
 1 

PATHFINDING AND V-INFININTY LEVERAGING  
FOR PLANETARY MOON TOUR MISSIONS 

Adam T. Brinckerhoff * and Ryan P. Russell † 

The well established technique of V-infinity leveraging is applied to the phase- 
fixed planetary moon tour problem, and a global analysis of the related design 
space is performed using an automated pathfinding technique. Resonance 
hopping transfers between two circular, coplanar moons of a common planet are 
designed using series of alternating V-infinity leveraging maneuvers and zero-
point patched conic gravity assists. When this technique is combined with an 
efficient global search based on Bellman’s Principle, the end result is an 
exhaustive set of fuel and time optimal trajectories between the two moons in 
question. The associated Pareto front of solutions represents the classic fuel 
versus flight time trade study sought in preliminary mission design. Example 
numerical results are produced for orbital transfers between scientifically 
interesting moons in the Jovian system. Finally, resonant transfers of 
neighboring pairs of moons are patched together to obtain fuel and flight time 
estimates for a full Jovian system tour with intermediate science orbits. Results 
from this fast, preliminary design procedure are intended to serve as useful 
starting points for higher fidelity multi-body mission design.  In general, the 
resonant hopping design approach and the associated design procedure are found 
to be most relevant for missions with short flight time requirements.  

INTRODUCTION 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 

A V∞
‡ leveraging maneuver (VILM) is defined as a technique that utilizes a 

propulsive burn well before arriving at a gravity assist body in order to efficiently 
increase or reduce the arrival V∞ (excess hyperbolic velocity). At the expense of extra 
flight time, the typical effect of the propulsive ∆V maneuver and associated flyby is a 
significant amplification in the change in V∞ (that otherwise would be directly changed 
using a launch vehicle or propulsive ∆V). The delta-velocity Earth gravity assist (∆V-
EGA), the first example of a V∞ leveraging, is introduced in (Ref. 1). Additionally, the 
analytic theory of two-body VILMs is developed in (Ref. 2), and it is explored further and 
applied to relevant problems in (Ref. 3-7). While previous studies are focused on its 
heliocentric applications, it is important to note that V∞ leveraging is not specific to the 
Sun-Earth system. Accordingly, this work studies the application of VILMs to the phase-
fixed planetary moon tour problem, where the distance and time scales are dramatically 
different from the heliocentric problem. Particular motivation comes from recent interest 
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from NASA and ESA to send flagship class tour and orbiting missions to the planetary 
moon system of Jupiter. Various studies on different aspects of the planetary moon tour 
are conducted in (Ref. 8-16). 

The two-body zero-point patched conic approximation, also referred to as the zero-
sphere-of-influence patched conic approximation, is used in preliminary analysis of 
missions employing flyby trajectories. The method approximates the flyby as a collision 
of two point particles where the state of the attracting body, in this case the moon, is 
unaffected. In essence, the moon’s region of influence is infinitesimally small, and the 
spacecraft undergoes an instantaneous change in velocity at the point of flyby (Ref. 8). In 
the general three-dimensional case, the region of moon influence is a sphere (Ref. 17 and 
18), but in this research only the planar, circular case is considered. 

In this work, VILMs and zero-point patched conic gravity turns are combined to 
complete fuel and time efficient inner-moon orbital transfers. Each VILM requires the 
spacecraft to be in a near-resonant orbit with respect to the moon in question, so the 
process of moving between different near-resonant orbits from one moon to another is 
termed V∞ leveraging-based resonance hopping (which is a variation of the resonance 
hopping technique defined in (Ref. 8)). Tours with long flight times and very low fuel 
requirements using three-body applications are demonstrated in (Ref. 11, 19, and 20). On 
the other hand, this work is intended to be most applicable to shorter flight-time missions, 
such as those in the Jovian system where radiation exposure is a driving constraint.  

MODELS 

Phasing between the body and the spacecraft is an integral part of a VILM. At the 
beginning of the trajectory, the spacecraft departs from the body’s orbit into a nearly 
resonant orbit (Ref. 2). In the case of a planetary moon system, the specific parameters of 
this resonance are described by the variables L (number of spacecraft orbit revolutions), 
K (number of moon orbit revolutions), and RP (ratio between the spacecraft and resonant 
orbit periods). Additionally, M represents the spacecraft orbit revolution on which the 
maneuver is performed, and ± denotes the location of the moon rendezvous (after or 
before the spacecraft crosses the line of apsides, respectively). This terminology is 
consistent with the interplanetary application of V∞ leveraging introduced in (Ref. 2). The 
corresponding geometry for forward and backward interior and exterior maneuvers in the 
planetary moon system is depicted in Figure 1 and Figure 2. 
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Figure 1 Interior V∞ Leveraging Maneuver Geometry 
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Figure 2 Exterior V∞ Leveraging Maneuver Geometry 

As can be seen in Figure 1 and Figure 2, a small propulsive burn is performed tangent 
to the orbit at the line of apsides crossing directly across from the launch location. In the 
case of a forward interior maneuver, the burn is performed in the direction of the velocity 
vector at the periapse of the spacecraft’s orbit. The location and magnitude of this burn 
allow the spacecraft to increase the size of its orbit and ultimately rendezvous with the 
moon at an inertial position different than that of the launch location. Alternately, a 
backward interior VILM reverses the effect of a forward interior maneuver so that the V∞ 

magnitude decreases. A backward interior VILM departs from the ± location that is 
opposite of its forward counterpart’s reencounter position with its spacecraft velocity 
vector pointed off-tangent with respect to the moon’s orbit. Furthermore, the propulsive 
burn at periapse occurs in the opposite direction of the spacecraft’s velocity, and its 
rendezvous with the moon is tangent to the moon’s orbit. The relative symmetry of these 
two maneuvers results in identical fuel usage and time of flight regardless of direction. 
Along these lines, ESCv∆  (magnitude of escape propulsive maneuver at moon) and SPMv∆  

(magnitude of small propulsive maneuver at line of apsides) are introduced as two 
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parameters that quantify the fuel efficiency of each VILM. Forward and backward 
exterior leveraging maneuvers are very similar to their interior counterparts; Figure 2 and 
analyses in (Ref. 1, 2, and 4) give thorough descriptions of their important similarities 
and differences. 

In order to complete each step of the resonance hopping procedure, a specific change 
in V∞ is targeted for each VILM; the targeted change in V∞ is necessary for the spacecraft 
to achieve its next near-resonant orbit in the path. The V∞ change that results from a 
single VILM is controlled by varying three of its defining parameters. Specifically, the 
three influential parameters in question are RP (continuous), M (discrete), and ± 
(discrete).  For a given set of M and ± values, the problem is reduced to a simple one-
dimensional root-solving problem to identify the RP that leads to the targeted change in 
V∞ (as the physical dynamics allow). Upon arriving at the moon with the correct V∞, a 
zero-point patched conic flyby is completed at rendezvous to turn the spacecraft’s 
velocity back to (or away from) tangent with the moon’s orbit so the VILM process can 
be repeated. Figure 3 is a visual representation of the planet-relative and moon-relative 
velocities during the flyby. 
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Figure 3  Two-Body Zero-Point Patched Conic Velocity Diagram 

In Figure 3, VIN and VOUT are the planet-relative spacecraft approach and departure 
velocity vectors, and VM is the velocity vector of the moon with respect to the planet. The 
zero-point patched conic model implies that the incoming and outgoing hyperbolic excess 
velocities have the same magnitude (Ref. 21). It is well known that this model is a better 
approximation in the interplanetary problem than the planetary moon problem. However, 
the approximation does remain useful and is successfully employed in preliminary design 
for many complex planetary moon tours (Ref. 12 and 22). 

This work relies on the assumption that the near-optimum location and direction of 
each leveraging maneuver burn is at the line of apsides and tangent to the spacecraft’s 
orbit, respectively (Ref. 2). This standard burn location and direction could be further 
optimized for each maneuver, but a departure from either of these assumptions would 
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significantly complicate the resulting flyby timing and geometry. In fact, it is well known 
that changing the V∞ is akin to changing the Jacobi constant in the three-body problem 
(Ref. 4 and 20). Further, the maximum change in Jacobi constant occurs when a 
maneuver is performed tangent to the orbit and at the apses where the rotating velocity is 
greatest (Ref. 4). Therefore, the stated burn location and direction are indeed optimal for 
maximizing the change in V∞ during a single leveraging maneuver. 

The current work also assumes that the spacecraft always escapes from and returns to 
the moon tangent to both orbits during forward and backward VILMs, respectively. 
Again, this key starting or ending direction could be marginally improved when 
optimizing multiple sequences of maneuvers, but as already discussed, V∞ is most 
efficiently changed when the rotating velocity is greatest.  The tangent departure provides 
for the maximum (or minimum) apse distance, thereby optimizing the potential for 
change in V∞.  Furthermore and perhaps more importantly, applying the tangential 
strategy allows the local problem to be decoupled from the global pathfinding problem. 

While transfers between two moons are symmetric regardless of direction, this work 
focuses on the design of interior inner-moon transfers because they are more likely to be 
included in realistic moon tour missions. The procedure to accomplish this task is broken 
into the two phases depicted in Figure 4. 

 
Figure 4 Interior Inner-moon Transfer Phase Diagram 

As can be seen in Figure 4, Phase 1 of the transfer involves changing the spacecraft 
V∞ from the initial resonant orbit V∞ to the Hohmann transfer V∞ between the two moon 
orbits. The necessary V∞ change for Phase 1 is accomplished using a resonance hopping 
procedure comprised of alternating forward interior VILMs (see Figure 2) and zero-point 
patched conic flybys. Phase 1 finishes when the spacecraft passes near the arrival moon 
tangentially after it completes the inner-moon Hohmann transfer. Phase 2 of the transfer 
involves changing from the inner-moon Hohmann transfer periapse V∞ to the final 
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resonance orbit V∞. Similar to Phase 1, this V∞ change is accomplished using alternating 
flybys and VILMs, but this time the flybys turn the spacecraft velocity vector away from 
tangent and the maneuvers are of the backward exterior variety (see Figure 2). Phase 2 
begins with a gravity turn at the initial arrival moon rendezvous point, which provides the 
necessary initial velocity vector orientation for the first backward exterior VILM. Phase 2 
finishes when the spacecraft re-encounters the arrival moon with a V∞ that corresponds to 
the final resonant orbit. The initial relative phase angle between the two moons (θ) 
represents the relative initial geometry that is required to ensure that the arrival moon is 
in the correct position upon completion of the phase patching Hohmann transfer.  

METHOD 

A multi-level procedure is used to calculate and analyze the solutions to each inner-
moon V∞ leveraging transfer problem. The objective is to patch a known sequence of 
near-resonant orbits with gravity assisted flybys. VILMs are designed to progressively 
adjust the V∞ at each flyby to the level appropriate for the subsequent resonant orbit. The 
V∞ for a given L:K resonance is easily calculated using the expression in Eq. (1).   

 
K

KLV
V M )( −

=∞  (1) 

Once the resonant V∞ is calculated, a value slightly above or below (depending on the 
particular VILM geometry) this reference is targeted so the spacecraft enters into the 
appropriate near-resonant orbit. The inner-level algorithm calculates the characteristics of 
the VILM trajectory and subsequently root-solves for VILMs that result in the targeted 
change in V∞. The algorithm adjusts the magnitude of the small propulsive burn ( SPMv∆ ) 

to ensure that a spacecraft-moon rendezvous occurs at the intended ± orbit intersection 
(Ref. 2). Then, for each combination of the discreet variables M and ±, the continuous RP 
value is adjusted until the targeted change in V∞ is achieved (as the physical dynamics 
allow). Since flybys are such an integral part of the resonance hopping procedure, 
maneuvers with unrealistic approach radii are filtered out and not considered further. The 
accepted expression for necessary radius of closest approach ( necrp ) is shown in Eq. (2). 
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The necessary flyby radius must be greater than the mission’s specified minimum 
radius of closest approach (minrp ) in order for the corresponding VILM to be considered 
viable. Once all of the targeted maneuvers are enumerated and filtered, the inner-level 
algorithm returns the single VILM that achieves the targeted V∞ change in the most fuel 
efficient manner.  
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The outer-level algorithm calculates and analyzes all of the possible resonance 
combinations, or hopping paths, between the two transfer moons. An exhaustive list of all 
of the possible L:K resonant orbits is created based on the initial and final resonances as 
well as maximum allowable time of flights for each phase. Table 1 shows a list of 
possible resonant orbits for Phase 1 of a Ganymede to Europa transfer with a 6:5 initial 
resonance and a three-month maximum allowable time of flight. 

Table 1 Possible Resonant Orbits for Phase 1 of Ganymede-Europa Transfer  

L K L/K 
Initial V∞ (6:5) 1.2000 

5 4 1.2500 
9 7 1.2857 
4 3 1.3333 
8 6 1.3333 

Hohmann Transfer 1.3632 

Although Table 1 includes only four potential resonances, it is important to note that 
a maximum flight time of a six months leads to 32 potential resonances to consider.   
While repeat L:K ratios (i.e. 4:3 and 8:6)  are allowed at this stage due to the potential to 
vary the maneuver revolution, the results will show that the shorter flight time solutions 
are almost always preferable. Based on the list of possible resonances, a resonance 
hopping tree is then created to enumerate all of the useful combinations, or hopping 
paths, of the resonant orbits that are within the allowable time of flight. This tree 
configuration is created by starting at the Hohmann transfer (HT) orbit and working 
backwards through each resonant path until the given initial resonance orbit is reached, a 
backward sweep technique based on the principles of Bellman’s Dynamic Programming 
(Ref. 23).  Figure 5 shows the resonance hopping tree that is created from Table 1’s data, 
along with its corresponding numbering system. 
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Figure 5 Resonance Hopping Tree for Phase 1 of Ganymede-Europa Transfer 
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Each branch of the example resonant tree starts at a 6:5 box and terminates at the HT 
box; consequently, each branch represents a complete resonance hopping path.  All of the 
possible resonant paths are reconstructed by organizing the tree’s boxes in a matrix. Each 
resonant box is given an ascending integer from left to right down each row, or 
generation. Then, each box’s parent (the connecting box from the previous generation) 
and current total moon revolutions (the sum of K from the L:K terminology) are collected 
and organized in matrix form. A tree enumeration matrix created from the tree in Figure 5 
is shown in Table 2. 

Table 2 Tree Enumeration Matrix for Phase 1 of Ganymede-Europa Transfer 

Current Box # Parent Box # L K L/K Total K 
1 - - - 1.3632 - 
2 1 8 6 1.3333 6 
3 1 4 3 1.3333 3 
4 1 9 7 1.2857 7 
5 1 5 4 1.2500 4 
6 1 6 5 1.2000 5 
7 2 6 5 1.2000 11 
8 3 5 4 1.2500 7 
9 3 6 5 1.2000 8 
10 4 6 5 1.2000 12 
11 5 6 5 1.2000 9 
12 8 6 5 1.2000 12 

 
After the data points are collected and organized in the tree enumeration matrix, each 

path is reconstructed by starting at each row with the initial resonance and following the 
parent trail up to the Hohmann transfer (Box #1). Table 3 illustrates the reconstruction 
from bottom to top of one path from the matrix. 

Table 3 Example Resonant Path Reconstruction for Ganymede-Europa Phase 1 Transfer 

Current Box # Parent Box # L/K 
12 8 1.2000 

  ↓ 
8 3 1.2500 

  ↓ 
3 1 1.3333 

Once all of the resonant paths for each transfer phase have been reconstructed, the 
inner-level algorithm described at the beginning of this section is used to target and 
optimize the set of VILMs that are necessary to change the spacecraft V∞ from the 
specified initial to final resonance. The resulting complete trajectory total ∆V and time of 
flight for each path is then organized in the form of a scatter plot which represents the 
fuel versus flight time trade study that is critical for preliminary design.  
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RESULTS 

The aforementioned procedure is used to generate fuel versus flight time trade study 
results for a variety of transfers between several moons in the Jovian. All of these moon 
orbits are approximated as circular and coplanar, and their orbit radii, body radii, and 
necessary gravitational parameters are listed in Table 4.* 

Table 4 Jovian System Moon Orbit and Physical Characteristics 

Moon Orbit Radii (km) Body Radii (km) Gravitational Parameter (km3/s2) 
Callisto 1882700 2410.3 7.1795e3 

Ganymede 1070400 2631.2 9.8879e3 
Europa 671100 1560.8 3.2027e3 

Io 421800 1821.6 5.959e3 

All of the possible V∞ leveraging-based resonance hopping paths between the four 
representative moons are calculated and analyzed based on several realistic numerical 
assumptions. Minimum flyby altitude is set at 100 km, and the maximum allowable time 
of flight for each transfer is set at 20 times the orbital period of the departure moon. The 
initial and final resonances, 6:5 and 5:6, respectively, are chosen to be consistent with 
realistic flight time constraints and low energy tours (Ref. 11 and 24). If the VILM 
sequences are initiated or terminated with low altitude orbit insertion at one of the moons, 
(Ref. 24) gives a simple quadrature for the optimal boundary V∞ conditions. On the other 
hand, the transfers in this work begin and end with near-resonant orbits around the central 
body. In other words, the orbit insertion costs that are left out of this analysis cover the 
aforementioned escape propulsive maneuver for each transfer, so total fuel costs for the 
following trajectories are based on the sum of their small propulsive maneuvers. The 
resulting scatter plots of possible trajectories are shown in Figure 6 through Figure 8, 
where the numbered trajectories comprise the Pareto front. 

                                                 
* URL: http://ssd.jpl.nasa.gov/ [cited 16 Jan 2009]. 
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Figure 6 Complete Trajectory Scatter Plot for Callisto-Ganymede (6:5-5:6) Transfer 
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Figure 7 Complete Trajectory Scatter Plot for Ganymede-Europa (6:5-5:6) Transfer 
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Figure 8 Complete Trajectory Scatter Plot for Europa-Io (6:5-5:6) Transfer 

Each point in the scatter plots represents a complete resonant hopping sequence, or 
branch of the previously depicted tree (see Figure 5). Table 5 shows a comparison of each 
transfer’s fuel and time optimum trajectories (FOT and TOT, respectively) from the 
scatter plots in Figure 6 through Figure 8. The maximum allowable times of flight and 
transfer distances are normalized by the orbit period and radii of the departure moon, 
respectively. 

Table 5 Jovian System Time and Fuel Optimum Trajectory Costs 

Transfer Moons 
(Departure-

Arrival) 

Transfer Distance/ 
Departure Moon 

Radii 

TOT 
∆V 

(m/s) 

TOT  
Flight Time 

(days) 

FOT 
∆V 

(m/s) 

FOT  
Flight Time  

(days) 

Max. TOF/  
Departure 

Moon Period 
Callisto-

Ganymede 
0.4314 289.3 156.9 279.6 214.0 20 

Ganymede-
Europa 

0.3734 249.2 83.14 225.3 122.1 20 

Europa-Io 0.3715 259.0 50.20 254.7 62.55 20 

As can be seen in Table 5, the difference in ∆V cost between the Callisto-Ganymede 
FOT and TOT is very small (~3%, which is consistent with the phase free results from 
(Ref. (24)), but the difference in time of flight is quite large (~27%). Similar trends occur 
in the data from the other two Jovian system inner-moon transfers. As a result, the TOT 
of each transfer is chosen for further consideration because it is consistently the most 
efficient option in this design space. The orbital trajectory diagrams seen in Figure 9 
through Figure 11 depict the motion of the three bodies during each transfer’s TOT. 
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3 81.01 F1 (HT, |V∞| = 1.219 km/s, necr = 3651 km)  

4 86.81 F2 (3:4, |V∞| = 1.406 km/s, necr = 5782 km) 

5 90.84 B2 (∆V = 78.85 m/s) 
6 114.7 F3 (5:6, |V∞| = 0.9127 km/s, necr = 14490 km) 

7 118.3 B3 (∆V = 50.66 m/s) 
8 156.9 A (5:6, |V∞| = 0.6062 km/s) 

Figure 9 Complete Orbital Trajectory Diagram for Callisto-Ganymede (6:5-5:6)  Transfer TOT 
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Figure 10 Complete Orbital Trajectory Diagram for Ganymede-Europa (6:5-5:6)  Transfer TOT 
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3 17.55 F1 (5:4, |V∞| = 1.198 km/s, necr = 4455 km)  

4 24.59 B2 (∆V = 86.61 m/s) 
5 31.49 F2 (HT, |V∞| = 1.669 km/s, necr = 1729 km) 

6 32.79 F3 (3:4, |V∞| = 1.875 km/s, necr = 3046 km) 

7 38.56 B3 (∆V = 56.89 m/s) 
8 39.75 F3 (5:6, |V∞| = 1.478 km/s, necr = 3537 km) 

9 49.13 B3 (∆V = 75.17 m/s) 
10 50.20 A (5:6, |V∞| = 1.013 km/s) 

Figure 11 Complete Orbital Trajectory Diagram for Europa-Io (6:5-5:6)  Transfer TOT 

In the three trajectory diagrams, departure (D), burn (B), flyby (F), and arrival (A) 
times and locations are all labeled, and the initial phasing angle (θ) between the two 
transfer moons is depicted.  

Figure 6 through Figure 8, Figure 12 through Figure 14, and Table 6 show the results 
of repeating the earlier Jovian system transfer analysis with a 50% longer allowable 
maximum time of flight and comparing their respective fuel optimum trajectories (FOT). 
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Figure 12 Complete Trajectory Scatter Plot for Long TOF Callisto-Ganymede (6:5-5:6) Transfer 
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Figure 13 Complete Trajectory Scatter Plot for Long TOF Ganymede-Europa (6:5-5:6) Transfer 
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Figure 14 Complete Trajectory Scatter Plot for Long TOF Europa-Io (6:5-5:6) Transfer 

Table 6 Jovian System Maximum Allowable Time of Flight Experiment Results 

Transfer Moons 
(Departure-

Arrival) 

FOT 
∆V 

(m/s) 

FOT  
Flight Time 

(days) 

Max. TOF/  
Departure 

Moon Period 

FOT 
∆V 

(m/s) 

FOT  
Flight Time  

(days) 

Max. TOF/  
Departure 

Moon Period 
Callisto-

Ganymede 
279.6 214.0 20 249.1 454.0 30 

Ganymede-
Europa 

225.3 122.1 20 221.5 204.0 30 

Europa-Io 254.7 62.55 20 245.7 89.01 30 

It is known from phase-free theory that a mathematical limit for the minimum ∆V for 
leveraging transfers between moons exists (Ref. 24), and the data from Table 6  
substantiates this claim. In other words, increasing the maximum allowable time of flight 
by 50% only marginally improves the fuel cost and significantly increases the trajectory 
time of flight. Along these lines, (Ref. 24) gives a quadrature expression for the 
theoretical minimum fuel limit for exterior and interior leveraging. Unlike the theoretical 
explanation, the results of this study not only clearly indicate the existence of the 
aforementioned limit, but they also indicate the approximate time of flight where the 
Pareto front approaches it.  
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Finally, full planetary moon tour costs are calculated by adding the TOT fuel and 
flight time totals for multiple transfers in the same system. Table 7 shows the fuel and 
time of flight costs for a full planetary moon tour from Callisto to Io with intermediate 
loosely captured orbits at Ganymede and Europa to gather scientific information.  

Table 7 Jovian System Moon Tour Costs 

Transfer Moons (Departure-Arrival) TOT Total ∆V (m/s) TOT Time of Flight (days) 
Callisto-Ganymede 289.3 156.9 
Ganymede-Europa 249.2 83.14 

Europa-Io 259.0 50.20 
Complete Tour 797.5 290.24 

These loosely captured science orbits don’t require any additional propulsive burns; 
alternatively, it is estimated that insertion and departure from low altitude science orbits 
would cost less than 100 m/s per moon. A similar tour analysis was considered for the 
Saturnian system, but the unique physical characteristics and dynamics of its moons 
make it very difficult for this particular procedure to complete transfers involving them. It 
is important to note that completing each of these tours in the reverse direction would 
involve identical fuel and time of flight costs due to the leveraging maneuvers’ inherent 
symmetry. Also, additional time and fuel would need to be allotted for a actual mission to 
account for science and phasing as well as orbit departure and insertion considerations.  

CONCLUSIONS 

The resonance hopping and associated pathfinding technique developed in this study 
addresses the phase-fixed planetary moon tour problem. V∞ leveraging has considerable 
heritage from use in several heliocentric missions, but the associated design space in this 
environment is relatively small. As a result, the current state of the art of V∞ leveraging 
mission design is manual point designs. This research offers an automated alternative that 
efficiently produces families of Pareto optimized trajectory solutions, which is necessary 
due to the considerable size of the planetary moon tour design space. Along these lines, a 
preliminary design software tool in MATLAB has been written that utilizes the 
aforementioned procedure to solve the phasing and resonant pathfinding problem 
associated with planetary moon tours. Additionally, applying V∞ leveraging in the 
heliocentric environment requires a system design trade involving launch energy versus 
mid-course correction fuel and tank considerations. The planetary moon tour problem 
does not require this trade, which makes V∞ leveraging a more viable mission design 
option in this environment from a systems engineering perspective. Furthermore, this 
approach verifies fuel costs predicted by phase free theory, and it provides the flight 
times associated with these fuel limits that are inherently missing from theory. Along 
these lines, lower fuel tour solutions are possible using multi-body models, but these 
trajectories typically involve long flight times (Ref. 20). Therefore, the results from this 
work are most useful for missions requiring short flight times, which is a likely constraint 
for future planetary moon tour missions. Finally, it is important to note that the zero-point 
patched conic moon tour solutions from this research should be used as preliminary 
designs that give useful initial estimations and ultimately lead to the discovery of more 
robust trajectories from three-body and ephemeris models.  
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NOTATION 

Symbol Description 
V∞  Excess Hyperbolic Velocity 
VILM  V ∞ Leveraging Maneuver 
L  Number of Spacecraft Orbit Revolutions 
K  Number of Moon Orbit Revolutions 
RP  Ratio Between Spacecraft and Resonant Orbit Periods 
M  Spacecraft Orbit Revolution on which the Maneuver is Performed 
±  Rendezvous After or Before the Spacecraft Crosses the Line of Apsides 

ESCv∆    Magnitude of Escape Propulsive Maneuver at Moon 

SPMv∆   Magnitude of Small Propulsive Maneuver at Line of Apsides 

VIN  Planet-relative Spacecraft Approach Velocity Vector 
VOUT   Planet-relative Spacecraft Departure Velocity Vector 
VM   Planet-relative Moon Velocity Vector 
V∞IN  Excess Hyperbolic Spacecraft Approach Velocity Vector 
V∞OUT  Excess Hyperbolic Spacecraft Departure Velocity Vector 
θ  Initial Transfer Moon Phase Angle 

necrp   Necessary Radius of Closest Approach for Flyby 

minrp   Minimum Radius of Closest Approach for Flyby 

mµ   Moon Gravitational Parameter 

neck   Necessary Turn Angle of the V∞ Vector for Flyby 

HT  Hohmann Transfer 
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