does not
return to its designated landing site. Thus, the
feedback of these fuels is required.

Traditional Solution Methods

Unfortunately, a common method currently used
in industry for optimizing a branching trajectory
problem (henceforth the 'One-and-DoneÕ Method),
while recognizing the coupling of the ascent trajectory
and orbital branch, ignores the flyback fuel dependency
from the flyback branch to the ascent trajectory. The
ascent trajectory, orbital branch, and flyback branch are
treated as separate, but sequential optimization
subproblems. A reasonable guess at upper stage mass,
flyback fuel, and associated structure is made to
establish an initial booster weight. Then, the ascent is
optimized for maximum weight at staging (or some
other similar criteria). The ascent trajectory will
produce a staging state vector used to initiate the
orbital branch and the flyback branch. This vector
includes altitude, velocity, flight path angle, velocity

Downrange Booster Recovery

Staging Point

Orbital Branch

Flyback Branch

Downrange

A
l
t
i
t
u
d
e

Figure 1: RTLS Branching Trajectory

RTLS Booster Recovery

Staging Point

Orbital Branch

Flyback Branch

Downrange

A
l
t
i
t
u
d
e

Figure 2: Downrange Branching Trajectory

AIAA 2000-4884

3

azimuth, latitude, longitude, and sometimes staging
weight. The orbital branch will typically be optimized
with respect to maximizing the upper stage burnout
weight, while the flyback branch will typically be
optimized with respect to minimizing the flyback fuel
consumed.

There are a number of deficiencies in the Ôone-and-
doneÕ method. A major deficiency is that the final
solution is not Ôinternally consistent,Õ in other words,
it is not guaranteed to be converged between the
subproblems. The feedback is not there; the problems
that this creates have been discussed above.

This aforementioned deficiency can be eliminated
through iteration between the ascent, upper stage, and
the flyback branches. From this point on, this method
will be referred to as the Manual Iteration method. A
significant deficiency still exists with this method as
with the Ôone-and-doneÕ method.

At a fundamental level, these methods are
inherently flawed. The objective functions of the
subproblems are not the same; therefore, they can be
in conflict. If the system-level objective is to deliver a
certain payload to orbit with a minimum weight
booster, then why expect an optimum solution from a
method that first maximizes the payload to orbit for
the orbital branch, then minimizes the flyback fuel for
the flyback branch? A compromise in the staging
conditions can be made such that it reduces the flyback
fuel and thus decreases the booster weight. A proper
solution to this problem requires simultaneous and
coupled treatment of all branches of the trajectory, and
the establishment of a single, consistent objective
function between them (i.e. a system-level
optimization).

Many in industry have recognized the deficiencies
of the Ôone-and-doneÕ and manual iteration methods.
Some have employed optimizers that solve the
branching trajectory problem as a whole. Boeing uses
one OTIS1 simulation for the entire branching
trajectory. Shuttle-IUS branching trajectories have
been simulated at the Aerospace Corporation2 with a
system-level optimizer. Feedback of the fuels was not
considered.

At NASA Langley, research with POST (The
Program to Optimize Simulated Trajectories) is
continuing. POST I3 can not simulate branching
trajectories. Branching trajectory research has included
investigations of a bimese vehicle4 with a glideback
return to the launch site and a S�nger-like vehicle5

which included a powered RTLS. Such research with
POST I did not include feedback or system-level
optimizers. POST II6 is currently being tested. POST
II can simulate multiple vehicles and thus branching
trajectories as one entire trajectory simulation. At this
time, fuel feedback is not an option.

For this research, the optimization of branching
trajectories has been solved using the POST I code.
The solution methods of the Ôone-and-doneÕ and
manual iteration methods rely on at most three
separate POST input decks Ñ one for the ascent to
staging trajectory subproblem, one for the orbital
branch subproblem, and one for the flyback branch
subproblem. Each subproblem has its own
independent variables, constraints, and objective
function. The current research has retained the POST I
code and the use of at most three separate input decks
(one job for each part), but also eliminated any
objective function conflict and lack of data consistency
between them. This has produced a solution that
resulted in internally consistent data (the fuelsÕ
feedback is reflected in the initial gross weight, etc.)
and a single system-level objective function (without
conflicting objective functions for each subproblem).

Trajectory Optimization with POST

POST I, typically used in conceptual design, is
not capable of simultaneously treating and optimizing
all parts of a branching trajectory. It is a Lockheed
Martin and NASA code that is widely used for
trajectory optimization problems in advanced vehicle
design. POST is a generalized event-oriented code that
numerically integrates the equations of motion of a
flight vehicle given definitions of aerodynamic
coefficients, propulsion system characteristics,
atmosphere tables, and gravitational models. Guidance
algorithms used in each phase are user-defined.
Numerical optimization is used to satisfy trajectory
constraints and minimize a user-defined objective
function by changing independent steering and
propulsion variables along the flight path. POST runs

AIAA 2000-4884

4

in a batch execution mode and depends on an input file
(or input deck) to define the initial trajectory, event
structure, vehicle parameters, independent variables,
constraints, and objective function. Multiple objective
functions and simultaneous trajectory branches cannot
currently be defined in POST I.

For this research, the optimization of branching
trajectories has been solved using the POST I code.
The solution methods of the Ôone-and-doneÕ and
manual iteration methods rely on at most three
separate POST input decks Ñ one for the ascent
trajectory subproblem, one for the orbital branch
subproblem, and one for the flyback branch
subproblem. Each subproblem has itÕs own
independent variables, constraints, and objective
function. This research has retained the POST I code
and the use of at most three separate input decks (one
job for each part), but also eliminated any objective
function conflict and lack of data consistency between
them. This has produced a solution that resulted in
internally consistent data (the fuelsÕ feedback is
reflected in the initial gross weight, etc.) and a single
system-level objective function (without conflicting
objective functions for each subproblem).

THE KISTLER K-1

To provide applicability to this research, the
missions of candidate TSTO launch vehicle designs
were chosen to serve as reference missions. In this
paper, the analysis and results for the Kistler K-1 is
presented.

Kistler K-1

Many launch vehicles are currently being
developed by commercial industries with the goal of
capturing a profitable share of the growing satellite
launch market. Such is the case of the Kistler K-1
launch vehicle.7 The K-1 (Figure 3, Ref. 8) will be a
fully reusable, two stage vehicle that incorporates
branching trajectories. The vehicleÕs booster will use
three Aerojet modified NK33 engines and the upper
stage will be propelled by one Aerojet- modified NK43
engine.9,10 There will be different versions of the
vehicle to accommodate various payload classes. One
of its missions will be to deliver a 3400 lbs to a 51
nmi x 486 nmi x 51û orbit. This is the mission that

will be analyzed in this study. The data (weights,
trajectory constraints, engine data, etc.) pertaining to
that mission was provided directly by Kistler
Aerospace.11

Figure 3: The K-1 Launch Vehicle8

Figure 4: The K-1 Trajectory8

The trajectory of the K-1 launch vehicle can be
seen in Figure 4.8 It will consist of an RTLS type
branching trajectory as in Figure 1. After launch from
the site at Woomera, Australia, the entire K-1 will fly
until staging approximately 120 seconds later. After
staging, the booster performs a pitcharound maneuver
that will guide itself back to within 10,000 ft of the
launch site, to land with airbags and parachutes. The

AIAA 2000-4884

5

upper stage will continue on to the designated orbit.
For the purposes of this study, the simulation will end
when the orbital targets have been attained. In reality,
the K-1Õs upper stage will deorbit and return to the
launch site.

The trajectory is simulated through two POST
decks. The first follows the vehicle from launch to
orbital injection of the upper stage. Note that this
specific simulation combines the ascent and orbital
paths. The second, or flyback branch, follows just the
booster from staging to its return to the launch site.

The reference K-1 ascent trajectory deckÕs
independent variables are twelve pitch angles and
payload weight. The ascent has five constraints
including orbital insertion criteria and will maximize
the payload for a given set of propulsion
characteristics, vehicle aerodynamics, K-1 weights, and
ascent propellant.

The reference flyback trajectory deck uses six
independent variables: four pitch angles, azimuth of
the pitcharound maneuver needed to initially head the
vehicle in a direction back to the launch site, and
engine burn time. The two constraints guarantee a
smooth rocket pull-up and landing within a certain
downrange distance. Given a set of engine propulsion
characteristics, aerodynamics, and a staging point, the
flyback trajectory nominally tries to minimize flyback
fuel weight. The required staging point data from the
ascent branch includes altitude, flight path angle,
latitude, longitude, velocity, and velocity azimuth.

SOLUTION APPROACH

The goal of the research was to retain the current
analysis tool (POST) while producing a solution that
results in internally consistent data (the true booster
flyback fuel is reflected in the initial gross weight,
etc.) and a single system-level objective function
(without conflicting objective functions for each
subproblem). In addition, the solution should be
reasonably fast, robust, and efficient.

Solution techniques from the field of
Multidisciplinary Design Optimization (MDO) were
advantageously applied to the branching trajectory
problem as it is posed as a coupled set of
subproblems. Table 1 lists the characteristics of the
MDO solution techniques that were usedÑ fixed-point
iteration (FPI), two variations of optimization-based
decomposition (OBD), and collaborative optimization
(CO). (POBD stands for partial optimization-based
decomposition, in which only the feedback loops are
broken. FOBD stands for full optimization-based
decomposition, in which both feedforward and feedback
loops are broken, resulting in a completely parallel
execution.) In addition, an entry labeled ÔManual
IterationÕ is included for comparison. These methods
have been used successfully by others for preliminary
aircraft design12 and launch vehicle design.13 The FPI
method is a serial execution technique that uses an
overall system optimizer. This method explicitly uses
the coupled feedforward/feedback loops linking the
variables of the subproblems. The collaborative and
parallel optimization methods are decomposition
algorithms in that they break feedback/feedforward
loops between the subproblems and incorporate an
overall system optimizer. In addition, collaborative
optimization is a multi-level optimization scheme.
These techniques are detailed in Reference 14 for the
general branching trajectory problem.

Note that there are many ways to optimize the
trajectories of both the upper stage and the booster. In
this research, all of the methods analyzed for the K-1
had a system-level objective of maximizing payload
weight. For the K-1 simulation, fixed weights were
used for all weights except for booster ascent
propellant weight, flyback fuel weight, and payload
weight. The constant total propellant weight was the
sum of the booster ascent propellant weight and the
flyback fuel weight used. The payload weight was the
objective to be maximized.

AIAA 2000-4884

6

RESULTS
FOR THE KISTLER K-1

ÔOne-and-DoneÕ Method

The ÔOne-and-DoneÕ method does not account for
the iterative, coupled nature of the ascent and flyback
branches. The data extraction/insertion from the ascent
POST deck to the flyback deck was performed
manually. The results for this method appear in Table
2. The solution for this method will be the starting
point for all the methods following this one. As a
result, computational time is not listed for this
method. The main reason to show this methodÕs
results is to see the large difference in the objective
function (recall that the goal is to maximize payload
weight) that can be achieved when iteration occurs.

Table 2: ÔOne-and-DoneÕ and Manual Iteration Method
Results for K-1

Payload
Weight (lbs)

POST
CPU Time

Iterations

ÔOne-and-
DoneÕ

3,315 - 0

Manual
Iteration

3,529 201 sec 6

For this method, the initial guess for booster
ascent propellant is significant. The percentage of
booster ascent propellant with respect to the total
available used for this simulation was 92.88%. This
left a little more than 7% for the flyback fuel. After
the serial execution of the two POST decks, it was

found that 1.2% of the initial flyback fuel was left
over, or not used. If the guess for booster ascent
propellant percentage was too high, then the
possibility of not having enough flyback fuel would
have existed. In that case, as far as the flyback
simulation is concerned, the constraints would have
been met, however, negative propellant would be used.
In other words, the POST deck would have used the
dry weight as propellant, resulting in an obviously
wrong answer. That scenario highlights an example of
one of the many deficiencies of this method.

As stated previously, the next method and the
MDO methods will all begin with the solution to the
Ôone-and-doneÕ method. Thus, the initial guesses are
as follows: percentage of booster ascent propellant Ð
93.92%, percentage of flyback fuel Ð 6.08%, and
payload weight Ð 3,314.79 lbs.

Manual Iteration Method

The manual iteration method uses two
subproblem optimizers and no system-level optimizer.
Execution is sequential and iterative between the ascent
deck and the flyback deck. The flyback weight is
updated as the iterations occur. Again, the data
extraction/insertion is manual. Iteration information
and execution time results are shown in Table 2. For
this case, iteration was performed between the two
basic subproblems to ensure data consistency (unlike
the Ôone-and ÐdoneÕ method), however the conflicting
objective functions were not addressed. The
convergence criterion for the manual iteration method
was flyback fuel weight. The K-1 was considered
converged when this variable came within 0.01% of

Table 1: Solution Techniques to Branching Problems

Method Internally

Consistent

Data

Iteration

Between

Branches

Conflicting

Objective

Functions

System-

level

Optimizer

Analysis

Execution

Optimizer Strategy

Manual Iteration Yes Yes Yes No Sequential Distributed

Fixed-Point

Iteration (FPI)

Yes Yes No Yes Sequential System Level

(large)

Partial OBD Yes No No Yes Sequential System Level

(very large)

Full OBD Yes No No Yes Parallel System Level

(extremely large)

Collaborative Yes No No Yes Parallel Distributed

AIAA 2000-4884

7

the result from the previous iteration. This result will
be used as a comparison case in the MDO method
assessment currently being conducted.

MDO Methods

The MDO methods of fixed-point iteration,
optimization-based decomposition, and collaborative
optimization all require a system-level optimizer. The
size of that optimizer for each of the MDO methods is
listed in Table 3. The system-level optimizer used for
the MDO methods was the Modified Method of
Feasible Directions implemented by the software
program DOTª. For the FPI and OBD methods, the
gradients for the system-level optimizer were calculated
using central finite differences. The entire process for
each MDO method, including data extraction/insertion
and gradient calculation, was automated using PERL
and C++ codes.

Table 3: Size of System Optimizer for the K-1
Branching Case

Kistler K-1

Design
Variables

Constraints

FPI 19 10
POBD 20 11/12
FOBD 26 24
CO 7 2

DOTª requires that equality constraints be
formulated as inequality constraints. Three of the
constraints for the K-1 POST decks were equalities;
formulated as two inequality constraints, this brings
the total number of constraints for the FPI method to
ten. Note that for the partial OBD method there were
either one or two more constrains in addition to those
of the FPI method. The compatibility constraint can
be posed as either a squared inequality constraint
(eleven total constraints) or two inequality constraints
(twelve total constraints.) The compatibility
constraints for the full OBD method were posed as
seven pairs of inequality constraints, thus the total
number of constraints was twenty-four.

Fixed-Point Iteration

The FPI method involves use of a system-level
optimizer and POST deck iteration. The POST decks
are not optimized for this method. They are used to
integrate the equations of motion using the set of
controls given by the system-level optimizer. The
POST deck iterations are considered converged when
the flyback fuel weight was within 0.01% of itself,
just like in the manual iteration method.

Detailed quantitative results can be seen in Tables
4 & 5. The FPI method gave an optimized solution of
3,544 pounds of payload weight in 16.3 minutes with
eighteen system-level iterations. Figure 5 shows how
the payload weight varied with function call. In
addition, the plot shows the number of MMFD
iterations, the line searches needed to define the search
direction, per function call. Figure 6 shows the active
constraint history for the FPI method, active
constraints being those that were either violated or
greater than Ð0.5.

3300

3350

3400

3450

3500

3550

3600

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

Function Call MMFD Iteration Number

Figure 5: Payload Weight and System-Level Iterations
per Function Call for the FPI Method

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
0 2 4 6 8 10 12 14 16 18 20

log(||gi||)
Feasible Solution

Figure 6: Active Constraint History per System-Level
Iteration for the FPI Method

P
ay

lo
ad

 W
ei

gh
t

(l
bs

)

S
ystem

-L
evel Iteration

Function Call

System-Level Iteration

L
og

 ||
gi

||

AIAA 2000-4884

8

Optimization-Based Decomposition

Like the FPI method, the Partial OBD method
involves use of a system-level optimizer and POST
decks are not optimized. The feedback loops are
eliminated by this method. The POBD methods
resulted in an optimized payload weight of 3,567
pounds in twenty system-level iterations requiring
15.7 minutes. Additional numerical results are listed
in Tables 4 & 5.

The Full OBD method also involves the use of a
system-level optimizer and POST decks that are not
optimized. For this method, there is no feedback or
feedforward and the POST decks are executed in
parallel. For the FOBD method, the optimization had
to be restarted once due to a lack of progress the first
time. After this restart, an optimal solution of 3,585
pounds of payload weight was found. This took about
sixteen minutes total in thirty-four system-level
iterations for the entire problem. More quantitative
results are listed in Tables 4 & 5.

Collaborative Optimization

Table 4: K-1 Results Comparison (MDO)

Ascent Deck Flyback Deck

Flyback Fuel Weight Input Output

Altitude Output Input

Velocity Output Input

Azimuth Velocity Output Input

Flight Path Angle Output Input

Latitude Output Input

Longitude Output Input

The CO method involves the use of a system-
level optimizer and a parallel analysis structure.
However, for this multi-level decomposition scheme,
the POST decks are optimized using the NPSOL
optimizer included in the POST software. There were
eight target variables required for this method. These
included the payload and flyback fuel weights and the
six variables that composed the staging vector. Table
4 shows how these target variables were perceived by
the ascent and flyback POST decks, as either inputs or

outputs. The system-level constraints, or JÕs, were
calculated accordingly.

Constraint gradient calculations were performed
using the post-optimality sensitivity analysis.15 The
benefit from this analysis, in that numerous analysis
calls can be eliminated, is exploited if the objective
function gradient can also be calculated analytically.
This was achieved by adding the objective function,
payload weight, to the vector of target variables. In
addition, it was included in the error, J, for the ascent
deck and was perceived as an output from the ascent
deck (but an input/control in the ascent deck).
Consequently, the objective function gradient was
easily and analytically derived.

3250

3300

3350

3400

3450

3500

3550

3600

3650

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

Ascent Target System-Level Iteration

Figure 7: Payload Weight Tracking

3280

3300

3320

3340

3360

3380

3400

3420

3440

3460

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

Target Ascent

 Iteration 1 Iteration 2 Iteration 3

Figure 8: System-Level Coordination for Payload
Weight

The CO method gave an optimal solution of
3,569 pounds of payload weight. This was attained in
seven system-level iterations requiring 1.84 hours.
More results are given in the next section. Figure 7
illustrates how the payload weight changed per system-
level function call. Figure 8 shows the subsystem

P
ay

lo
ad

 W
ei

gh
t

(l
bs

)

S
ystem

-L
evel Iteration

System-Level Function Call

P
ay

lo
ad

 W
ei

gh
t

(l
bs

)

AIAA 2000-4884

9

level target achievement for the first three system-level
iterations (0, 1, and 2) for the payload weight. In
Figure 8, it is shown that the payload weight increased
at every iteration. This occurred because the ascent
deck optimization matched the target at each iteration.

SUMMARY OF RESULTS

Tables 5 and 6 give quantitative results for the
Kistler K-1 MDO methods. In Table 4, POST
computational time refers to the total amount of time
to run the POST decks for all calls, including function
calls and gradient calls.

As indicated in Table 5, all methods increased the
payload weight of the K-1, the fixed-point iteration
method by about 15 pounds. The partial optimization-
based decomposition improved the payload weight of
the K-1 by approximately 23 pounds over the FPI
method. The full optimization-based decomposition
results in about a 42 pound increase in the payload
weight over the FPI method. Use of the collaborative
optimization method increased the payload by
approximately 32 pounds. The decomposition
methods gave an approximate 40 Ð 55 pound increase
over the manual iteration method, a 1.6% increase,
which is relevant considering the high costs per pound
to launch payloads.

Table 5: K-1 Results Comparison (MDO)

Method Optimized
Payload Weight

POST Computational
Time

FPI 3,543.64 lbs 976.8 sec (16.3 min)
POBD 1 3,566.82 lbs 939.5 sec (15.7 min)
POBD 2 3,566.85 lbs 941.4 sec (15.7 min)
FOBD 3,585.06 lbs 1,808.5 sec (30.14 min)
CO 3,569.04 lbs 6,627 sec (1.84 hrs)

It was expected that the FPI, POBD, FOBD, and
CO methods result in the same objective function;
however, the lack of performance by the FPI method
may be attributed to the numerical noise introduced by
the flyback fuel weight convergence tolerance on the
internal POST iterations. This noise also affects the
gradient calculations for the engine-on time design
variable because for that gradient, internal POST
iterations occur. This tolerance then affects the

flyback fuel weight and consequently the optimized
payload weight. The marked difference in the FOBD
method may partially be attributed to the existence of
tolerances for the staging vector since the feedforward
no longer existed. These tolerances would have
affected the final payload weight.

Some definitions for the columns in Table 6 are
required. The third column, ÔPOST calls,Õ refers to
how many times an analysis evaluation occurred,
including system-level, gradient (except for the CO
method), and line search evaluations. For the FPI and
POBD methods one ÔPOST callÕ is a sequential
execution of both POST decks. For the FOBD and
CO methods, one ÔPOST callÕ is a parallel execution
of the two POST decks. Note that there are two
numbers given for the CO method. The first is the
number of ÔPOST callsÕ for the ascent deck, the second
is for the flyback deck. As would be expected the
number of ÔPOST callsÕ for the collaborative
optimization method is significantly larger than that
for the other methods. While the number of system-
level iterations is smaller for CO, many function calls
with the subsystems at each iteration were required.

Table 6: K-1 Detailed Results Comparison (MDO)

Method POST
Calls

System-
Level

Iterations

Avg. CPU
Time/Function

Call

FPI 884 18 1.105 sec
POBD 1 843 20 1.114 sec
POBD 2 843 20 1.117 sec
FOBD 1622 34 0.911 sec
CO 2271/4745 7 1.326 min

In the fourth column, CPU time refers to the
average time it took for one POST call to run, be that
iteratively, sequentially, or in a parallel manner. At
first glance, the average CPU times per function call
listed in Table 6 are not what one would expect. The
average time for the FPI method is usually larger than
that for the OBD methods because the internal
iterations for convergence are many. For the Kistler
case, internal convergence occurred in zero or one
iteration, usually zero for gradient calculation (this is
because the flyback fuel weight is controlled by
Ôengine-onÕ time, one of the design variables). Thus
for the majority of ÔPOST callÕ, one POST call for the

AIAA 2000-4884

10

FPI method would take approximately the same
amount of time as one POST call for the POBD
method. This is the case as shown in Table 6. The
time for the FOBD method was smaller since the
POST decks are executed in a parallel manner. The
Ascent POST deck required a longer amount of
execution time than the Flyback deck and its average
time is that listed in Table 6. Even though the POST
decks for the CO method were executed in parallel, the
CPU time was longer because optimization of the
POST decks required a longer amount of time than a
simple integration of the equations of motion did.

Note that the results for the POBD method were
the same regardless of which way the compatibility
constraints were posed. This was not the case,
however, for the FOBD method. When the
compatibility constraints were formed as one
inequality per design variable, a feasible solution was
not found.

Table 7: Staging Data Results for the K-1

Method Altitude
 (ft)

Velocity
(ft/sec)

Gamma
 (deg)

MIM 138,028 4,172.28 33.337

FPI 138,019 4,169.27 33.520
POBD 2 138,014 4,166.92 33.272
FOBD 137,542 4,160.34 32.892
CO 138,028 4,171.15 32.667

More quantitative results can be seen in Table 7
which shows the difference in staging vectors for the
methods. Included for comparison is the staging
vector for the manual iteration method. Since the
results for the two POBD methods were almost exactly
the same, just one is included in the table. Assuming
that convergence tolerances affect the FPI method
staging vector, the results from the other MDO
methods imply that a smaller flight path angle can
reduce flyback fuel weight consumed and thus, the
increase the payload weight. (In the FOBD case, the
lower staging altitude also has a similar effect.) The
returning booster desires this lower angle so that it can
perform its pitcharound maneuver more efficiently.

Through the ascent, the trajectories are very
similar with regards to altitude and velocity. In fact,
as can be seen in Table 7, the staging points are

relatively close to one another. The angles of velocity
azimuth, latitude, and longitude are expected to be
identical considering there are no yawing movements
during the ascent and the results of the table recognize
that fact. In Figure 8, it is shown that the flyback
altitudes exhibit differences. Differing pitch angles
during the flyback pitcharound maneuver affect the
flyback trajectory seen in Figure 9 as does the initial
altitude.

0

50000

100000

150000

200000

250000

120 170 220 270 320 370

Time, sec

POBD

CO

FOBD

MIM

Figure 9: Altitude versus Time for the K-1 Branching
Trajectory

CONCLUSIONS

This paper has provided an introduction and results
to the Kistler K-1 branching trajectory optimization
problem. The main deficiencies of the traditional
methods of the Ôone-and-doneÕ and manual iteration
methods were discussed for the branching trajectory
problem. The main deficiency was that conflicting
objective functions existed in these methods. Each
POST deck had its own objective to fulfil, but
compromises in each individual trajectory could benefit
the entire trajectory. Multidisciplinary design
optimization methods introduced a system-level
optimizer that resulted in an overall, system-level
objective being met for the branching trajectory
problem. The use of these methods for the Kistler K-1
problem showed that an increase in payload weight of
1%, on average, could be obtained. Is this rather small
percentage worth it? When one considers the costs of
launching payloads, about $5,000 - $6000 per pound,
yes. More payload can be put into orbit per launch
and thus, more profits.

The MDO techniques used to solve the branching
trajectory problem were Fixed-Point Iteration, with a
single system-level optimizer; Optimization-Based
Decomposition to eliminate iteration between the

Time (sec)

A
lt

it
ud

e
(f

t)

AIAA 2000-4884

11

branches (two different formulations); and
Collaborative Optimization to enable parallel
subproblem execution with distributed, coordinated
optimizers. The results of solving the K-1 branching
trajectory with MDO methods indicated a trend from
the manual iteration method. These results showed
that a decrease in the flight path angle at staging aided
in reducing the boosterÕs flyback propellant. This
allowed more payload weight to flown to orbit.

ACKNOWLEDGEMENTS

The authors would like to thank the members of
the Space Systems Design Lab (SSDL) at the Georgia
Institute of Technology for their support. Thanks to
Mr. Dick Kohrs of Kistler Aerospace for his assistance
with the K-1 data.

This work was partially sponsored by NASA via
the Georgia Space Grant Consortium and Marshall
Space Flight Center.

REFERENCES

1. Paris, Steve, ÒOverview of OTIS 3.0,Ó NASA
Conference Publication No. 10187, August,
1996.

2. Hallman, W. P, ÒMission Timeline for a Shuttle-
IUS Flight Using a Nonstandard Shuttle Park
Orbit,Ó TOR-0083 (3493-14)-1, The Aerospace
Corporation, October, 1982.

3. Brauer, G. L., D. E. Cornick, and R. Stevenson,
ÒCapabilities and Applications of the Program to
Optimize Simulated Trajectories,Ó NASA CR-
2770, Feb. 1977.

4. Naftel, J. C. and R. W. Powell, ÒFlight Analysis
for a Two-Stage Launch Vehicle with a Glideback
Booster,Ó Journal of Guidance, Control, and
Dynamics, Vol. 8, No. 3, pp. 340-343, May Ð
June, 1985.

5. Lepsch, R. A. and J. C. Naftel, ÒWinged Booster
Performance with Combined Rocket and
Airbreathing Propulsion,Ó Journal of Spacecraft
and Rockets, Vol. 30, No. 6, pp. 641-646,
November Ð December, 1993.

6. Anderson, R. L., et. al. Program to Optimize
Simulated Trajectories (POST II): Guide for New
Users, Preliminary, Beta Release, Volume I,
April, 1999.

7. Kohrs, R. and R. Petersen, ÒDevelopment of the
K-1 Two-Stage, Fully-Reusable Launch Vehicle,Ó
AIAA-98-1540, April, 1998.

8. Kistler Aerospace web site:
http://www.kistleraerospace.com .

9. Anisimov, V. S., T. C. Lacefield, and J.
Andrews, ÒEvolution of the NK-33 and NK-43
LOX/Kerosene Engines,Ó AIAA Paper 97-2680,
July, 1997.

10. Mecham, Michael, ÒAerojet Acquires Major K-1
Engine Shipment,Ó Aviation Week and Space
Technology, Vol. 147, n. 10, September, 1997,
pp. 61-62.

11. Kohrs, R., Personal Communications, June and
December, 1999.

12. Kroo, I., S. Altus, R. Braun, P. Gage, and I.
Sobieski, ÒMultidisciplinary Optimization
Methods for Aircraft Preliminary Design,Ó AIAA
Paper 94-4325, 1994.

13. Braun, R. D., R. W. Powell, R. A. Lepsch, D.
O. Stanley, and I. M. Kroo, ÒMultidisciplinary
Optimization Strategies for Launch Vehicle
Design,Ó AIAA Paper 94-4341, September, 1994.

14. Ledsinger, Laura A. Solutions to Decomposed
Branching Trajectories with Powered Flyback
Using Multidisciplinary Design Optimization.
Ph.D. Thesis. June, 2000

15. Braun, R. D., I. M. Kroo, and P. J. Gage. ÒPost-
Optimality Analysis in Aerospace Vehicle
Design,Ó AIAA Paper 93-3932, August, 1993.

