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PATHFINDING AND V-INFININTY LEVERAGING
FOR PLANETARY MOON TOUR MISSIONS

Adam T. Brinckerhoff “ and Ryan P. Russell |

The well established technique of V-infinity levgirzg is applied to the phase-
fixed planetary moon tour problem, and a globallysis of the related design
space is performed using an automated pathfindedhnique. Resonance
hopping transfers between two circular, coplanaomscof a common planet are
designed using series of alternating V-infinitydeaging maneuvers and zero-
point patched conic gravity assists. When this rigpe is combined with an
efficient global search based on Bellman's Prirgiphe end result is an
exhaustive set of fuel and time optimal trajectiietween the two moons in
question. The associated Pareto front of soluti@msesents the classic fuel
versus flight time trade study sought in preliminanission design. Example
numerical results are produced for orbital trarsfeetween scientifically
interesting moons in the Jovian system. Finallysorant transfers of
neighboring pairs of moons are patched togethabtain fuel and flight time
estimates for a full Jovian system tour with intediate science orbits. Results
from this fast, preliminary design procedure arterided to serve as useful
starting points for higher fidelity multi-body miss design. In general, the
resonant hopping design approach and the assocdiesggh procedure are found
to be most relevant for missions with short fligihte requirements.

INTRODUCTION

A V. leveraging maneuver (VILM) is defined as a techeigihat utilizes a
propulsive burn well before arriving at a gravitgsst body in order to efficiently
increase or reduce the arrival, lexcess hyperbolic velocity). At the expense dfax
flight time, the typical effect of the propulsiv®/ maneuver and associated flyby is a
significant amplification in the change in,\(that otherwise would be directly changed
using a launch vehicle or propulsivd/). The delta-velocity Earth gravity assigt\(-
EGA), the first example of a./leveraging, is introduced in (Ref. 1). Additionyalthe
analytic theory of two-body VILMi developed in (Ref. 2), and it is explored furtard
applied to relevant problems in (Ref. 3-7). Whilepous studies are focused on its
heliocentric applications, it is important to nobat V., leveraging is not specific to the
Sun-Earth system. Accordingly, this work studies &pplication of VILMs to the phase-
fixed planetary moon tour problem, where the distaand time scales are dramatically
different from the heliocentric problem. Particufaotivation comes from recent interest

" Graduate student, Guggenheim School of Aerospagigering, Georgia Institute of Technology, 27@sE®rive NW, Atlanta,
GA, 30332-0150, 404-894-7783, adam.brinckerhoff@botn

" Assistant professor, Guggenheim School of Aeras|ingineering, Georgia Institute of Technologynryassell@gatech.edu
* Please see the notation table on page 17 fot ksfudf mathematics symbols and their descrifgion



from NASA and ESA to send flagship class tour aratimg missions to the planetary
moon system of Jupiter. Various studies on diffeesmpects of the planetary moon tour
are conducted in (Ref. 8-16).

The two-body zero-point patched conic approximat@iso referred to as the zero-
sphere-of-influence patched conic approximationused in preliminary analysis of
missions employing flyby trajectories. The meth@praximates the flyby as a collision
of two point particles where the state of the attrey body, in this case the moon, is
unaffected. In essence, the moon’s region of imibeeis infinitesimally small, and the
spacecraft undergoes an instantaneous changeoicityadt the point of flyby (Ref. 8). In
the general three-dimensional case, the regionc@inmfluence is a sphere (Ref. 17 and
18), but in this research only the planar, circekse is considered.

In this work, VILMs and zero-point patched conicagty turns are combined to
complete fuel and time efficient inner-moon orbit@nsfers. Each VILM requires the
spacecraft to be in a near-resonant orbit with eelspo the moon in question, so the
process of moving between different near-resonanitsofrom one moon to another is
termed \, leveraging-based resonance hopping (which is eti@n of the resonance
hopping technique defined in (Ref. 8)). Tours withg flight times and very low fuel
requirements using three-body applications are destrated in (Ref. 11, 19, and 20). On
the other hand, this work is intended to be moptiegble to shorter flight-time missions,
such as those in the Jovian system where radiaxpasure is a driving constraint.

MODELS

Phasing between the body and the spacecraft iatagral part of a VILM. At the
beginning of the trajectory, the spacecraft depadms the body’'s orbit into a nearly
resonant orbit (Ref. 2). In the case of a planetaopn system, the specific parameters of
this resonance are described by the variables inlfeu of spacecraft orbit revolutions),
K (number of moon orbit revolutions), ang Ratio between the spacecraft and resonant
orbit periods). Additionally, M represents the spaaft orbit revolution on which the
maneuver is performed, and + denotes the locatfoth@ moon rendezvous (after or
before the spacecraft crosses the line of apsid=pectively). This terminology is
consistent with the interplanetary application ofl@veraging introduced in (Ref. 2). The
corresponding geometry for forward and backwardriat and exterior maneuvers in the
planetary moon system is depicted in Figure 1 agdrg 2.
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Figure 2 Exterior V., Leveraging Maneuver Geometry

As can be seen in Figure 1 and Figure 2, a smatiydsive burn is performed tangent
to the orbit at the line of apsides crossing diyeatross from the launch location. In the
case of a forward interior maneuver, the burn régpsed in the direction of the velocity
vector at the periapse of the spacecraft's orthie Tocation and magnitude of this burn
allow the spacecraft to increase the size of ilBt@nd ultimately rendezvous with the
moon at an inertial position different than thattbé launch location. Alternately, a
backward interior VILM reverses the effect of aviard interior maneuver so that the V
magnitude decreases. A backward interior VILM depdrom the + location that is
opposite of its forward counterpart’s reencountesifion with its spacecraft velocity
vector pointed off-tangent with respect to the nmsanrbit. Furthermore, the propulsive
burn at periapse occurs in the opposite directibmhe spacecraft’s velocity, and its
rendezvous with the moon is tangent to the moorbg.orhe relative symmetry of these
two maneuvers results in identical fuel usage ameé Df flight regardless of direction.
Along these linesAv.,. (magnitude of escape propulsive maneuver at maot)\vg,,

(magnitude of small propulsive maneuver at lineapsides) are introduced as two



parameters that quantify the fuel efficiency of rea¢lLM. Forward and backward
exterior leveraging maneuvers are very similahgrtinterior counterparts; Figure 2 and
analyses in (Ref. 1, 2, and 4) give thorough dpsons of their important similarities
and differences.

In order to complete each step of the resonancpihgprocedure, a specific change
in V,, is targeted for each VILM; the targeted chang¥.ins necessary for the spacecraft
to achieve its next near-resonant orbit in the patie V, change that results from a
single VILM is controlled by varying three of itefihing parameters. Specifically, the
three influential parameters in question arg (Rontinuous), M (discrete), and *
(discrete). For a given set of M and * values, ghablem is reduced to a simple one-
dimensional root-solving problem to identify the fRat leads to the targeted change in
V. (as the physical dynamics allow). Upon arrivinghbs moon with the correct.y a
zero-point patched conic flyby is completed at emwbus to turn the spacecraft's
velocity back to (or away from) tangent with theonts orbit so the VILM process can
be repeated. Figure 3 is a visual representaticiheofplanet-relative and moon-relative
velocities during the flyby.

Figure 3 Two-Body Zero-Point Patched Conic Veocity Diagram

In Figure 3,V ny andVoyur are the planet-relative spacecraft approach apdrtiee
velocity vectors, anly is the velocity vector of the moon with respectite planet. The
zero-point patched conic model implies that th@ming and outgoing hyperbolic excess
velocities have the same magnitude (Ref. 21). We# known that this model is a better
approximation in the interplanetary problem thaa pfanetary moon problem. However,
the approximation does remain useful and is sutidgsemployed in preliminary design
for many complex planetary moon tours (Ref. 12 22d

This work relies on the assumption that the neairapn location and direction of
each leveraging maneuver burn is at the line oidegsand tangent to the spacecraft’s
orbit, respectively (Ref. 2). This standard burnaliion and direction could be further
optimized for each maneuver, but a departure frithee of these assumptions would



significantly complicate the resulting flyby timirammd geometry. In fact, it is well known
that changing the Vis akin to changing the Jacobi constant in thegtyody problem
(Ref. 4 and 20). Further, the maximum change inoldiaconstant occurs when a
maneuver is performed tangent to the orbit ant@fpses where the rotating velocity is
greatest (Ref. 4). Therefore, the stated burn imeand direction are indeed optimal for
maximizing the change in,\Mduring a single leveraging maneuver.

The current work also assumes that the spacedvads escapes from and returns to
the moon tangent to both orbits during forward dradkward VILMs, respectively.
Again, this key starting or ending direction coubg marginally improved when
optimizing multiple sequences of maneuvers, butalsady discussed, Ms most
efficiently changed when the rotating velocity re@test. The tangent departure provides
for the maximum (or minimum) apse distance, therepyimizing the potential for
change in V. Furthermore and perhaps more importantly, apglyihe tangential
strategy allows the local problem to be decouptethfthe global pathfinding problem.

While transfers between two moons are symmetriartdgss of direction, this work
focuses on the design of interior inner-moon trarssbecause they are more likely to be
included in realistic moon tour missions. The prhge to accomplish this task is broken
into the two phases depicted in Figure 4.

Initial Resonant Orbit

Hohmann Transfer Orbit

Phase 2 Final

% Resonant
Orbit /

Figure4 Interior Inner-moon Transfer Phase Diagram

As can be seen in Figure 4, Phase 1 of the tramsfelves changing the spacecraft
V., from the initial resonant orbit.yto the Hohmann transfer.\between the two moon
orbits. The necessary.Mhange for Phase 1 is accomplished using a reserf@pping
procedure comprised of alternating forward intekitcMs (see Figure 2) and zero-point
patched conic flybys. Phase 1 finishes when theespaft passes near the arrival moon
tangentially after it completes the inner-moon Hahnm transfer. Phase 2 of the transfer
involves changing from the inner-moon Hohmann tienperiapse V to the final



resonance orbit /. Similar to Phase 1, this.Mchange is accomplished using alternating
flybys and VILMs, but this time the flybys turn tlspacecraft velocity vector away from
tangent and the maneuvers are of the backwardi@xiariety (see Figure 2). Phase 2
begins with a gravity turn at the initial arrivabon rendezvous point, which provides the
necessary initial velocity vector orientation foetfirst backward exterior VILM. Phase 2
finishes when the spacecraft re-encounters theahmoon with a \/ that corresponds to
the final resonant orbit. The initial relative pbaangle between the two moorfh (
represents the relative initial geometry that guieed to ensure that the arrival moon is
in the correct position upon completion of the ghpatching Hohmann transfer.

METHOD

A multi-level procedure is used to calculate andlyre the solutions to each inner-
moon V,, leveraging transfer problem. The objective is &ich a known sequence of
near-resonant orbits with gravity assisted flybyd_Ms are designed to progressively
adjust the V, at each flyby to the level appropriate for thessquent resonant orbit. The
V. for a given L:K resonance is easily calculatechgshe expression in Eq. (1).

V = V,, (L-K)
B K
Once the resonant.Ms calculated, a value slightly above or belowp@eling on the
particular VILM geometry) this reference is targketeo the spacecraft enters into the
appropriate near-resonant orbit. The inner-levgbihm calculates the characteristics of
the VILM trajectory and subsequently root-solves YdLMs that result in the targeted
change in \.. The algorithnadjusts the magnitude of the small propulsive {uw,, )

to ensure that a spacecraft-moon rendezvous oetulse intended * orbit intersection
(Ref. 2). Then, for each combination of the distxegiables M and %, the continuous R
value is adjusted until the targeted change inid/achieved (as the physical dynamics
allow). Since flybys are such an integral part bé tresonance hopping procedure,
maneuvers with unrealistic approach radii areriitleout and not considered further. The
accepted expression for necessary radius of clapgsbach (p,..) is shown in Eq. (2).

(1)

Him Hin
- - 2
V. %sink, /2) V.’ @)

"Prec

The necessary flyby radius must be greater thanrtission’s specified minimum
radius of closest approachp(,,,) in order for the corresponding VILM to be consel
viable. Once all of the targeted maneuvers are erated and filtered, the inner-level
algorithm returns the single VILM that achieves taggeted \, change in the most fuel
efficient manner.



The outer-level algorithm calculates and analyziksofathe possible resonance
combinations, or hopping paths, between the twasfea moons. An exhaustive list of all
of the possible L:K resonant orbits is created Basethe initial and final resonances as
well as maximum allowable time of flights for eaphase. Table 1 shows a list of
possible resonant orbits for Phase 1 of a Ganyrnted®iropa transfer with a 6:5 initial
resonance and a three-month maximum allowable dinfieght.

Table 1 Possible Resonant Orbitsfor Phase 1 of Ganymede-Europa Transfer

L K L/K
Initial V, (6:5) 1.2000
5 4 1.2500
9 7 1.2857
4 3 1.3333
8 6 1.3333
Hohmann Transfer 1.3632

Although Table 1 includes only four potential reanoes, it is important to note that
a maximum flight time of a six months leads to 3#iemtial resonances to consider.
While repeat L:K ratios (i.e. 4:3 and 8:6) areakd at this stage due to the potential to
vary the maneuver revolution, the results will shitwat the shorter flight time solutions
are almost always preferable. Based on the lispagsible resonances, a resonance
hopping tree is then created to enumerate all efubkeful combinations, or hopping
paths, of the resonant orbits that are within tHewable time of flight. This tree
configuration is created by starting at the Hohmamamsfer (HT) orbit and working
backwards through each resonant path until thengivéial resonance orbit is reached, a
backward sweep technique based on the principl&ethinan’s Dynamic Programming
(Ref. 23). Figure 5 shows the resonance hoppewythiat is created from Table 1's data,
along with its corresponding numbering system.

ol s e
Sdeee (10w

Figure 5 Resonance Hopping Tree for Phase 1 of Ganymede-Europa Transfer




Each branch of the example resonant tree stag$d box and terminates at the HT
box; consequently, each branch represents a ceamgledbnance hopping path. All of the
possible resonant paths are reconstructed by aigarthe tree’s boxes in a matrix. Each
resonant box is given an ascending integer from tefright down each row, or
generation. Then, each box’s parent (the connedmgfrom the previous generation)
and current total moon revolutions (the sum of ¢trirthe L:K terminology) are collected
and organized in matrix form. A tree enumeratiortirm&reated from the tree in Figure 5
is shown in Table 2.

Table2 Tree Enumeration Matrix for Phase 1 of Ganymede-Europa Transfer

Current Box # Parent Box # L K L/K Total K
1 - - - 1.3632 -
2 1 8 6 1.3333 6
3 1 4 3 1.3333 3
4 1 9 7 1.2857 7
5 1 5 4 1.2500 4
6 1 6 5 1.2000 5
7 2 6 5 1.2000 11
8 3 5 4 1.2500 7
9 3 6 5 1.2000 8
10 4 6 5 1.2000 12
11 5 6 5 1.2000 9
12 8 6 5 1.2000 12

After the data points are collected and organireithé tree enumeration matrix, each
path is reconstructed by starting at each row withinitial resonance and following the
parent trail up to the Hohmann transfer (Box #13bl€ 3 illustrates the reconstruction
from bottom to top of one path from the matrix.

Table 3 Example Resonant Path Reconstruction for Ganymede-Europa Phase 1 Transfer

Current Box # Parent Box # L/K
12 8 1.2000
l
8 3 1.2500
1
3 1 1.3333

Once all of the resonant paths for each transfas@thave been reconstructed, the
inner-level algorithm described at the beginningtlis section is used to target and
optimize the set of VILMs that are necessary tongeathe spacecraft.Vfrom the
specified initial to final resonance. The resultoamplete trajectory totalV and time of
flight for each path is then organized in the fasfa scatter plot which represents the
fuel versus flight time trade study that is crititta preliminary design.



RESULTS

The aforementioned procedure is used to generateséusus flight time trade study
results for a variety of transfers between sevei@bns in the Jovian. All of these moon
orbits are approximated as circular and coplanad, their orbit radii, body radii, and
necessary gravitational parameters are listed T4l

Table 4 Jovian System M oon Orbit and Physical Characteristics

Moon Orbit Radii (km) Body Radii (km) GravitationBarameter (krits’)
Callisto 1882700 2410.3 7.1795e3
Ganymede 1070400 2631.2 9.8879e3
Europa 671100 1560.8 3.2027e3
lo 421800 1821.6 5.959e3

All of the possible V. leveraging-based resonance hopping paths betvweefotr
representative moons are calculated and analyzeeldban several realistic numerical
assumptions. Minimum flyby altitude is set at 100, kand the maximum allowable time
of flight for each transfer is set at 20 times ¢inbital period of the departure moon. The
initial and final resonances, 6:5 and 5:6, respebtj are chosen to be consistent with
realistic flight time constraints and low energyr® (Ref. 11 and 24). If the VILM
sequences are initiated or terminated with lowwalg orbit insertion at one of the moons,
(Ref. 24) gives a simple quadrature for the optibmindary V, conditions. On the other
hand, the transfers in this work begin and end wiar-resonant orbits around the central
body. In other words, the orbit insertion costs #u@ left out of this analysis cover the
aforementioned escape propulsive maneuver for gaokfer, so total fuel costs for the
following trajectories are based on the sum ofrtisenall propulsive maneuvers. The
resulting scatter plots of possible trajectories sihhown in Figure 6 through Figure 8,
where the numbered trajectories comprise the P&aatt

" URL: http://ssd.jpl.nasa.goy¢ited 16 Jan 2009].
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Each point in the scatter plots represents a cdmpésonant hopping sequence, or
branch of the previously depicted tree (see Figlyr&able 5 shows a comparison of each
transfer’s fuel and time optimum trajectories (F@md TOT, respectively) from the
scatter plots in Figure 6 through Figure 8. The imaxn allowable times of flight and
transfer distances are normalized by the orbitogeand radii of the departure moon,
respectively.

Table 5 Jovian System Time and Fuel Optimum Trajectory Costs

Transfer Moons Transfer Distance/ TOT TOT FOT FOT Max. TOF/

(Departure- Departure Moon AV Flight Time AV Flight Time Departure
Arrival) Radii (m/s) (days) (m/s) (days) Moon Period
Callisto- 0.4314 289.3 156.9 279.6 214.0 20

Ganymede

Ganymede- 0.3734 249.2 83.14 225.3 122.1 20
Europa

Europa-lo 0.3715 259.0 50.20 254.7 62.55 20

As can be seen in Table 5, the differencaVhcost between the Callisto-Ganymede
FOT and TOT is very small (~3%, which is consisteith the phase free results from
(Ref. (24)), but the difference in time of fliglt quite large (~27%). Similar trends occur
in the data from the other two Jovian system irmepn transfers. As a result, the TOT
of each transfer is chosen for further considemabiecause it is consistently the most
efficient option in this design space. The orbitaljectory diagrams seen in Figure 9
through Figure 11 depict the motion of the thredié® during each transfer’'s TOT.
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Figure 11 Complete Orbital Trajectory Diagram for Europa-lo (6:5-5:6) Transfer TOT

In the three trajectory diagrams, departure (Dynb@®), flyby (F), and arrival (A)
times and locations are all labeled, and the infilzasing angle®) between the two
transfer moons is depicted.

Figure 6 through Figure 8, Figure 12 through Figldeand Table 6 show the results
of repeating the earlier Jovian system transfedyaisawith a 50% longer allowable
maximum time of flight and comparing their respeetiuel optimum trajectories (FOT).
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Table 6 Jovian System Maximum Allowable Time of Flight Experiment Results

Transfer Moons FOT FOT Max. TOF/ FOT FOT Max. TOF/

(Departure- AV Flight Time Departure AV Flight Time Departure
Arrival) (m/s) (days) Moon Period  (m/s) (days) Moon Period
Callisto- 279.6 214.0 20 249.1 454.0 30

Ganymede

Ganymede- 225.3 122.1 20 221.5 204.0 30
Europa

Europa-lo 254.7 62.55 20 245.7 89.01 30

It is known from phase-free theory that a mathecaatimit for the minimumAV for
leveraging transfers between moons exists (Ref, aafl the data from Table 6
substantiates this claim. In other words, increagie maximum allowable time of flight
by 50% only marginally improves the fuel cost argh#icantly increases the trajectory
time of flight. Along these lines, (Ref. 24) gives quadrature expression for the
theoretical minimum fuel limit for exterior and @rtor leveraging. Unlike the theoretical
explanation, the results of this study not onlyadle indicate the existence of the
aforementioned limit, but they also indicate theragimate time of flight where the
Pareto front approaches it.
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Finally, full planetary moon tour costs are caltethby adding the TOT fuel and
flight time totals for multiple transfers in thensa system. Table 7 shows the fuel and
time of flight costs for a full planetary moon toinom Callisto to lo with intermediate
loosely captured orbits at Ganymede and Europattteg scientific information.

Table 7 Jovian System M oon Tour Costs

Transfer Moons (Departure-Arrival) TOT Tot&V (m/s) TOT Time of Flight (days)
Callisto-Ganymede 289.3 156.9
Ganymede-Europa 249.2 83.14

Europa-lo 259.0 50.20
Complete Tour 797.5 290.24

These loosely captured science orbits don’t regaimg additional propulsive burns;
alternatively, it is estimated that insertion argpakrture from low altitude science orbits
would cost less than 100 m/s per moon. A similar tanalysis was considered for the
Saturnian system, but the unique physical charattey and dynamics of its moons
make it very difficult for this particular proceauto complete transfers involving theltn.
is important to note that completing each of theses in the reverse direction would
involve identical fuel and time of flight costs dtethe leveraging maneuvers’ inherent
symmetry. Also, additional time and fuel would needbe allotted for a actual mission to
account for science and phasing as well as orpiadere and insertion considerations.

CONCLUSIONS

The resonance hopping and associated pathfindamigue developed in this study
addresses the phase-fixed planetary moon tour grobV,, leveraging has considerable
heritage from use in several heliocentric missidmg,the associated design space in this
environment is relatively small. As a result, therent state of the art of Meveraging
mission design is manual point designs. This reseaffers an automated alternative that
efficiently produces families of Pareto optimizedj¢ctory solutions, which is necessary
due to the considerable size of the planetary ntoondesign space. Along these lines, a
preliminary design software tool in MATLAB has beewitten that utilizes the
aforementioned procedure to solve the phasing asbnant pathfinding problem
associated with planetary moon tours. Additionatpplying \, leveraging in the
heliocentric environment requires a system degigdet involving launch energy versus
mid-course correction fuel and tank consideratiofise planetary moon tour problem
does not require this trade, which makes [¢veraging a more viable mission design
option in this environment from a systems engimggmerspective. Furthermore, this
approach verifies fuel costs predicted by phase theory, and it provides the flight
times associated with these fuel limits that ateerently missing from theory. Along
these lines, lower fuel tour solutions are possideng multi-body models, but these
trajectories typically involve long flight times éR 20). Therefore, the results from this
work are most useful for missions requiring shbght times, which is a likely constraint
for future planetary moon tour missions. Finaltyisiimportant to note that the zero-point
patched conic moon tour solutions from this redeasiould be used as preliminary
designs that give useful initial estimations antimdtely lead to the discovery of more
robust trajectories from three-body and ephemeadets.
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NOTATION

Symbol Description

Vo Excess Hyperbolic Velocity

VILM V ., Leveraging Maneuver

L Number of Spacecraft Orbit Revolutions

K Number of Moon Orbit Revolutions

Rp Ratio Between Spacecraft and Resonant Orbit &®rio

M Spacecraft Orbit Revolution on which the ManeugdPerformed
+ Rendezvous After or Before the Spacecraft Co#se Line of Apsides
JA\VAS Magnitude of Escape Propulsive Maneuver at Moon
Avg,, Magnitude of Small Propulsive Maneuver at LinéApkides
Vin Planet-relative Spacecraft Approach Velocity \éect

Vour Planet-relative Spacecraft Departure Velocitgtde

Vm Planet-relative Moon Velocity Vector

Voin Excess Hyperbolic Spacecraft Approach Velocity dect
Vout Excess Hyperbolic Spacecraft Departure Velocitytdlec

0 Initial Transfer Moon Phase Angle

MPrec Necessary Radius of Closest Approach for Flyby

o Minimum Radius of Closest Approach for Flyby

U, Moon Gravitational Parameter

Koo Necessary Turn Angle of the,Wector for Flyby

HT Hohmann Transfer

17



REFERENCES

1.
2.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

G. R. Hollenbeck, “New Flight Techniques fort@uPlanet Missions,” AAS Paper 75-087.

J. A. Sims, J. M. Longuski, and A. J. Staud™ ,, Leveraging for Interplanetary Missions:
Multiple-Revolution Orbit Techniques]burnal of Guidance, Control, and Dynamics, Vol. 20,
No. 3, 1997, pp. 409-415.

N. A. Strange and J. A. Sims, “Methods fa Besign of V-Infinity Leveraging Maneuvers,”
AAS Paper 01-437.

T. H. Sweetser, “Jacobi’s Integral axid-Earth-Gravity-AssistAV-EGA) Trajectories,”
AAS Paper 93-635.

L. Casalino, G. Colasurdo, and D. Pastro@gtimization ofAV-Earth-Gravity-Assist
Trajectories,” AAS Paper 97-713.

N. J. Strange and J. M. Longuski, “GraphMathod for Gravity-Assist Trajectory Design,”
Journal of Spacecraft and Rockets, Vol. 39, No. 1, 2002, pp. 9-15.

J. A. Sims, A. J. Staugler, and J. M. LonguSkajectory Options to Pluto Via Gravity Assists
from Venus, Mars, and JupiterJournal of Spacecraft and Rockets, Vol. 34, No. 3, 1997,
pp. 347-353.

C. Uphoff, P. H. Roberts, and L. D. FriedmantbidDesign Concepts for Jupiter Orbiter
Missions,"Journal of Spacecraft and Rockets, Vol. 13, No. 6, 1976, pp. 348-355.

A. A. Wolf and J. C. Smith, “Design of the CasJ our Trajectory in the Saturnian System,”
Control Eng. Practice, Vol. 3, No. 11, 1995, pp. 1611-1619.

J. C. Smith, “Description of Three Candidass€ini Satellite Tours,” AAS Paper 98-106.

S. D. Ross, W. S. Koon, M. W. Lo, and J. Erddan, “Design of a Multi-Moon Orbiter,”
AAS Paper 03-143.

A. F. Heaton, N. J. Strange, J., M., Longuski E. P. Bonfigilio, “Automated Design of the
Europa Orbiter TourJournal of Spacecraft and Rockets, Vol. 39, No. 1, 2002, pp. 17-21.

G. J. Whiffen, “An Investigation of a Jupitealilean Moon Orbiter Trajectory,”
AAS Paper 03-544.

A. F. Heaton and J. M. Longuski, “Feasibitifya Galileo-Style Tour of the Uranian Satellites,”
Journal of Spacecraft and Rockets, Vol. 40, No. 4, 2003, pp. 591-595.

N. J. Strange, T. D. Goodson, and Y. Hahns$Ca Tour Redesign for the Huygens Mission,”
AlAA Paper 2002-4720.

L. Casalino, G. Colasurdo, and M. R. SentnélLow-Thrust Trajectories to Mercury with
Multiple Gravity Assists,” AIAA Paper 2007283.

R. P. Russell and C. A. Ocampo, “Geometric psialof Free-Return Trajectories Following a
Gravity-Assisted Flyby, Journal of Spacecraft and Rockets, Vol. 42, No. 1, 2005, pp. 694-698.

N. J. Strange, R. P. Russell , and B. BuffingtMapping the V-Infinity Globe,”
AAS Paper 07-277.

S. D. Ross and D. J. Scheeres, “Multiple ®Bya\ssists in the Restricted Three-Body Problem,”
AAS Paper 07-227.

S. Campagnola and R. P. Russell, “The Endd2znoigiem PART B: The Multi-Body Technique
and the TP Graph,” AAS Paper 09-227.

18



21. C. Uphoff and M.A. Crouch, “Lunar Cycler Orbivith Alternating Semi-Monthly Transfer
Windows,” AAS Paper 91-105.

22. R.P. Russell and N. J. Strange, “PlanetargriMoycler Trajectories,Journal of Guidance,
Control, and Dynamics, Vol. 32, No. 1, 2009, pp. 143-157.

23. R. Bellman and S. E. Dreyfuipplied Dynamic Programming, Princeton University Press,
Princeton, NJ, 1962.

24. S. Campagnola and R. P. Russell, “The Endd@nolelem PART A: V-infinity Leveraging
Technique and the Leveraging GragiS Paper 09-224.

19



